Genesis of Giant Shitouping Heavy Rare Earth Element Deposit, in Southern Jiangxi Province: Constraints from Mineralogy and Geochemistry of Regolith
-
摘要: 稀土是重要的战略性关键金属资源.离子吸附型稀土矿床是全球重稀土资源的主要供给来源,其成因机理备受瞩目.石头坪重稀土矿床是赣南地区新近发现的超大型离子吸附型重稀土矿床,其成因机制仍不清楚.对该矿床施工了一个赣南钻自上至下系统取样,运用X射线粉晶衍射、扫描电镜、X射线荧光光谱和电感耦合等离子质谱等分析,研究风化壳剖面的矿物学、元素地球化学和pH值特征等.结果表明,风化壳剖面的黏土矿物种类和形态表现出分带性,表土层至全风化层中上部主要为较自形的高结晶度高岭石,全风化层中下部至半风化层黏土矿物主要为短管状埃洛石和低结晶度高岭石,反映了风化壳剖面由下至上黏土矿物结晶度由低向高的转变过程,由此导致吸附能力差异,进而控制着对稀土元素吸附-解吸行为的转变.稀土元素由上至下表现为先增加后降低的“弓背式”富集特征以及“上轻下重”分异特征.稀土元素的富集特征与不同风化阶段的风化程度具有显著的相关性,当风化强度 < 85时,风化强度与稀土含量呈正相关关系;当风化强度 > 85时,风化强度与稀土含量则呈负相关关系.“上轻下重”分异特征与风化剖面中pH值变化、黏土矿物组成及结构变化密切相关,风化剖面pH值自上而下的逐渐升高,稀土离子迁移能力逐步减弱,向下迁移速率相对更高的HREE更容易在剖面下部富集,并且在高pH值环境下,HREE会被优先吸附.因此,风化壳剖面的矿物组成及结构属性共同制约着石头坪离子吸附型重稀土矿的形成.Abstract: Rare earth elements (REE) are strategic metals worldwide. Regolith-hosted heavy rare earth element (HREE) deposits are the world's main HREE producer, and their genesis is widely debated.The Shitouping HREE deposit is a newly discovered giant regolith-hosted HREE deposit in Ganzhou, Jiangxi, and its genesis is still unclear.Therefore, it carried out systematic sampling within a weathered crust profile from top to bottom using the Gannan drill, and revealed the mineralogy, elemental geochemistry, and pH characteristics of the profile using the X-ray diffraction, scanning electron microscopy, X-ray fluorescence spectroscopy, and inductively coupled plasma mass spectrometry. The results show that the species and morphology of clay minerals in the regolith profile exhibit zonality.Topsoil layer and upper completely weathered zone are mainly composed of highly crystalline kaolinite, while lower completely weathered zone and semi-weathered zone are mainly composed of short-tubular halloysite and low-crystalline kaolinite, reflecting the transformation process of clay mineral crystallinity from low to high in the regolith profile from bottom to top. The zonality of clay minerals leads to differences in adsorption capacity which controls the transformation of REE's adsorption-desorption behavior. The enrichment feature of REE shows increasing followed by decreasing from top to bottom, their shape resembles as a "bow". The differentiation characteristics of REE present as light rare earth elements (LREE) accumlating in upper regolith and HREE gathering in lower regolith (upper LREE-lower HREE).The enrichment characteristics of the REE have a significant correlation with the weathering degree at different weathering stages. When the weathering intensity is less than 85, there is a positive correlation between weathering intensity and the quantities of the REE, whereas the weathering intensity is greater than 85, there is a negative correlation.The upper LREE-lower HREE differentiation characteristic is closely related to the variations on pH values and clay minerals' species and morphology in regolith. The pH values in the profile gradually increase from top to bottom, and the mobilization ability of the REE ions gradually decreases. The HREE ions with relatively higher downward migration rates are more prone to accumulate in the lower regolith, and the HREE ions are preferentially adsorbed under high pH conditions. Therefore, the genesis of Shitouping HREE deposit is controlled by the mineralogy and structural characteristics of the regolith.
