• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    雅克拉凝析油气田油水界面甲烷天然释放及其源示踪

    唐俊红 鲍征宇 向武

    唐俊红, 鲍征宇, 向武, 2009. 雅克拉凝析油气田油水界面甲烷天然释放及其源示踪. 地球科学, 34(5): 769-777.
    引用本文: 唐俊红, 鲍征宇, 向武, 2009. 雅克拉凝析油气田油水界面甲烷天然释放及其源示踪. 地球科学, 34(5): 769-777.
    TANG Jun-hong, BAO Zheng-yu, XIANG Wu, 2009. Natural Emissions of Methane and Source Identification from Oil-Water Interface of Yakela Condensed Oil/Gas Field. Earth Science, 34(5): 769-777.
    Citation: TANG Jun-hong, BAO Zheng-yu, XIANG Wu, 2009. Natural Emissions of Methane and Source Identification from Oil-Water Interface of Yakela Condensed Oil/Gas Field. Earth Science, 34(5): 769-777.

    雅克拉凝析油气田油水界面甲烷天然释放及其源示踪

    基金项目: 

    国家自然科学基金项目 40273034

    详细信息
      作者简介:

      唐俊红(1964-), 教授级高级工程师, 博士, 主要从事地球化学研究.E-mail: tang-jhjh@tom.com

    • 中图分类号: P618

    Natural Emissions of Methane and Source Identification from Oil-Water Interface of Yakela Condensed Oil/Gas Field

    • 摘要: 为评价油气田天然释放CH4对大气CH4源与汇的贡献, 采用静态箱法实地监测了新疆塔里木盆地雅克拉凝析油气田油水界面处甲烷的释放通量, 并采用在线大气甲烷碳同位素制样系统与稳定同位素质谱仪联机测试了通量箱甲烷碳同位素组成.结果表明, 由于油水界面边水活跃程度不同, 甲烷通量在空间变化很大, 最高的日释放通量达2.28 mg/m2·d, 最低-1.32 mg/m2·d, 日平均释放通量0.51 mg/m2·d, 标准偏差达1.23 mg/m2·d.油水界面处甲烷通量日变化规律基本相同, 凌晨至清晨时达到相对高点, 随后逐渐降低, 下午至傍晚时段为释放低值甚至负值, 夜晚时分又逐渐增加.通量箱中甲烷δ13C组成白天随甲烷浓度的线性降低而逐渐偏重, 夜晚δ13C随着甲烷浓度的线性增加而逐渐偏重.可见, 油水界面边水活跃, 其上方的土壤形成相对氧化的环境, 油气藏甲烷及烃类在向地表运移的过程中不断被土壤吸收氧化, 仅有少量运移至地表并逸散到大气中, 局部甚至均被吸收氧化, 而成为大气甲烷的汇.

       

    • 图  1  塔里木盆地各类天然气藏分布示意图(据黄传波, 1999)

      Fig.  1.  Sketch showing distribution of natural gases in Tarim basin

      图  2  雅克拉凝析油气田油气分布平面图(据中石化新疆石油管理局内部资料)

      Fig.  2.  Distribution chart of oil and gas in Yakela condensed gas field

      图  3  油水界面区各通量箱不同时段甲烷吸收/排放通量(mg/m2·h)

      Fig.  3.  Flux shift of methane emission of every flux chamber in different times in interface of oil and water

      图  4  油水界面区通量箱甲烷浓度和碳同位素组成随时间变化趋势

      Fig.  4.  Flux chamber experiment in oil-water interface, the shifts in concentration and carbon isotopic composition of methane

      表  1  油水界面区各通量箱不同时段甲烷排放/吸收通量(mg/m2·h)

      Table  1.   Flux of methane emission of every flux chamber in different times in interface of oil and water

