Ocean-Continent Subduction within the Paleotethyan Archiopeligic Ocean from Muztag Ophiolite
-
摘要: 前期研究认识到新疆东昆仑木孜塔格蛇绿岩形成在俯冲带环境.为了进一步研究该俯冲带的类型, 对新疆东昆仑木孜塔格蛇绿岩变质橄榄岩的岩石学和矿物学特征进行了分析.薄片观察发现变质橄榄岩的橄榄石以变质残余、变质重结晶和斜方辉石熔融结晶3种结构存在, 但探针分析发现它们具有稳定且低Fo值(87.8~89.5);斜方辉石发育变质残余和熔融残余结构, En较低(88~90), Al2O3含量变化大(2.90%~5.13%); 尖晶石为他形-半自形结构, 其Cr#(=Cr/(Cr+Al)) 集中分布在0.5080.723和0.1000.118两个范围内.根据这些来自岩石学和矿物学的证据, 并结合该蛇绿岩的构造背景与时代, 认识到该蛇绿岩形成在大洋向具有厚陆壳的大陆弧俯冲的俯冲带环境, 为新疆东昆仑地区古特提斯多岛洋洋-陆俯冲的结果.Abstract: The former studies show that the Muztag ophiolite outcropped in the East Kunlun area of Xinjiang Uygur Autonomous Region formed in the supra-subduction zone environment. The petrological and mineralogical characteristics of metamorphic peridotites of this ophiolite are analyzed in order to further study the type of the subducuion zone. Thin-section observations show that the olivines of metamorphic peridotites exist in three textures: metamorphic relict, metamorphic recrystallizition and orthopyroxene-melting crystallizations. Microprobe analyses show that they have stable and low Fo range of 87.8-89.5. The orthopyroxenes show metamorphic relict and melting relict textures, with low En of 88-90 and a wide range of Al2O3 content of 2.90%-5.13%. The spinels develop xenomorphic-semi-automorphic textures, with Cr# (=Cr/ (Cr+Al)) mainly distributing in two ranges of 0.508-0.723 and 0.100-0.118, respectively. Based on the petrological and mineralogical evidences together with the era and tectonic setting of the Muztag ophiolite, it can be concluded that the ophiolite formed in the supra-subduction zone where the oceanic crust subducted down to the continental arc with thick continental crust, and resulted from ocean-to-continent subduction within the Paleotethyan archiopelagic ocean in the East Kunlun area of Xinjiang Uygur Autonomous Region.
-
Key words:
- Muztag /
- ophiolite /
- olivine /
- spinel /
- ocean-to-continent subduction /
- Paleotethyan
-
图 1 研究区地质简图(据新疆地质矿产局, 1993)
1.深断裂; 2.一般断裂; 3.超基性-基性岩; 4.冰川及雪被; 5.钾长花岗岩; 6.花岗斑岩; 7.二长花岗岩; 8.湖泊; 9.采样点; 10.志留系; 11.泥盆系; 12.石炭系; 13.二叠系; 14.三叠系; 15.新生界; 16.工作区
Fig. 1. Geological sketch map of the studied area
图 2 尖晶石的Cr/ (Al+Cr) -Mg/ (Mg+Fe2+) 构造环境判别(据张旗等, 1992; Dick and Fisher, 1984)
A.深海橄榄岩; B.Mariana海沟镁铁-超镁铁岩; Ⅰ.阿尔卑斯Ⅰ型橄榄岩; Ⅲ.阿尔卑斯Ⅲ型橄榄岩
Fig. 2. Discriminating diagram of Cr/ (Al+Cr) -Mg/ (Mg+Fe2+) of spinel for tectonic setting
表 1 橄榄石成分分析(%)
Table 1. Analysis of olivine compositions
表 2 斜方辉石成分分析(%)
Table 2. Analysis of orthopyroxene compositions
表 3 尖晶石成分分析(%)
Table 3. Analysis of spinel compositions
-
Arai, S., 1994. Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation. Chemical Geology, 113: 191-204. doi: 10.1016/0009-2541(94)90066-3 Arai, S., Matsukage, K., 1998. Petrology of a chromitite micropodiform Hess deep, equatorial Pacific: A comparison between abyssal and alpine-type podiform chromitites. Lithos, 43: 1-14. doi: 10.1016/S0024-4937(98)00003-6 Bao, P. S., Wang, X. B., Peng, G. Y., et al., 1999. Chromite ore-deposits in China. Science Press, Beijing, 350 (inChinese). Bonatti, E., Ottonello, G., Hamlyn, P. R., 1986. Peridotites from the island of Zabargad (St. John), Red Sea: Petrology and geochemistry. Journal of