-
图 8 稀土元素地球化学图解
Eu/Eu*=2EuN/(SmN+GdN);Ce/Ce*=2CeN/(LaN+PrN).球粒陨石数据引自Sun and McDonough(1989)
Fig. 8. Geochemical diagrams of REE
表 1 钻孔GNZ2142不同层位矿物含量(%)
Table 1. Mineral proportions (%) in different positions of the drilling GNZ2142
层位 样号 深度(m) 石英 碱性
长石方解石 黑云母 伊利石 高岭石 A H1 0.5 70 - - - 7 23 H2 1.4 69 - - 2 8 21 B H3 2.2 64 13 - 3 9 11 H4 3.2 52 23 - 3 9 13 H5 4.2 65 16 - 2 7 10 H6 5.2 64 19 - 2 7 8 H7 6.2 49 38 - 2 6 5 H8 7.2 59 26 1 4 4 6 H9 8.2 60 30 1 2 3 4 H10 9.2 42 48 1 1 4 4 C H11 10.0 43 44 1 3 5 4 表 2 钻孔GNZ2142不同层位主微量元素分析结果
Table 2. Results of major and trace elements in different positions of drilling GNZ2142
样品 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 基岩* 主量元素(%) SiO2 72.44 69.03 73.54 75.08 74.27 74.38 75.99 73.85 74.05 74.37 72.89 75.64 Al2O3 16.86 19.56 16.54 15.82 15.31 14.98 14.94 14.98 14.72 14.66 15.24 11.61 Fe2O3T 2.34 2.54 1.79 1.94 1.66 1.82 2.01 1.71 1.6 1.61 1.9 1.33 MgO 0.09 0.1 0.05 0.02 0.03 0.04 0.03 0.02 0.03 0.02 0.01 0.68 CaO 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 1.06 Na2O 0.01 0.01 0.03 0.04 0.04 0.01 0.01 0.02 0.09 0.16 0.44 0.20 K2O 0.95 1.32 2.24 3.39 3.68 3.92 4.39 5.02 5.11 5.53 5.6 4.32 MnO 0.03 0.04 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.06 3.41 P2O5 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.23 TiO2 0.10 0.10 0.06 0.04 0.05 0.04 0.04 0.04 0.05 0.05 0.05 0.05 LOI 6.13 6.67 4.92 4.05 3.87 3.71 3.22 3.19 3.43 3.25 3.14 1.13 Total 98.97 99.39 99.24 100.45 98.99 98.97 100.71 98.9 99.15 99.72 99.35 99.67 CIA 94.07 93.03 86.88 80.79 78.90 77.75 75.70 73.15 72.05 70.00 69.09 ALK 0.96 1.33 2.27 3.43 3.72 3.93 4.4 5.04 5.2 5.69 6.04 ACNK 10.59 8.89 4.43 2.8 2.5 2.31 2.06 1.8 1.73 1.58 1.57 里特曼指数(σ) 0.03 0.07 0.17 0.37 0.44 0.49 0.59 0.82 0.87 1.03 1.22 pH 4.64 4.83 4.85 4.76 4.89 4.83 5.15 5.02 5.14 5.39 5.72 稀土元素(10-6 μg/g) La 65.00 75.30 76.10 99.70 110.50 109.50 90.20 79.60 75.60 61.70 53.40 48.42 Ce 209.00 189.50 244.00 273.00 49.40 63.60 93.20 58.00 39.40 48.50 106.50 96.33 Pr 21.70 25.50 24.90 32.00 34.50 33.40 28.00 24.90 23.50 19.30 16.80 16.85 Nd 79.00 95.60 92.40 115.00 121.50 118.00 99.20 87.90 82.10 68.50 58.70 56.35 Sm 19.25 23.90 24.40 31.90 34.30 34.70 30.30 27.50 25.20 20.90 18.40 15.52 Eu 0.34 0.41 0.39 0.39 0.40 0.39 0.31 0.26 0.22 0.15 0.16 0.27 Gd 14.65 17.35 18.60 26.90 31.00 34.50 31.80 30.30 28.40 22.40 19.10 17.48 Tb 2.51 3.02 3.31 4.80 5.57 6.42 6.05 5.93 5.53 4.41 3.79 2.30 Dy 17.25 20.20 21.90 31.40 36.60 42.60 39.70 40.40 37.50 29.50 25.40 22.55 Ho 3.77 4.39 4.72 6.65 7.75 9.10 8.41 8.59 7.93 6.34 5.37 4.64 Er 13.30 15.65 16.70 22.30 25.70 30.80 27.90 28.40 26.10 20.60 18.30 13.64 Tm 2.29 2.69 3.01 3.89 4.45 5.15 4.72 4.81 4.47 3.60 3.19 2.15 Yb 15.35 17.30 19.70 25.80 29.40 34.20 31.00 34.20 29.70 24.50 20.70 17.26 Lu 2.18 2.61 3.06 3.74 4.15 4.88 4.46 4.64 4.30 3.50 3.19 2.44 Y 112.00 121.00 132.00 211.00 252.00 291.00 277.00 286.00 262.00 203.00 170.50 148.55 ∑REE 577.59 614.42 685.19 