    • Abrams, M. A., 2005. Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Ma-rine and Petroleum Geology, 22 (4): 457-477. doi: 10.1016/j.marpetgeo.2004.08.003
      Baciu, C., Etiope, G., Cuna, S., et al., 2008. Methane seep-age in an urban development area (Bacau, Romania): Origin, extent, and hazard. Geofluids, 8: 1-10. doi: 10.1111/j.1468-8123.2007.00207.x
      Barker, J. F., Fritz, P., 1981. Carbon isotope fractionation during microbial methane oxidation. Nature, 293: 289-291. doi: 10.1038/293289a0
      Chilingar, G. V., Endres, B., 2005. Environmental hazards posed by the Los Angeles basin urban oilfields: An his-torical perspective of lessons learned. Environmental Geology, 47: 302-317. doi: 10.1007/s00254-004-1159-0
      Denman, K. L., 2007. Couplings between changes in the cli-mate systemand biogeochemistry. In: Solomon, S., ed., Climate change2007: The physical science basis. Contri-bution of working group I to the fourth assessment re-port of the intergovernmental panel on climate change. Cambridge Univ. Press, Cambridge, U. K., 7: 499-587.
      Dlugokencky, E. J., Steele, L. P., Lang, P. M., et al., 1994. The growth rate and distribution of at mospheric meth-ane. J. Geophys. Res. , 99: 17021-17043. doi: 10.1029/94JD01245
      Dlugokencky, E. J., 2003. Atmospheric methane levels off: Temporary pause or a new steady-state? Geophysical Research Letters, 30 (19): 51-54.
      EIA (Energy Information Administration), 2003. Emissions of greenhouse gases in the United States. In: Compari-son of global warming wotentials fromthe IPCC's sec-ond and third assessment reports. http://www.eia.doe.gov/oiaf/1605/ggrpt/global.html.
      Etiope, G., 2004. GEM—geologic emissions of methane, the missing source in the at mospheric methane budget. At-mospheric Environm. , 38 (19): 3099-3100.
      Etiope, G., 2008. Natural emissions of methane from geolog-ical seepage in Europe. Atmosph. Environment, doi: 10.1016/j.atmosenv.03.014.
      Etiope, G., Fridriksson, T., Italiano, F., et al., 2007b. Natu-ral emissions of methane from geothermal and volcanic sources in Europe. J. Volcanol. Geotherm. Res. , 165: 76-86, doi: 10.1016/j.jvolgeores.2007.04.014.
      Etiope, G., Klusman, R. W., 2002. Geologic emissions of methane to the at mosphere. Chemosphere, 49 (8): 777-789. doi: 10.1016/S0045-6535(02)00380-6
      Etiope, G., Klusman, R. W., 2009. Microseepage indrylands: Flux andimplications inthe global at mospher-ic source/sink budget of methane. Global Planet. Change (in press).
      Etiope, G., Lassey, K. R., Klusman, R. W., et al., 2008. Re-appraisal of the fossil methane budget and related emis-sion from geologic sources. Geophysical Research Let-ters, 35, L09307, doi: 10.1029/2008GL033623.
      Etiope, G., Martinelli, G., Caracausi, A. F. I., 2007a. Meth-ane seeps and mud volcanoes in Italy: Gas origin, frac-tionation and emissionto the at mosphere. Geophys. Res. Lett. , 34, L14303, doi: 10.1029/2007GL030341.
      Etiope, G., Milkov, A. V., 2004. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the at mosphere. Environ. Geol. , 46: 997-1002. doi: 10.1007/s00254-004-1085-1
      Etiope, G., Papatheodorou, G., Christodoulou, P., et al., 2006. Methane and hydrogen sulfide seepage in the NW Peloponnesus petroliferous basin (Greece): Origin and geohazard. AAPG Bull. , 90 (5): 701-713. doi: 10.1306/11170505089