Geophysic Research, 91: 599-631. doi: 10.1029/JB091iB01p00599 Bonatti, E., Michael, P. J., 1989. Mantle peridotites from continental rifts to ocean basins to subduction zones. Earth and Planetary Science Letters, 91: 297-311. doi: 10.1016/0012-821X(89)90005-8 Dick, H. J. B., Fisher, R. L., 1984. Mineralogic studies of the residues of mantle melting: Abyssal and alpine-type peridotites. In: Kornporobst, J., ed., Kimberlites, Ⅱ. Themantle and crust-mantle relationships. Elsevier, Amsterdam, 295-308 Hart, R. J., Andreoli, M. A. G., Smith, C. B., et al., 1990. Ultramafic rocks in the centre of the Vredefort structure (South Africa): Possible exposure of the uppermantle? Chemical Geology, 83: 233-248. doi: 10.1016/0009-2541(90)90282-C Ishii, T., Robinson, P. T., Maekawa, H., et al., 1992. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu Ogasawara-Mariana forearc, Leg 125. In: Freyer, P., Pearce, J. A., Stokking, L. B., etal., eds., Proceedings of the ocean drilling program scientific results, 125. College Station, TX: Ocean Drilling Program, Plenum Press, New York, 445-486. Lan, C. L., 2001. Petrological and geological characteristics of ophiolites at the east Kunlun area of Xinjiang and their implications for tectonics[Dissertation]. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 116 (in Chinese). Lan, C. L., Li, J. L., He, S. L., et al., 2002a. Mineralogical evidence for subduction zone ophiolite, Muztag, east Kunlun of Xinjiang. Journal of Mineralogy and Petrology, 22 (3): 1-4 (in Chinese with English ab-stract). Lan, C. L., Li, J. L., He, S. L., et al., 2002b. Nb-enriched basalts found in Muztag ophiolitic mélange, easternKunlun mountain, Xinjiang. Geology and Prospecting, 38 (3): 55-59 (in Chinese with English abstract). Lan, C.L., Li, J.L., He, S.L., et al., 2002c. Geochemistryof cherts with in Muztag ophiolitic melange and their tectonic setting discussions, East Kunlun Mountain, Xinjiang. Earth Science-Journal of China University of Geosciences, 27 (Suppl. ): 302-306 (in Chinese with English abstract). doi: 10.1144/jgs2018-145 Lan, C.L., Wu, J., Li, J.L., et al., 2001. A preliminary age determination of the Muztag ophiolite and its relation-ship with adjacent Paleotethys. Progress in Nature Science, 11 (3): 256-260 (in Chinese with English Abstract). Michael, P.J., Bonatti, E., 1985. Peridotite composition from the North Atlantic: Regional and tectonic variations and implications for partial melting. Earth and Planetary Science Letters, 73: 91-104. doi: 10.1016/0012-821X(85)90037-8 Molnar, P., Burchfiel, B.C., Zhao, Z., et al., 1987. Geological evolution of northern Tibet: Results of an expedition to Ulugh Muztagh. Science, 235: 299-305. doi: 10.1126/science.235.4786.299 Pan, Y.S., 1989. A preliminary study on the regionalization of the structures in the Kunlun mountains region. Journal of Natural Resources, 4 (3): 196-203 (in Chinese with English abstract). Pan, Y.S., Wen, S.X., Sun, D.L., et al., 2000. The geological evolution of Karakunlun-Kunlun mountain. Science Press, Beijing, 525 (in Chinese). Parkinson, I.J., Pearce, J.A., 1998. Peridotites from the Izu-Bonin-Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt-mantle