• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    CO2-原油体系混相状态的渗流特性

    陈兴隆 秦积舜 张可

    陈兴隆, 秦积舜, 张可, 2009. CO2-原油体系混相状态的渗流特性. 地球科学, 34(5): 806-810.
    引用本文: 陈兴隆, 秦积舜, 张可, 2009. CO2-原油体系混相状态的渗流特性. 地球科学, 34(5): 806-810.
    CHEN Xing-long, QIN Ji-shun, ZHANG Ke, 2009. Flowing Characteristics of CO2-Oil System in Miscible Phase Flooding in Porous Media. Earth Science, 34(5): 806-810.
    Citation: CHEN Xing-long, QIN Ji-shun, ZHANG Ke, 2009. Flowing Characteristics of CO2-Oil System in Miscible Phase Flooding in Porous Media. Earth Science, 34(5): 806-810.

    CO2-原油体系混相状态的渗流特性

    基金项目: 

    国家“973”项目 2006CB705804

    详细信息
      作者简介:

      陈兴隆(1974-), 男, 博士, 目前在中国石油勘探开发研究院博士后流动站工作, 主要从事油气渗流理论及应用研究.E-mail: chxlhdpu@163.com

    • 中图分类号: P618

    Flowing Characteristics of CO2-Oil System in Miscible Phase Flooding in Porous Media

    • 摘要: 为认识混相状态的CO2在油藏中的渗流特征, 利用高温高压三维模拟装置对CO2-地层原油体系在油藏环境条件下的混相驱替过程进行研究.实验发现: 模型产出液量与注入量存在较大差异; 采收率、含水和气油比曲线亦表现出CO2在孔隙介质中渗流的复杂特征.由实时监测的含水饱和度分布场图分析认为: CO2与原油混相后, 流体粘度降低、渗流阻力减小, 这是提高采收率的重要原因之一; 同时, CO2/原油相与部分接触水能形成近似于三相混相的状态.实验研究还表明CO2以高密度气体形式进入饱和水、饱和油无法进入的微孔隙, 这是注入量和产出量不一致的主要原因.

       

    • 图  1  实验流程

      1.泵工作介质; 2.ISCO泵; 3.平板砂岩模型; 4.高压釜; 5.恒温箱; 6.电子天平; 7.气体流量计; 8.回压控制器; 9.Rusky泵; 10.信号采集、控制系统; 11.压差传感器; 12.饱和度探针; 13.油、水及CO2中间容器

      Fig.  1.  Flow chart of experiment

      图  2  采收率、含水量及气油比变化曲线

      Fig.  2.  Curves of oil recovery, water cut and GOR

      图  3  气测渗透率和驱替过程中含水饱和度场

      a.模型初始气测渗透率等值图; b.水驱过程-无水期结束状态; c.水驱过程-水驱结束状态; d.段塞驱、CO2驱过程-结束状态

      Fig.  3.  Distribution of gas permeability and water saturation during flooding

      图  4  CO2-原油逐步混相过程(75 ℃)