888.47 747.22 818.24 772.25 721.43 651.95 536.90 523.50 464.76 LREE 394.29 410.21 462.19 551.99 350.60 359.59 341.21 278.16 246.02 219.05 253.96 233.75 HREE 183.30 204.21 223.00 336.48 396.62 458.65 431.04 443.27 405.93 317.85 269.54 231.02 LREE/HREE 2.15 2.01 2.07 1.64 0.88 0.78 0.79 0.63 0.61 0.69 0.94 1.01 (La/Yb)N 3.04 3.12 2.77 2.77 2.70 2.30 2.09 1.76 1.83 1.81 1.85 Eu/Eu* 0.06 0.06 0.06 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.03 Ce/Ce* 1.36 1.06 1.37 1.19 0.2 0.26 0.45 0.32 0.23 0.34 0.87 注:基岩数据引自钟书松等, 2021.样品采集深度分别为:H1=0.5 m; H2=1.4; H3=2.2; H4=3.2; H5=4.2; H6=5.2; H7=6.2; H8=7.2; H9=8.2; H10=9.3; H11=10. -
Balaram, V., 2019. Rare Earth Elements: A Review of Applications, Occurrence, Exploration, Analysis, Recycling, and Environmental Impact. Geoscience Frontiers, 10(4): 1285-1303. https://doi.org/10.1016/j.gsf.2018.12.005 Bao, Z. W., Zhao, Z. H., 2008. Geochemistry of Mineralization with Exchangeable REY in the Weathering Crusts of Granitic Rocks in South China. Ore Geology Reviews, 33(3/4): 519-535. https://doi.org/10.1016/j.oregeorev.2007.03.005 Binnemans, K., Jones, P. T., Blanpain, B., et al., 2015. Towards Zero-Waste Valorisation of Rare-Earth-Containing Industrial Process Residues: A Critical Review. Journal of Cleaner Production, 99: 17-38. https://doi.org/10.1016/j.jclepro.2015.02.089 Borst, A. M., Smith, M. P., Finch, A. A., et al., 2020. Adsorption of Rare Earth Elements in Regolith-Hosted Clay Deposits. Nature Communications, 11(1): 4386. https://doi.org/10.1038/s41467-020-17801-5 Bray, A. W., Oelkers, E. H., Bonneville, S., et al., 2015. The Effect of pH, Grain Size, and Organic Ligands on Biotite Weathering Rates. Geochimica et Cosmochimica Acta, 164: 127-145. https://doi.org/10.1016/j.gca.2015.04.048 Chen, D. Q., Wu, J. S., 1990. Metallogenic Mechanism of Ion Adsorption Rare Earth Deposits. Journal of the Chinese Society of Rare Earths, 8(2): 175-179(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4343.1990.02.019 Chen, W., Jiang, S. Y., 2022. What Type of Carbonate Rock can Form Large to Ultra Large Rare Earth Deposits? Earth Science, 47(10): 3891-3893(in Chinese with English abstract). Chi, R. A., Tian, J, , 2007. Review of Weathered Crust Rare Earth Ore. Journal of the Chinese Society of Rare Earths, 25(6): 641-650(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4343.2007.06.001 Condie, K. C., Dengate, J., Cullers, R. L., 1995. Behavior of Rare Earth Elements in a Paleoweathering Profile on Granodiorite in the Front Range, Colorado, USA. Geochimica et Cosmochimica Acta, 59(2): 279-294. https://doi.org/10.1016/0016-7037(94)00280-Y Fan, C. Z., Zhang, Y., Chen, Z. H., et al., 2015. The Study of Clay Minerals from Weathered Crust Rare Earth Ores in Southern Jiangxi Province. Acta Petrologica et Mineralogica, 34(6): 803-810(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2015.06.002 Feng, L. J., Chu, X. L., Zhang, Q. R., et al., 2003. CIA (Chemical