• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    利用常规测井资料基于岩石物理和多矿物分析反演横波速度

    邵才瑞 印兴耀 张福明 宋明水

    邵才瑞, 印兴耀, 张福明, 宋明水, 2009. 利用常规测井资料基于岩石物理和多矿物分析反演横波速度. 地球科学, 34(4): 699-707.
    引用本文: 邵才瑞, 印兴耀, 张福明, 宋明水, 2009. 利用常规测井资料基于岩石物理和多矿物分析反演横波速度. 地球科学, 34(4): 699-707.
    SHAO Cai-rui, YIN Xing-yao, ZHANG Fu-ming, SONG Ming-shui, 2009. Shear Wave Velocity Inversion with Routine Well Logs Based on Rock Physics and Multi-Mineral Analysis. Earth Science, 34(4): 699-707.
    Citation: SHAO Cai-rui, YIN Xing-yao, ZHANG Fu-ming, SONG Ming-shui, 2009. Shear Wave Velocity Inversion with Routine Well Logs Based on Rock Physics and Multi-Mineral Analysis. Earth Science, 34(4): 699-707.

    利用常规测井资料基于岩石物理和多矿物分析反演横波速度

    基金项目: 中石化“十一·五”重大科技攻关项目
    详细信息
      作者简介:

      邵才瑞(1966-), 男, 博士, 副教授, 从事地球物理测井信息处理教学及科研工作.Email: shaocr@hdpu.edu.cn

    • 中图分类号: P584;P631.4

    Shear Wave Velocity Inversion with Routine Well Logs Based on Rock Physics and Multi-Mineral Analysis

    • 摘要: 测井横波速度是测井地震联合反演的重要标定参数.为克服大量老井缺少横波速度资料和现有横波速度估算方法的不足, 基于孔隙介质岩石物理理论, 通过常规测井资料求取多矿物组分, 利用VRH模型求得地层的等效弹性模量; 最后利用纵波速度作为约束条件, 根据Biot-Gassmann方程得到地层横波速度.计算结果与实测结果对比表明, 平均相对误差限在5%左右, 与Xu-White模型相比, 该方法物理意义更为明确, 使用更简便, 计算精度提高一倍左右.

       

    • 图  1  A井4 415~4 470 m砂泥简化模型与Xu-White模型对比

      Fig.  1.  Comparison of Xu-White and simplified multi-mineral mode for well A at 4 415-4 470 m

      图  2  A井3 000~4 470m不同模型与测井值交会对比(图例下同)

      a.VS-XVS交会图; b.VS-MVS交会图; MVS.多矿物模型; XVS.Xu-White模型; VS.测井结果

      Fig.  2.  Comparison of Xur White and multi-mineral mode VS log data for well A at 3 000-4 470m

      图  3  B井3 370~3 795m不同模型与测井值交会对比

      Fig.  3.  Comparison of Xu-White and multi-mineral mode VS log data for well B at 3 370-3 795m

      图  4  C井4 705~5 050m不同模型与测井值交会对比

      Fig.  4.  Comparison of Xu-White and multi-mineral mode VS log data for well C at 4 075-5 050m

      图  5  A井3 880~3 945m多矿物模型与Xu-White模型结果对比

      Fig.  5.  Comparison of Xu-White mode and multi-mineral mode for well A at 3 880-3 945m

      表  1  多矿物地层组分体积模型

      Table  1.   Multi-mineral mode of formation

      表  2  计算地层波速所用矿物组分参数

      Table  2.   Parameters for formation velocity calculation

      表  3  单矿物砂泥组分模型不同方法平均相对误差限比较

      Table  3.   Average relative error band comparison of different method under sand-shale mode

      表  4  多矿物组分析法与Xu-White砂泥模型平均相对误差限比较

      Table  4.   Average relative error band comparison of multi-mineral mode and Xu-White sand-shale mode