      Hilkert, A. W., Douthitt, C. B., Schluter, H. J., 1999. Iso-tope ratio monitoring gas chromatography/mass spec-trometry of D/H by high temperature conversion iso-tope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 13 (13): 1226-1230. doi: 10.1002/(SICI)1097-0231(19990715)13:13<1226::AID-RCM575>3.0.CO;2-9
      Huang, C. B., 1999. Chracteristics of the condensate gasres-ervoirs in the North Art of Talimu basin and a discus-sion on their formation mechanism. Natural Gas Indus-try, 19 (2): 28-33 (in Chinese with English abstract).
      Hou, W. G., Su, J. Y., 2001. The evidence and characteristics of vertical micro-migration of upper pool's hydrocarbons in northern Tarim basin. Xinjiang Petroleum Geology, 22 (6): 465-470 (in Chinese with English abstract).
      IPCC, 2003. Comparison of global warming wotentials fromthe IPCC's second and third assessment reports. Ener-gy information administration. Emissions of GreenhouseGases in the United States, U. S. A. .
      Judd, A. G., 2004. Natural seabed seeps as sources of atmos-pheric methane. Environ. Geol. , 46: 988-996. doi: 10.1007/s00254-004-1083-3
      Klusman, R. W., Jakel, M. E., 1998. Natural microseepage of methane to the at mosphere fromthe Denver-Julesburg basin, Colorado, USA. J. Geophys. Res. , 103 (D21): 28042-28045.
      Klusman, R. W., Jakel, M. E., LeRoy, M. P., 1998. Does mi-croseepage of methane and light hydrocarbons contrib-ute to the at mospheric budget of methane and to global climate change? Assoc. Pet. Geochem. Explor. Bull. , 11: 1-55.
      Klusman, R. W., Leopold, M. E., LeRoy, M. P., 2000. Sea-sonal variation in methane fluxes fromsedimentary ba-sins to the at mosphere: Results fromchamber measure-ments and modeling of transport from deep sources. J. Geophys. Res, 105: 24661-24670. doi: 10.1029/2000JD900407
      Klusman, R. W., 2003a. Rate measurements and detection of gas microseepage to the at mosphere from an enhanced oil recovery/sequestration project, Rangely, Colorado, USA. Applied Geochemistry, 18 (12): 1825-1838. doi: 10.1016/S0883-2927(03)00108-2
      Klusman, R. W., 2003b. A geochemical perspective and as-sessment of leakage potential for a mature carbon dioixide-enhanced oil recovery project and as a proto-type for carbon dioxide sequestration: Rangely field, Colorado. Amer. Assoc. Petrol. Geol. Bull. , 87: 1485-1507.
      Klusman, R. W., 2006. Detailed compositional analysis of gas seepage at the National Carbon Storage Test Site, Tea-pot Dome, Wyoming, USA. Applied Geochemistry, 21: 1498-1521. doi: 10.1016/j.apgeochem.2006.06.009
      Keita, Y., Yoko, O., Fumiko, N., et al., 2003. An improved method for measurement of the hydrogen isotope ratio of at mospheric methane andits applicationto a Japanese urban at mosphere. Atmospheric Environment, 37: 1975-1982. doi: 10.1016/S1352-2310(03)00030-X
      Lassey, K. R., Lowe, D. C., Smith, A. M., 2007. The at mos-pheric cycling of radiomethane and the "fossil fraction" of the methane source. Atmos. Chem. Phys. , 7: 2141-2149. doi: 10.5194/acp-7-2141-2007
      Lelieveld, J., Crutzen, P. J., Dentener, F. J., 1998. Changing concentration, lifetime and climate forcing of at mos-pheric methane. Tellus. (Ser. B), 50: 128-150. doi: 10.3402/tellusb.v50i2.16030