Index of Alteration) and Its Applications in the Neoproterozoic Clastic Rocks. Earth Science Frontiers, 10(4): 539-544(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2003.04.019 Fu, H. J., Jian, X., Liang, H. H., 2021. Research Progress of Sediment Indicators and Methods for Evaluation of Silicate Chemical Weathering Intensity. Journal of Palaeogeography, 23(6): 1192-1209(in Chinese with English abstract). Fu, W., Dong, C. F., Xu, C., et al., 2024. Research on Prospecting Direction of Ion-Adsorption Type Heavy Rare Earth Element Resources in Guangxi and Progresses in Scientific Demonstration Exploration. Earth Science, 49(6): 1931-1945(in Chinese with English abstract). Fu, W., Li, X. T., Feng, Y. Y., et al., 2019. Chemical Weathering of S-Type Granite and Formation of Rare Earth Element (REE)-Rich Regolith in South China: Critical Control of Lithology. Chemical Geology, 520: 33-51. https://doi.org/10.1016/j.chemgeo.2019.05.006 Gong, L. X., Wang, X. G., Zhang, D. F., et al., 2023. Zircon as a Monitoring Tool for the Magmatic-Hydrothermal Process in the Granitic Bedrock of Shitouping Ion-Adsorption Heavy Rare Earth Element Deposit, South China. Minerals, 13(11): 1402. https://doi.org/10.1016/j.chemgeo.2019.05.006 doi: 10.3390/min13111402 He, Y. L., Ma, L. Y., Li, X. R., et al., 2023. Mobilization and Fractionation of Rare Earth Elements during Experimental Bio-Weathering of Granites. Geochimica et Cosmochimica Acta, 343: 384-395. https://doi.org/10.1016/j.gca.2022.12.02 doi: 10.1016/j.gca.2022.12.027 Huang, J., He, H. P., Tan, W., et al., 2021. Groundwater Controls REE Mineralisation in the Regolith of South China. Chemical Geology, 577: 120295. https://doi.org/10.1016/j.chemgeo.2021.120295 Huang, Y. F., Tan, W., Bao, Z. W., et al., 2022. Constraints of Parent Rocks on the Formation of Ion Adsorption HREE Deposit in the Weathering Crust of the Shangyou Granite Batholith. Geotectonica et Metallogenia, 46(2): 303-317(in Chinese with English abstract). Ichimura, K., Sanematsu, K., Kon, Y., et al., 2020. REE Redistributions during Granite Weathering: Implications for Ce Anomaly as a Proxy for Paleoredox States. American Mineralogist, 105(6): 848-859. https://doi.org/10.2138/am-2020-7148 Li, M. X., Liu, H. B., Chen, T. H., et al., 2017. Adsorption of Europium on Al-Substituted Goethite. Journal of Molecular Liquids, 236: 445-451. https://doi.org/10.1016/j.molliq.2017.04.046 Li, M. Y. H., Kwong, H. T., Williams-Jones, A. E., et al., 2022. The Thermodynamics of Rare Earth Element Liberation, Mobilization and Supergene Enrichment during Groundwater-Regolith Interaction. Geochimica et Cosmochimica Acta, 330: 258-277. https://doi.org/10.1016/j.gca.2021.05.002 Li, M. Y. H., Zhou, M. F., 2020. The Role of Clay Minerals in Formation of the Regolith-Hosted Heavy Rare Earth Element Deposits. American Mineralogist, 105(1): 92-108. https://doi.org/10.2138/am-2020-7061 Liang, X. L., Tan, W., Ma, L. Y., et