    • Berryman, J. G., 1980a. Long-wavelength propagation incomposite elastic media. J. Acoust. Soc. Am. , 68 (6): 1809-1831. doi: 10.1121/1.385171
      Berryman, J. G., 1980b. Confirmation of Biot's theory. Ap-pl. Phys Lett. , 37 (4): 382-384. doi: 10.1063/1.91951
      Biot, M. A., 1956a. Theory of propagation of elastic waves ina fluid-saturated porous solid, Ⅰ: Low-frequency range. Acoust. Soc. Amer. , 28: 168-178. doi: 10.1121/1.1908239
      Biot, M. A., 1956b. Theory of propagation of elastic waves ina fluid-saturated porous solid, Ⅱ: High-frequencyrange. Acoust. Soc. Amer. , 28: 179-191. doi: 10.1121/1.1908241
      Biot, M. A., 1962. Mechanics of deformation and acousticpropagation in porous media. J. Appl. Phys. , 33 (4): 1482-1498. doi: 10.1063/1.1728759
      Castagna, J. P., Batzle, M. L., Eastwood, R. L., et al., 1985. Relationship between compressional-wave and shear-wave velocities in clastic silicate rock. Geophysics, 50, 571-581. doi: 10.1190/1.1441933
      Castagna, J. P., Batzle, M. L., Kan, T. K., et al., 1993. Rockphysics: The link between rock properties and AVOre-sponse. In: Castagna, J. P., Backus, M. M., eds., Offsetdependent reflectivity-theory and practice of AVOanal-ysis. SEG Investigations in Geophysics Series, 8: 135-171.
      Chen, Y., Huang, T. F., 2001. Rock physics. Peking Univer-sity Press, Beijing (in Chinese).
      Chu, Z. H., 1987. Theory of acoustic logging. Petroleum Industry Press, Beijing (in Chinese).
      Dvorkin, J., Mavko, G., Nur, A., et al., 1995. Squirt flowinfully saturated rocks. Geophysics, 60 (1): 97-107. doi: 10.1190/1.1443767
      Faust, L. Y., 1953. A velocity function including lithologicvariation. Geophysics, 18 (2): 271-288. doi: 10.1190/1.1437869
      Gardner, G. H. F., Gardner, L. W., Gregory, A. R., et al., 1974. Formation velocity and density: The diagnosticbasics for stratigraphic traps. Geophysics, 39 (6): 770-780. doi: 10.1190/1.1440465
      Gassmann, F., 1951. ber die elastizitat por ser Medien. Vi-erteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 96: 1-23.
      Hill, R., 1952. The elastic behavior of crystalling aggregate. Proc. Physical Soc. , A65: 349-354.
      Krief, M., Garat, J., Stellingwerff, J., et al., 1990. A petro-physical interpretation using the velocities of P and Swaves (full-wave formsonic). The Log Analyst, 31 (6): 355-369.
      Kuster, G. T., Toksöz, M. N., 1974. Velocity and attenuationof seismic waves in two-phase media, partⅠ: Theoreti-cal formulations. Geophysics, 39 (5): 587-606. doi: 10.1190/1.1440450
      Mavko, G., Mukerji, T., Dvorkin, J., et al., 2003. The rockphysics handbook. Cambridge University Press, Cam-bridge.
      Milholland, P., Manghnani, M. H., Schlanger, S. O., et al., 1980. Geoacoustic modeling of deep-sea carbonate sedi-ments. J. Acoust. Soc. Am. , 68 (5): 1351-1360. doi: 10.1121/1.385102
      Pickett, G. R., 1963. Acoustic character logs and their appli-cations information evaluation. J. Petrol. Tech. , 15 (6): 659-667. doi: 10.2118/452-PA
      Reuss, A., 1929. Berechnung der Fliegrenze Von Misch Kristallen. Angew. Mathem. U. Mech. , 9 (1): 49-58. doi: 10.1002/zamm.19290090104
      Voight, W., 1910. Lehrbuch der Kristallphysik, Teunber-Verlag, Leipzig.
      Wang, Y. M., Miao, Y. K., Meng, X. J., et al., 2006. Calcu-lation procedure of shear velocity curve on petrophys-ics. Petroleum Geology and Recovery Efficiency, 13 (4): 58-61 (in Chinese).
      Winkler, K. W., 1983. Frequency dependent ultrasonic prop-erties of high porosity sandstone. Journal of Geophysi-cal Research, 88 (B11): 9493-9499. doi: 10.1029/JB088iB11p09493
      Xie, J. Z., Chu, Z. H., Li, Y. H., et al., 2003. On the methodto determine residual oil saturation from acoustic com-pression coefficient. Well Logging Technology, 27 (3): 181-184 (in Chinese with English abstract).
      Xu, S., White, R. E., 1995. A new velocity model for clay-sand mixtures. Geophys. Prospecting, 43 (1): 91-118. doi: 10.1111/j.1365-2478.1995.tb00126.x
      Yong, S. H., Zhang, C. M., 1996. Digital processing and in-terpretation of well-logging. China University of Petro-leum Press, Dongying, 313-316 (in Chinese).
      陈颙, 黄庭芳, 2001. 岩石物理学. 北京: 北京大学出版社.
      楚泽涵, 1987. 声波测井原理. 北京: 石油工业出版社.
      王玉梅, 苗永康, 孟宪军, 等, 2006. 岩石物理横波速度曲线计算技术. 油气地质与采收率, 13 (4): 58-61. doi: 10.3969/j.issn.1009-9603.2006.04.018
      谢进庄, 楚泽涵, 李艳华, 等, 2003. 用声波弹性参数确定剩余油饱和度的方法探讨. 测井技术, 27 (3): 181-184. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200303002.htm
      雍世和, 张超谟, 1996. 测井数据处理与综合解释. 东营: 中国石油大学出版社, 313-316.
    • 加载中
    图(5) / 表(4)
    计量
    • 文章访问数:  3804
    • HTML全文浏览量:  562
    • PDF下载量:  68
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-06-28
    • 刊出日期:  2009-07-25

    目录

      /

      返回文章
      返回