interaction in a supra-subduction zone setting. Journal of Petrology, 39 (9): 1577-1618. doi: 10.1093/petroj/39.9.1577 Proenza, J., Gervilla, F., Melgarejo, J.C., et al., 1999. Al and Cr-rich chromites from the Mayari-Baracoa ophiolitic belt (eastern Cuba): Consequence of interaction between volatile-rich melts and peridotite in suprasubduction mantle. Economic Geology, 94: 547-566. doi: 10.2113/gsecongeo.94.4.547 Schiano, P., Clocchiatti, R., Schi mizu, N., et al., 1995. Hydrous, silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature, 377: 595-600. doi: 10.1038/377595a0 Shibata, T., Thompson, G., 1986. Peridotites from the Mid Atlantic Ridge at 43°N and their petrogenetic relation to abyssal tholeiites. Contributions to Mineralogy and Petrology, 86: 54-76. Wang, X.B., Bao, P.S., Deng, W.M., et al., 1987. The ophiolites in the Xizang Autonomous region. Geological Publishing House, Beijing, 1-67 (in Chinese). Wang, Y.F., Zheng, Y.Y., Jin, Z.M., 2005. Microstructures and rheology of harzburgites from Dongqiao, northern Tibet. Earth Science-Journal of China University ofGeosciences, 30 (1): 52-60 (in Chinese with English abstract). Xinjiang Bureau of Geology and Mineral Resources, 1993. Regional geology of Xinjiang Uygur Autonomous Region. Geological Publishing House, Beijing, 163-165 (in Chinese). Xu, Z.Q., Qi, X.X., Yang, J.S., et al., 2006. Deep subduction erosion model for continent-continent collision of the Sulu HP-UHP metamorphic terrain. Earth Science-Journal of China University of Geosciences, 31 (4): 427-436 (in Chinese with English abstract). Zhang, Q., Zhang, K.W., Li, D.Z., 1992. Mafic-ultramaif crocks in the Hengduan Mountain regions. Science Press, Beijing, 216 (in Chinese). Zhou, M.F., Robinson, P.T., 1997. Origin and tectonic environment of podiform chromite deposits. Economic Geology, 92: 259-262. doi: 10.2113/gsecongeo.92.2.259 鲍佩声, 王希斌, 彭根永, 等, 1999. 中国铬铁矿床. 北京: 科学出版社, 350. 兰朝利, 2001. 新疆东昆仑蛇绿岩岩石学、地球化学特征及其大地构造意义. 中国科学院地质与地球物理所[博士学位论文], 116. 兰朝利, 吴峻, 李继亮, 等, 2001. 木孜塔格蛇绿岩时代的初步确定及其与邻区古特提斯(Paleotethys) 关系探讨. 自然科学进展, 11 (3): 256-260. doi: 10.3321/j.issn:1002-008X.2001.03.006 兰朝利, 李继亮, 何顺利, 等, 2002a. 新疆东昆仑木孜塔格俯冲带蛇绿岩——地幔橄榄岩尖晶石证据. 矿物岩石, 22 (3): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200203000.htm 兰朝利, 李继亮, 何顺利, 等, 2002b. 新疆东昆仑木孜塔格蛇绿混杂岩中发现富Nb玄武岩. 地质与勘探, 38 (3): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200203012.htm 兰朝利, 李继亮, 何顺利, 等, 2002c. 新疆东昆仑木孜塔格蛇绿混杂岩中硅岩的地球化学特征及其构造环境探讨. 地球科学——中国地质大学学报, 27 (增刊): 302-306. 潘裕生, 1989. 昆仑山区构造区划初探. 自然资源学报, 4 (3): 193-206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX198903001.htm 潘裕生, 文世宣, 孙东立, 等, 2000. 喀喇昆仑山-昆仑山地区地质演化. 北京: 科学出版社, 525. 王希斌, 鲍佩声, 邓万明, 等, 1987. 西藏蛇绿岩. 北京: 地质出版社, 1-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200711010.htm 王永峰, 郑有业, 金振民, 2005. 西藏东巧方辉橄榄岩的显微构造特征及其流变学意义. 地球科学——中国地质大学学报, 30 (1): 52-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501007.htm 新疆地质矿产局, 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社, 163-165. 许志琴, 戚学祥, 杨经绥, 等, 2006. 苏鲁高压-超高压变质地体的陆-陆碰撞深俯冲剥蚀模式. 地球科学——中国地质大学学报, 31 (4): 427-436. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200604000.htm 张旗, 张魁武, 李达周, 1992. 横断山区镁铁-超镁铁岩. 北京: 科学出版社, 216. -