al., 2022. Mineral Surface Reaction Constraints on the Formation of Ion-Adsorption Rare Earth Element Deposits. Earth Science Frontiers, 29(1): 29-41(in Chinese with English abstract). Liu, S., Fan, H. R., Wang, Q. W., et al., 2023. Carbonatite-Related Delicate REE Mineralization Processes Revealed by Fluorocarbonates and Monazite: Insights from the Giant Bayan Obo REE-Nb-Fe Deposit, China. Ore Geology Reviews, 157: 105443. https://doi.org/10.1016/j.oregeorev.2023.105443 Lu, L., Wang, D. H., Wang, C. H., et al., 2019. Mineralization Regularity of Ion-Adsorption Type REE Deposits on Lincang Granite in Yunnan Province. Acta Geologica Sinica, 93(6): 1466-1478(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2019.06.022 Luo, K., Ma, J. L., 2022. Recent Advances in Migration and Enrichment of Rare Earth Elements during Chemical Weathering of Granite. Advances in Earth Science, 37(7): 692-708(in Chinese with English abstract). Ma, Y. J., Huo, R. K., Xu, Z. F., et al., 2004. REE Behavior and Influence Factors during Chemical Weathering. Advance in Earth Sciences, 19(1): 87-94(in Chinese with English abstract). Mao, J. W., Song, S. W., Liu, M., et al., 2022. REE Deposits: Basic Characteristics and Global Metallogeny. Acta Geologica Sinica, 96(11): 3675-3697(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.11.001 Nesbitt, H. W., Young, G. M., 1982. Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites. Nature, 299: 715-717. https://doi.org/10.1038/299715a0 Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. https://doi.org/10.1016/0016-7037(84)90408-3 Pan, X., Wang, W. B., Zhang, G. L., 2021. Analysis of Metallogenic Granite Characteristics of Ion Adsorption Rare Earth Deposits in Southern Ganzhou. World Nonferrous Metals, (19): 160-161(in Chinese with English abstract). doi: 10.3969/j.issn.1002-5065.2021.19.078 Peng, L. L., Li, W., Liu, C. H., et al., 2020. Main Types, Metallogenic Regularity and Prospecting Potential of Tin Deposits in Southern Jiangxi Province. Journal of East China University of Technology (Natural Science), 43(5): 463-471(in Chinese with English abstract). Sanematsu, K., Kon, Y., Imai, A., et al., 2013. Geochemical and Mineralogical Characteristics of Ion-Adsorption Type REE Mineralization in Phuket, Thailand. Mineralium Deposita, 48(4): 437-451. https://doi.org/10.1007/s00126-011-0380-5 Shang, Y. J., Shi, Y. Y., Jin, W. J., et al., 2008. Discussion on Relationship between Weathering Crust Zonation and Basic Quality Classification of Rock Mass. Chinese Journal of Rock Mechanics and Engineering, 27(9): 1858-1864(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.09.014 Song, L. S., Hu, Q. X., Chen, S. S., 2020. Characteristics of Radioactive Heat Generation Rate of Granites in the Southeastern Jiangxi Province. Journal of East China University of Technology (Natural Science), 43(6): 514-520(in Chinese with English abstract). Su, H. M., Che, Y. Y., Yin, Y. L., et al., 2023. Present Situation and Research Direction of Strategic Critical Mineral Exploration: Taking Qinghai Province as an Example. Earth Science, 48(4): 1543-1550 (in Chinese with English abstract). Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19 Tang, J. W., Johannesson, K. H., 2005. Adsorption of Rare Earth Elements onto Carrizo Sand: Experimental Investigations and Modeling with Surface Complexation. Geochimica et Cosmochimica Acta, 69(22): 5247-5261. https://doi.org/10.1016/j.gca.2005.06.021 Wainipee, W., Cuadros, J., Sephton, M. A., et al., 2013. The Effects of Oil on As(V) Adsorption on Illite, Kaolinite, Montmorillonite and Chlorite. Geochimica et Cosmochimica Acta, 121: 487-502. https://doi.org/10.1016/j.gca.2013.07.018 Wang, D. H., Zhao, Z., Yu, Y., et al., 2017. A Review of the Achievements in the Survey and Study of Ion-Absorption Type REE Deposits in China. Acta Geoscientica Sinica, 38(3): 317-325(in Chinese with English abstract). Wang, W., 2008. Study on Weathering Crust of Permian Basalt in Western Guizhou and Its Rare Earth Enrichment Law (Dissertation). Guizhou University, Guiyang(in Chinese with English abstract). Wang, X. G., Zhang, Y. W., Zou, J. P., et al., 2022. Discovery and Significance of the Shitouping Super Large Heavy Rare Earth Deposit. The 14th China Baotou Rare Earth Industry Forum and the 2022 Academic Annual Meeting of the China Rare Earth Society, Baotou (in Chinese with English abstract). Wang, Z., Chen, Z. Y., Zhao, Z., et al., 2019. REE Mineral and Geochemical Characteristics of Neoproterozoic Metamorphic Rocks in South Jiangxi Province. Mineral Deposits, 38(4): 837-850(in Chinese with English abstract). Xie, M. J., Zhou, J., Wang, X. Q., et al., 2022. Research of Elements'Migration and Enrichment Characteristics of Ion-Adsorption Type REE Deposits in Southern Jiangxi Province. Journal of the Chinese Society of Rare Earths, 40(4): 697-710(in Chinese with English abstract). Xu, C., Kynický, J., Smith, M. P., et al., 2017. Origin of Heavy Rare Earth Mineralization in South China. Nature Communications, 8: 14598. https://doi.org/10.1038/ncomms14598 Xu, X. B., Liang, C. H., Chen, J. J., et al., 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150(in Chinese with English abstract). Yang, M. J., Liang, X. L., Ma, L. Y., et al., 2019. Adsorption of REEs on Kaolinite and Halloysite: A Link to the REE Distribution on Clays in the Weathering Crust of Granite. Chemical Geology, 525: 210-217. https://doi.org/10.1016/j.chemgeo.2019.07.024 Yang, M. G., Zhu, P. J., Wang, G. H., 2018. Division of Tectonic-Metallogenetic Units in South China. Shanghai Land & Resources, 39(4): 13-18, 24(in Chinese with English abstract). Zhao, Z., Wang, D. H., Chen, Z. H., et al., 2017. Progress of Research on Metallogenic Regularity of Ion-Adsorption Type REE Deposit in the Nanling Range. Acta Geologica Sinica, 91(12): 2814-2827(in Chinese with English abstract). Zhong, S. S., Han, Y. S., Huang, X. H., et