• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    均匀流体和不均匀流体的形成机制: 来自合成流体包裹体的证据

    张振亮 吕新彪 饶冰

    张振亮, 吕新彪, 饶冰, 2008. 均匀流体和不均匀流体的形成机制: 来自合成流体包裹体的证据. 地球科学, 33(2): 259-265.
    引用本文: 张振亮, 吕新彪, 饶冰, 2008. 均匀流体和不均匀流体的形成机制: 来自合成流体包裹体的证据. 地球科学, 33(2): 259-265.
    ZHANG Zhen-liang, LÜ Xin-biao, RAO Bing, 2008. Formational Mechanisms of Homogeneous Fluid and Boiling Fluid: Evidences from Synthetic Fluid Inclusions. Earth Science, 33(2): 259-265.
    Citation: ZHANG Zhen-liang, LÜ Xin-biao, RAO Bing, 2008. Formational Mechanisms of Homogeneous Fluid and Boiling Fluid: Evidences from Synthetic Fluid Inclusions. Earth Science, 33(2): 259-265.

    均匀流体和不均匀流体的形成机制: 来自合成流体包裹体的证据

    基金项目: 

    国家自然科学基金项目 No40072031

    详细信息
      作者简介:

      张振亮(1974-), 男, 在读博士后, 石油地球化学方向.E-mail: liangzhen74@163.com

    • 中图分类号: P611.5

    Formational Mechanisms of Homogeneous Fluid and Boiling Fluid: Evidences from Synthetic Fluid Inclusions

    • 摘要: 为详细了解流体的形成机制, 对系统的流体包裹体合成实验进行研究.研究表明, 在合成流体包裹体实验中, 广泛存在流体的均一化和沸腾作用; 流体的均匀与否, 与流体p-t轨迹在TP (H2O)-CP(H2O)-CP(NaCl-H2O) 曲线的部位有密切的关系.p-t轨迹在曲线上部的流体为均匀流体, 反之则为沸腾流体.但也有例外, 如在溶解曲线上被主矿物捕获的流体.这为本次研究一定条件下流体的形成机制、探讨成矿作用提供了理论依据.

       

    • 图  1  流体沸腾作用示意图

      CP (50) 代表50%NaCl水溶液的等组成线与临界曲线相切的点; ①-⑥为实验1-实验6的沸腾作用变化趋势; ⑦为实验1的虚拟变化趋势; ■为各样品的实验稳定条件(温度与压力); △为包裹体的形成条件(温度与压力)

      Fig.  1.  Boiling of fluid at the condition of different p-t

      图  2  均匀流体形成示意图

      CP (50) 代表50%NaCl水溶液的等组成线与临界曲线相切的点; ①-②、⑦-⑩为实验1、2和实验7-10的均匀流体变化趋势; ■为各样品的实验稳定条件(温度与压力); △为包裹体的形成条件(温度与压力)