      Fig.  4.  CO2-crude oil miscible process

      表  1  油藏条件及地层原油性质

      Table  1.   Reservoir condition and properties of crude oil

      表  2  模型条件及控制参数

      Table  2.   Model and its controlling parameters

      表  3  各阶段驱替效率

      Table  3.   Oil recovery efficiency for various stages

    • Gao, Y. J., Tian, M. R., Jia, G. H., 2007. Physical simulation about sandbody physical property control onforming lithological reservoirs. Earth ScienceJournal of China University of Geosciences, 32 (2): 274-278 (in Chinese with English abstract).
      Hao, Y. M., Bo, Q. W., Chen, Y. M., 2005. Laboratory investigation of CO2 flooding. Petroleum Exploration and Development. 32 (2): 110-112 (in Chinese with English abstract). http://www.researchgate.net/publication/239817532_Laboratory_Investigation_of_CO2_Flooding
      Hao, Z. C., Li, L., Wang, J. H., et al., 2007. Impact of climate change on surface water resources. Earth ScienceJournal of China University of Geosciences, 32 (3): 425-431 (in Chinese with English abstract).
      Holm, W. L., 1987. CO2 flooding processing evaluation. Journal of Petroleum Technology, 11: 1337-1342.
      Holm, W. L., O'Brien, L. J., 1971. CO2 flooding pilot test in Middles oil field. Journal of Petroleum Technology, 4: 431-442.
      Khataniar, S., Kamath, V. A., Patil, S. L., et al., 1999. CO2 and miscible gas injection for enhanced recovery of schrader bluff heavy oil. SPE International Thermal Operations and Heavy Oil Symposium. SPE (54085): 1-17.
      Kriens. M, A., 1989. CO2 Flooding mechanismand engineering design. Petroleum Industrial Press, Beijing.
      Langston, M. V., Hoadley, S. F., Young, D. N., 1988. SACROC unit CO2 flooding ultimate evaluation. SPE EOR Symposium, 4 (16-21), Tulsa, Oklahoma, SPE-17321-MS.
      Li, X. L., Li, Z. Q., 2004. Physical simulation on miscible CO2 flooding in long-core model. Petroleum Exploration and Development, 31 (5): 102-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200405029.htm
      Mu, L., Wu, D. X., Zhou, G., et al., 2007. Changes in Atlantic thermohaline circulation under different at mospheric CO2 scenarios. Earth ScienceJournal of China University of Geosciences, 32 (1): 141-146 (in Chinese with English abstract). http://www.researchgate.net/publication/283595296_Changes_in_atlantic_thermohaline_circulation_under_different_atmospheric_CO2_scenarios
      Qamar, M. M., Islam, M. R., 2000. CO2 Injection in theWeyburn field of Canada: Optimization of enhanced oil recovery and greenhouse gas storage with horizontal wells. SPE/DOE Improved Oil Recovery Symposium. SPE (59327): 1-16.
      Xie, S. X., 1991. Laboratory investigation of CO2 flooding for Daqing oil field. Daqing Petroleum Geology and Exploration, 10 (4): 32-35 (in Chinese with English abstract).
      Xu, H., Qin, J. S., Wang, J. L., et al., 2007. Physical simulation on polymer flooding macro flowing mechanism of 3D model. Petroleum Exploration and Development, 34 (3): 36-40 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/syktykf200703018
      高永进, 田美荣, 贾光华, 2007. 砂体物性对岩性油藏成藏控制作用物理模拟. 地球科学——中国地质大学学报, 32 (2): 274-278. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200702017.htm
      郝永卯, 薄启炜, 陈月明, 2005. CO2驱油实验研究. 石油勘探与开发, 32 (2): 110-112. doi: 10.3321/j.issn:1000-0747.2005.02.027
      郝振纯, 李丽, 王加虎, 等, 2007. 气候变化对地表水资源的影响. 地球科学——中国地质大学学报, 32 (3): 425-431. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703017.htm
      李向良, 李振泉, 2004. 二氧化碳混相驱的长岩心物理模拟. 石油勘探与开发, 31 (5): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200405029.htm
      牟林, 吴德星, 周刚, 等, 2007. 温室气体浓度增加情景下大西洋温盐环流的演变. 地球科学——中国地质大学学报, 32 (1): 141-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200701021.htm
      谢尚贤, 1991. 大庆油田CO2驱油室内实验研究. 大庆石油地质与开发, 10 (4): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK199104007.htm
      徐晖, 秦积舜, 王家禄, 等, 2007. 聚合物驱宏观渗流机理的三维油藏物理模拟研究. 石油勘探与开发, 34 (3): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200703020.htm
    • 加载中
    图(4) / 表(3)
    计量
    • 文章访问数:  3532
    • HTML全文浏览量:  528
    • PDF下载量:  62
    • 被引次数: 0
    出版历程
    • 收稿日期:  2008-12-01
    • 刊出日期:  2009-09-25

    目录

      /

      返回文章
      返回