• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    用环境同位素论区域地下水资源属性

    文冬光

    文冬光, 2002. 用环境同位素论区域地下水资源属性. 地球科学, 27(2): 141-147.
    引用本文: 文冬光, 2002. 用环境同位素论区域地下水资源属性. 地球科学, 27(2): 141-147.
    WEN Dong-guang, 2002. Groundwater Resources Attribute Based on Environmental Isotopes. Earth Science, 27(2): 141-147.
    Citation: WEN Dong-guang, 2002. Groundwater Resources Attribute Based on Environmental Isotopes. Earth Science, 27(2): 141-147.

    用环境同位素论区域地下水资源属性

    基金项目: 国际原子能机构CPR/08/12项目
    详细信息
    • 中图分类号: P641.3

    Groundwater Resources Attribute Based on Environmental Isotopes

    • 摘要: 从可持续角度提出了区域地下水资源属性的概念; 分析了含水层系统中地下水质点的时间效应; 利用大量同位素资料分析了不同区域含水层系统中的地下水资源属性和人类活动对地下水资源属性的影响.指出利用环境同位素是研究区域地下水资源属性最直接、有效的方法; 正确认识评价区域地下水资源属性对实现地下水资源可持续性具有重要意义.

       

    • 图  1  理想含水层中地下水年龄分布示意图

      a.潜水含水层; b.承压含水层.实线为等年龄线, 虚线为地下水流线.据Cook等[2]改编

      Fig.  1.  Sketch map of groundwater age in an ideal aquifer

      图  2  地下水驻留时间剖面

      根系带厚3 m, 非饱和带埋深20 m, 含水层厚度50 m, 包气带含水率为0.1, 孔隙度为0.3, 年降雨500 mm, 年补给100 mm

      Fig.  2.  Residence time curve of groundwater

      图  3  晚第四纪地下水δ (D), δ (18O) 与δ (14C) 关系[8]

      Fig.  3.  Relationships between δ (D), δ (18O) and δ (14C) of Upper Quaternary groundwater

      图  4  法国西南部Aquitain盆地地下水δ (D) -δ (18O) 关系[9]

      Fig.  4.  Relationship between δ (D) and δ (18O) of groundwater in Aquitain basin, southwestern France

      图  5  撒哈拉沙漠中部Ahaggar地区地下水δ (D) -δ (18O) 关系(数据引自Saighi等[10])

      Fig.  5.  Relationship between δ (D) and δ (18O) of groundwater in Ahaggar area, central Sahara

      图  6  叙利亚Yarmouk盆地地下水氚和14C年龄分布

      Fig.  6.  Tritium and14C age of groundwater in Yarmouk basin, Syria

      图  7  巴黎盆地地下水δ (14C) 分布[13]

      Fig.  7.  δ (14C) distribution of groundwater in Paris basin

    • [1] Appelo C A J, Postma D. Geochemistry, groundwater and pollution[M]. Rotterdam: Balkema A A, 1996.
      [2] Cook P G, John K B. Determining timescale for groundwater flow and solute transport[A]. In: Cook P G, Andrew L H, eds. Environmental tracers in subsurface hydrology[C]. Massachusetts: KluwerAcademic Publishers, 2000. 529.
      [3] IAEA. Proceedings of a regional executive management seminar on isotope techniques in water resources development and management and a regional workshop on isotope hydrology for Asia and the Pacific organized by the IAEA and held in Beijing[R]. Beijing, 15-26 June, 1987.
      [4] Oliver S. Groundwater: past achievements and future challenges[M]. Rotterdam: Balkema A A, 2000.
      [5] Eberts S M, George L L. Regional ground-water flow and geochemistry in the Midwestern basins and arches aquifer system in parts of Indiana, Ohio, Michigan, and Illinois [A]. US Geological Survey Professional Paper[C]. http://water.usgs.gov/pubs/pp/, 2000. 103.
      [6] Mazor E. Applied chemical and isotopic groundwater hydrology[M]. Milton Keynes: Open University Press, 1991. 274.
      [7] Wang D S, Wang K. Isotopes in precipitation in China (1986-1999)[A]. In: Water Resources Assessment: Isotope Techniques[C]. Technologies Sciences(Series E), 2001, 44(Supplement): 192.
      [8] Klaus P S. Environmental isotopes in the hydrological cycle: principles and applications. Volume V: man' s impact on groundwater systems[M]. Vienna: IAEA, 2001.
      [9] Blavoux B, Dray M, Fehri A, et al. Palaeoclimatic and hydrodynamic approach to the Aquitain basin deep aquifer (France) by means of environmental isotopes and noble gases[A]. In: IAEA, ed. Isotope techniques in the study of past and current environmental changes in the hydrosphere and the atmosphere[C]. Vienna: IAEA, 1993. 293-305.
      [10] Saighi O, Michelot J L, Filly A. Isotopic characteristics of meteoric water and groundwater in Ahaggar Massif (central Sahara)[A]. In: IAEA, ed. Isotope techniques in water resources investigations in arid and semi-arid regions, IAEA-TECDOC-1207[C]. Vienna: IAEA, 2001. 7-26.
      [11] Coplen T B, Herczeg A L, Barnes C. Isotope engineering — using stable isotopes of the water molecule to solve practical problems[A]. In: Cook P, Herczeg A L, eds. Environmental tracers in subsurface hydrology[C]. Massachusetts: Kluwer Academic Publishers, 2000.
      [12] Katten Z. Chemical and environmental isotope study of the fissured basaltic aquifer systems of the Yarmouk basin (Syrian Arab Republic)[A]. In: IAEA, ed. Isotope techniques in water resources development and management[C]. Vienna: IAEA, 1999. 674.
      [13] Mazor E. Chemical and isotopic groundwater hydrology [M]. New York: Marcel Dekker Inc, 1997. 413.
      [14] Bentley H W, Phillips F M, Stanley N D, et al. Chlorine-36 dating of very old groundwater, the Great Artesian basin, Australia[J]. Water Resources Research, 1986, 22(13): 1991-2001. doi: 10.1029/WR022i013p01991
      [15] Torgersen T, Habermehl M A, Phillips F M, et al. Chlorine-36 dating of very old groundwater 3. Further studies in the Great Artesian basin, Australia[J]. Water Resources Research, 1991, 27(12): 3201-3213. doi: 10.1029/91WR02078
      [16] Radke B M, Ferguson J, Cresswell R G, et al. Hydrochemistry and implied hydrodynamics of the Cadna-owie-Hooray aquifer, Great Artesian basin, australia[M]. Canberra: Bureau of Rural Sciences, 2000. 229.
      [17] Wang K, Zhu J L. A conceptual model of the Tianjin geothermal system based on isotopic studies[J]. Technologies Sciences(Series E), 2001, 44(Supplement): 160-164. doi: 10.1007/BF02916809
      [18] Emanuel M. Interrelations between groundwater dating, palaeoclimate and palaeohydrology[A]. In: IAEA, ed. Isotope techniques in the study of past and current environmental changes in the hydrosphere and the atmosphere [C]. Vienna: IAEA, 1993. 621.
    • 加载中
    图(7)
    计量
    • 文章访问数:  3965
    • HTML全文浏览量:  429
    • PDF下载量:  12
    • 被引次数: 0
    出版历程
    • 收稿日期:  2001-12-18
    • 刊出日期:  2002-03-25

    目录

      /

      返回文章
      返回