      Fig.  2.  Homogeneous fluids at the condition of different p-t

      表  1  合成流体包裹体实验条件

      Table  1.   The experimental conditions of synthetic fluid inclusions

      表  2  合成流体包裹体的测试结果

      Table  2.   The measurements of synthetic fluid inclusions

    • Bakker, R. J., Diamond, L. W., 2000. Determination of thecomposition and molar volume of H2O-CO2 fluid inclu-sions by microthermometry. Geochimicaet Cosmochimica Acta, 64 (10): 1753-1764. doi: 10.1016/S0016-7037(99)00334-8
      Bischoff, J. L., 1991. Densities of liquids and vapors in boil-ing NaCl-H2O solutions: A PVTX summary from300℃to500℃. Amer. J. Sci., 291: 309-338. doi: 10.2475/ajs.291.4.309
      Chen, J. Y., Zheng, H. F., Zeng, Y. S., 2002. Raman spectro-scopic study on hydrogen bond of water molecules insynthetic inclusions under high temperature. Rock and Mineral Analysis, 21 (3): 166-170 (in Chinese with English abstract).
      Chen, Z. L., Xu, J. Y., 2007. Dip of the oil (gas) -water inter-faces in anticline-hydrodynamic oil (gas) pools. Earth Science—Journal of China University of Geosciences, 32 (1): 89-92 (in Chinese with English abstract).
      Hoffmann, M. M., Conradi, S., 1997. Are there hydrogenbonds in supercritical water. J. Am. Chem. Soc., 119 (16): 3811-3817. doi: 10.1021/ja964331g
      Ikushi ma, Y., Hatakeda, K., Soito, N., 1998. An in-situ Ra-man spectroscopy studies of subcritical and supercriticalwater: The peculiarity of hydrogen bonding near thecritical point. J. Chem. Phys., 108 (14): 5855-5860. doi: 10.1063/1.475996
      Kendrich, M. A., Burgess, R., Pattrich, R. A. D., et al., 2001. Fluid inclusion noble gas and halogen evidence onthe origin of Cu-porphyry mineralizingfluids. Geochimicaet Cosmochimica Acta, 65 (16): 2651-2668. doi: 10.1016/S0016-7037(01)00618-4
      Liu, B., Shen, K., 1995. Formulae for calculating oxygen fugacities of fluid inclusions and their applications. Acta Mineralogica Sinica, 15 (3): 291-302 (in Chinese with English abstract).
      Liu, B., Shen, K., 1999. Thermodynamics of fluidinclusion. Geological Publishing House, Beijing, 119-140 (in Chinese).
      Philippot, P., 1996. The chemistry of high-pressure fluids (1 to3 GPa): Natural observations vs. experi mental constraints. Earth Sciences Frontiers, 3 (3): 39-48 (in Chinese with English abstract).
      Roedder, E., Kopp, O. C., 1975. Acheck on the validity of thepressure correction in inclusion geothermometry, using hydrothermally grown quartz. Fortschr. Mineral., 52: 431.
      Schmidt, C., Rosso, K. M., Bodnar, R. J., 1995. Syntheticfluid inclusions: XIII. Experimental determination of thePVT properties in the system H2O+40% NaCl+5mol% CO2 at elevated temperature and pressure. Geochimicaet Cosmochimica Acta, 59: 3953-3959. doi: 10.1016/0016-7037(95)00258-2
      Spycher, N. F., Reed, M. H., 1989. Evolution of a broad lands-type epithermal orefluid along alternative P-Tpaths: Impli-cations for the transport and deposition of base, precious, and volatile metals. Econ. Geol., 84: 328-359. doi: 10.2113/gsecongeo.84.2.328
      Sterner, S. M., Bodnar, R. J., 1984. Synthetic fluid inclusionsin natural quartz: I. Compositional types synthesized andapplications to experi mental geochemistry. Geochim. Cosmochim. Acta, 48: 2659-2668.
      Xiao, X. J., Gu, L. X., Ni, P., et al., 2004. Esti mation of gas-escaping amount during ore-formation originated fromfluid boiling at massive sulfide deposits, Tongling re-gion. Uranium Geology, 20 (4): 91-98 (in Chinese with English abstract).
      Yang, W. R., Zhang, W. H., 1996. Character of fault proper-ty and combination of fluid inclusions. Earth Science—Journal of China University of Geosciences, 21 (3): 285-290 (in Chinese with English abstract).
      Zhang, D. H., 1997. Some new advances in ore-forming fluidgeochemistry on boiling and mixing of fluids during theprocesses of hydrothermal deposits. Advances in Earth Science, 12 (6): 546-552 (in Chinese with English abstract).
      Zhang, W. H., Chen, Z. Y., 1993. Geology of fluid inclusion. China University of Geosciences Press, Wuhan, 108-112 (in Chinese).
      Zhang, Y. G., Frantz, J. D., 1989. Experimental determination of the compositional limits of immiscibility in thesystem CaCl2-H2O-CO2at high temperatures and pres-sures using synthetic fluid inclusions. Chemical Geology, 74: 289-308. doi: 10.1016/0009-2541(89)90039-9
      Zhang, Z. L., Huang, Z. L., Rao, B., et al., 2005. Concentration mechanism of ore-forming fluid in Huize lead-zincdeposits, Yunnan Province. Earth Science—Journal of China University of Geosciences, 30 (4): 443-450 (in Chinese with English abstract).
      Zheng, Y. Y., Gao, S. B., Zhang, D. Q., et al., 2006. Ore-forming fluid controlling mineralization in Qulongsuper-large porphyry copper deposit, Tibet. Earth Science—Journal of China University of Geosciences, 31 (3): 349-354 (in Chinese with English abstract).
      陈晋阳, 郑海飞, 曾贻善, 2002. 高温下合成包裹体中流体水分子氢键的拉曼光谱分析. 岩矿测试, 21 (3): 166-170. doi: 10.3969/j.issn.0254-5357.2002.03.002
      陈振林, 许浚远, 2007. 背斜-水动力复合油(气) 藏油(气) 水界面产状. 地球科学——中国地质大学学报, 32 (1): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701012.htm
      刘斌, 沈昆, 1995. 流体包裹体的氧逸度计算公式及其应用. 矿物学报, 15 (3): 291-302. doi: 10.3321/j.issn:1000-4734.1995.03.009
      刘斌, 沈昆, 1999. 流体包裹体热力学. 北京: 地质出版社, 119-140. https://cdmd.cnki.com.cn/Article/CDMD-11415-1012365217.htm
      Philippot, P., 1996. 高压流体(1-3GPa) 的化学组成: 自然观察与实验对比. 地学前缘, 3 (3): 39-48. doi: 10.3321/j.issn:1005-2321.1996.03.004
      肖新建, 顾连兴, 倪培, 等, 2004. 铜陵地区金属硫化物矿床沸腾流体成矿过程中气体逸失量的估算. 铀矿地质, 20 (2): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200402004.htm
      杨巍然, 张文淮, 1996. 断裂性质与流体包裹体组合特征. 地球科学——中国地质大学学报, 21 (3): 285-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX603.009.htm
      张德会, 1997. 流体的沸腾和混合在热液成矿中的意义. 地球科学进展, 12 (6): 546-552. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ706.006.htm
      张文淮, 陈紫英, 1993. 流体包裹体地质学. 武汉: 中国地质大学出版社, 108-112.
      张振亮, 黄智龙, 饶冰, 等, 2005. 会泽铅锌矿床成矿流体浓缩机制探讨. 地球科学——中国地质大学学报, 30 (4): 443-450. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200504008.htm
      郑有业, 高顺宝, 张大权, 等, 2006. 西藏驱龙超大型斑岩铜矿床成矿流体对成矿的控制. 地球科学——中国地质大学学报, 31 (3): 349-354. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603009.htm
    • 加载中
    图(2) / 表(2)
    计量
    • 文章访问数:  3789
    • HTML全文浏览量:  370
    • PDF下载量:  60
    • 被引次数: 0
    出版历程
    • 收稿日期:  2007-05-12
    • 刊出日期:  2008-03-25

    目录

      /

      返回文章
      返回