al., 2021. Geological Characteristics and Genesis of Shitouping Ion Adsorption Heavy Rare Earth Mining Area in Anyuan County. The 11th Member Representative Conference of Jiangxi Geological Society and the 2021 Academic Annual Meeting of Jiangxi Geological Society, Yichun(in Chinese with English abstract). Zhou, J. M., Li, M. Y., Yuan, P., et al., 2021. Partial Rehydration of Tubular Halloysite (7 Å) Immersed in La(NO3)3 Solution for 3 Years and Its Implication for Understanding REE Occurrence in Weathered Crust Elution-Deposited Rare Earth Ores. Applied Clay Science, 213: 106244. https://doi.org/10.1016/j.clay.2021.106244 Zhou, M. F., Li, X. X., Wang, Z. C., et al., 2020. The Genesis of Regolith-Hosted Rare Earth Element and Scandium Deposits: Current Understanding and Outlook to Future Prospecting. Chinese Science Bulletin, 65(33): 3809-3824(in Chinese). 陈德潜, 吴静淑, 1990. 离子吸附型稀土矿床的成矿机制. 中国稀土学报, 8(2): 175-179. 陈唯, 蒋少涌, 2022. 什么样的碳酸岩才能形成大型-超大型稀土矿床?地球科学, 47(10): 3891-3893. doi: 10.3799/dqkx.2022.853 池汝安, 田君, 2007. 风化壳淋积型稀土矿评述. 中国稀土学报, 25(6): 641-650. 范晨子, 张誉, 陈郑辉, 等, 2015. 江西赣南风化淋滤型稀土矿床中的粘土矿物研究. 岩石矿物学杂志, 34(6): 803-810. 冯连君, 储雪蕾, 张启锐, 等, 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘, 10(4): 539-544. 付伟, 董春放, 许成, 等, 2024. 广西离子吸附型重稀土找矿突破方向研究与科研性示范勘查进展. 地球科学, 49(6): 1931-1945. doi: 10.3799/dqkx.2024.016 傅寒晶, 简星, 梁杭海, 2021. 硅酸盐化学风化强度评估的沉积物指标与方法研究进展. 古地理学报, 23(6): 1192-1209. 黄玉凤, 谭伟, 包志伟, 等, 2022. 母岩特征对上犹复式岩体中风化壳离子吸附型重稀土矿形成的制约. 大地构造与成矿学, 46(2): 303-317. 梁晓亮, 谭伟, 马灵涯, 等, 2022. 离子吸附型稀土矿床形成的矿物表/界面反应机制. 地学前缘, 29(1): 29-41. 陆蕾, 王登红, 王成辉, 等, 2019. 云南临沧花岗岩中离子吸附型稀土矿床的成矿规律. 地质学报, 93(6): 1466-1478. 雒恺, 马金龙, 2022. 花岗岩风化过程中稀土元素迁移富集机制研究进展. 地球科学进展, 37(7): 692-708. 马英军, 霍润科, 徐志方, 等, 2004. 化学风化作用中的稀土元素行为及其影响因素. 地球科学进展, 19(1): 87-94. 毛景文, 宋世伟, 刘敏, 等, 2022. 稀土矿床: 基本特点与全球分布规律. 地质学报, 96(11): 3675-3697. 潘鑫, 王文斌, 张桂良, 2021. 赣州南部地区离子吸附型稀土矿成矿花岗岩特征分析. 世界有色金属(19): 160-161. 彭琳琳, 李伟, 刘翠辉, 等, 2020. 赣南锡矿类型、成矿规律及找矿远景分析. 东华理工大学学报(自然科学版), 43(5): 463-471. 尚彦军, 史永跃, 金维俊, 等, 2008. 花岗岩风化壳分带与岩体基本质量分级关系探讨. 岩石力学与工程学报, 27(9): 1858-1864. 宋炉生, 胡秋祥, 陈姗姗, 2020. 赣东南地区岩体放射性生热率特征研究. 东华理工大学学报(自然科学版), 43(6): 514-520. 苏慧敏, 车玉滢, 尹燕梁, 等, 2023. 战略性关键矿产勘查现状与对策: 以青海省为例. 地球科学, 48(4): 1543-1550. doi: 10.3799/dqkx.2022.426 王登红, 赵芝, 于扬, 等, 2017. 我国离子吸附型稀土矿产科学研究和调查评价新进展. 地球学报, 38(3): 317-325. 王伟, 2008. 贵州西部二叠系玄武岩风化壳及其中稀土富集规律研究(硕士学位论文). 贵阳: 贵州大学. 王先广, 张永文, 邹建平, 等, 2022. 石头坪超大型重稀土矿床的发现及其意义. 第十四届中国包头·稀土产业论坛、中国稀土学会2022学术年会摘要集, 包头. 王臻, 陈振宇, 赵芝, 等, 2019. 赣南新元古代变质岩稀土矿物及其地球化学特征. 矿床地质, 38(4): 837-850. 谢明君, 周建, 王学求, 等, 2022. 赣南清溪离子吸附型稀土矿元素迁移富集特征研究. 中国稀土学报, 40(4): 697-710. 徐先兵, 梁承华, 陈家驹, 等, 2021. 南岭构造带基础地质特征与成矿地质背景. 地球科学, 46(4): 1133-1150. 杨明桂, 祝平俊, 王光辉, 2018. 论华南构造-成矿单元划分. 上海国土资源, 39(4): 13-18, 24. 赵芝, 王登红, 陈郑辉, 等, 2017. 南岭离子吸附型稀土矿床成矿规律研究新进展. 地质学报, 91(12): 2814-2827. 钟书松, 韩永顺, 黄小洪, 等, 2021. 安远县石头坪离子吸附型重稀土矿区地质特征及成因. 江西地学新进展2021-江西省地质学会第十一次会员代表大会暨江西省地质学会2021年学术年会论文集, 宜春. 周美夫, 李欣禧, 王振朝, 等, 2020. 风化壳型稀土和钪矿床成矿过程的研究进展和展望. 科学通报, 65(33): 3809-3824. -