      Li, N. H., Li, G. R., Tan, W. B., 1991. Petroleumgeology study in northern Tarim basin, China (Ⅰ). China University of Geosciences Press, Wuhan, 239-246 (in Chinese).
      Liu, F. J., Wu, G. P., Guo, Y., et al., 2008. Extraction of oil and gas haloes based on ETM+data: A case study from Yakela, Xinjiang. Earth ScienceJournal of Chi-na University of Geoscienes, 33 (1): 106-111 (in Chi-nese with English abstract).
      Michael, J. W., 1990. A geochemical perspective of natural gas and at mospheric methane. Organic Geochemics, 16 (1-3), 531-547. doi: 10.1016/0146-6380(90)90068-B
      Mosier, A. R., Parton, D. W., Valentine, D. S., 1991. Meth-ane and nitrous oxide fluxes in native, fertilized and cul-tivated grasslands. Nature, 350: 330-332. doi: 10.1038/350330a0
      Nesbit, S. P., Breitenbeck, G. A., 1992. A laboratory study of factors influencing methane uptake by soils. Agri. Ecos. Environ. , 41 (1): 39-54. doi: 10.1016/0167-8809(92)90178-E
      Qian, M. Y., 1998. Evidence of vertical hydrocarbon mi-cromigrationin geochemical section of artesian well. In: Cheng, T. J., Wang, Z. S., Wu, X. M., et al., eds. Thefouth collect of oil/gas geochemical prospect confer-ence. China University of Geosciences Press, Wuhan, 37-40 (in Chinese).
      Rice, A. L., 2001. Highprecision continuous—Flow measure-ment of δ13C and δD of at mospheric CH4. Analytical Chemistry, 73: 4104-4110. doi: 10.1021/ac0155106
      Rust, F., 1981. Ruminant methane delta (13C/12C) values: Relation to at mospheric methane. Science, 211: 1044-1046. doi: 10.1126/science.7466376
      Stevens, C. M., Rust, F. E., 1982. The carbon isotopic com-position of at mospheric methane. Journal of Geophys-ics Research, 87 (C7): 4879-4882. doi: 10.1029/JC087iC07p04879
      Stevens, C. M., Engelkemeir, A., 1988. Stable carbon isotop-ic composition of methane from some natural and an-thropogenic sources. Journal of Geophysics Research, 93: 725-733. doi: 10.1029/JD093iD01p00725
      Song, Y., Dai, J. X., Li, X. Q., Hong, F., 1998. Petroleum exploration main characteristics of geochemistry and Ggeology in China's mediumlarge gas fields. Acta Pe-trolei Sinica, 19 (1): 1-5 (in Chinese with English ab-stract).
      Tang, J. H., Bao, Z. Y., Xiang, W., et al., 2006. On-linemethod for measurement of the carbon isotope ratio of atmospheric methane and its application to at mosphere of Yakela condensed gas field. Environmental Science, 27 (1): 14-17 (in Chinese with English abstract).
      Tang, J. H., Bao, Z. Y., Xiang, W., et al., 2007. Daily varia-tion of natural emission of methane to the at mosphere and source identification in the Luntai fault region of the Yakela condensed oil/gas field in the Tarim basin, Xinjiang, China. Acta Geologica Sinica, 81 (5): 771-778. doi: 10.1111/j.1755-6724.2007.tb01001.x
      Tang, J. H., Bao, Z. Y., Xiang, W., et al., 2008. Geological emission of methane fromthe Yakela condensed oil/gas field in Tarim basin, Xinjiang, China. Journal of Envi-ronmental Sciences, 20 (9): 1055-1062. doi: 10.1016/S1001-0742(08)62149-X
      Tyler, S. C., Zimmerman, P. R., Cumberbatch, C., 1988. Measurements and interpretation of delat 13C of meth-ane fromtermites, rice paddies and wetlands in Kenya. Global Biogeochemical Cycles, 2 (4): 349-355.
      Tang, Y. P., Liu, Y. L., 2002. Study on the geochemical effects of vertical hydrocarbon micromigration and their mechanism. Experimental Petroleum Geology, 24 (5): 431-436 (in Chinese with English abstract).
      USGS National Oil and Gas Resource Assessment Team, 1995.1995 National assessment of United States oil and gas resources: U. S. geological survey digital data series DDS-30. http://energy.cr.usgs.gov/oilgas/noga/.
      Wahlen, M., Tanaka, N., Henry, R., 1989. Carbon-14 in methane sources and in at mospheric methane: The con-tribution fromfossil carbon. Science, 245: 286-290. doi: 10.1126/science.245.4915.286
      Wang, Y. F., Ji, B. M., Chen, Z. Z., 2000. Preliminary results of a study on CH4 fluxin Xilin River basin steppe under different grazing intensities. Acta Phytoecol. Sin. , 24 (6): 693-696.
      Wuebbles, D. J., Hayhoe, K., 2002. Atmospheric methane and global change. Earth-Science Reviews, 57177-210.
      Zhang, B. L., Zhu, H. P., Wang, R. Y., 1998. Vertical micro-migration characteristics of deep hydrocarbon gas in the north Part of Talimu basin. Natual Gas Industry, 18 (1): 25-28 (in Chinese with English abstract).
      Zhang, N., Chen, S., Chen, J. L., 2001. Analysis on change trend of ratio of gas/oil of Cretaceous in Yakela conden-sate gas reservoir. Xinjiang Geology, 19 (1): 40-41 (in Chinese with English abstract).
      Zhong, G. F., Liu, X. F., Deng, C. N., et al., 2006. Middle-Upper Ordovician seismic sequences and submarine fan deposits in West Tadong Uplift, Tarim basin, North-west China. Earth ScienceJournal of China Univer-sity of Geoscienes, 31 (3): 367-371 (in Chinese with English abstract).
      侯卫国, 苏江玉, 2001. 塔北地区油气藏上方烃类垂向微运移的证据和特征. 新疆石油地质, 22 (6): 465-470. doi: 10.3969/j.issn.1001-3873.2001.06.004
      黄传波, 1999. 塔里木盆地北部凝析气藏特征及成藏机制探讨. 天然气工业, 19 (2): 28-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG902.006.htm
      李南豪, 李国蓉, 谭文斌, 1991. 中国塔里木盆地北部油气地质研究(Ⅰ). 武汉: 中国地质大学出版社, 239-246.
      刘福江, 吴国平, 郭艳, 等, 2008. 基于ETM+遥感影像油气晕反演: 以新疆雅克拉地区为例. 地球科学——中国地质大学学报, 33 (1): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200801017.htm
      钱铭云, 1998. 钻井地化剖面上烃气垂向微运移的迹象. 见: 程同锦, 王者顺, 吴学明, 等. 第四届全国油气化探学术会议论文集. 武汉: 中国地质大学出版社, 37-40.
      宋岩, 戴金星, 李先奇, 等, 1998. 中国大中型气田主要地球化学和地质特征. 石油学报, 19 (1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB801.000.htm
      汤玉平, 刘运黎, 2002. 烃类垂向微运移的地球化学效应及其机理讨论. 石油实验地质, 24 (5): 431-436. doi: 10.3969/j.issn.1001-6112.2002.05.009
      唐俊红, 鲍征宇, 向武, 等, 2006. 大气甲烷碳同位素测试方法及其在雅克拉凝析气田上方大气中的应用. 环境科学, 27 (1): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200601003.htm
      张百灵, 朱怀平, 王汝勇, 1998. 塔里木盆地北部深层烃气垂向微运移特征. 天然气工业, 18 (1): 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG801.005.htm
      张宁, 陈珊, 陈君莉, 2001. 雅克拉白垩系凝析气藏气油比变化趋势分析. 新疆地质, 19 (1): 40-41. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200101021.htm
      钟广法, 刘学锋, 邓常念, 等, 2006. 塔里木盆地塔东凸起西部中上奥陶统地震层序与海底扇沉积. 地球科学——中国地质大学学报, 31 (3): 367-371. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603012.htm
    • 加载中
    图(4) / 表(1)
    计量
    • 文章访问数:  3784
    • HTML全文浏览量:  966
    • PDF下载量:  69
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-12-01
    • 刊出日期:  2009-09-25

    目录

      /

      返回文章
      返回