• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    多维分形理论和地球化学元素分布规律

    成秋明

    成秋明, 2000. 多维分形理论和地球化学元素分布规律. 地球科学, 25(3): 311-318.
    引用本文: 成秋明, 2000. 多维分形理论和地球化学元素分布规律. 地球科学, 25(3): 311-318.
    CHENG Qiuming, 2000. MULTIFRACTAL THEORY AND GEOCHEMICAL ELEMENT DISTRIBUTION PATTERN. Earth Science, 25(3): 311-318.
    Citation: CHENG Qiuming, 2000. MULTIFRACTAL THEORY AND GEOCHEMICAL ELEMENT DISTRIBUTION PATTERN. Earth Science, 25(3): 311-318.

    多维分形理论和地球化学元素分布规律

    基金项目: 

    加拿大自然科学基金项目 NSERC—OGP0183993

    详细信息
    • 中图分类号: P595

    MULTIFRACTAL THEORY AND GEOCHEMICAL ELEMENT DISTRIBUTION PATTERN

    • 摘要: 多维分形模型不仅采用常规的低阶矩统计, 而且采用高阶矩统计对多维分形分布进行度量, 从而能较细致地刻划正常值以及异常值.地球化学元素的正常值往往服从统计学中的大数定量, 即满足正态分布或对数正态分布, 然而异常值会服从分形分布(Preato).介绍了多维分形领域中的最新发展以及在地球化学研究中特别是研究超常元素空间分布和富集规律中的应用.结果表明, 通常的统计方法只对应于多维分形围绕均值周围的局部特征.为了有效地研究异常值的分布和富集规律, 建议采用高阶矩统计方法和多维分形方法, 并给出了两种分析地球化学元素, 并突出异常值贡献的方法.这些方法不仅可应用于研究微量元素的空间分布和富集规律, 而且可以区分地球化学背景与矿化有关的异常值.还介绍了该方法在对加拿大B.C.省西北部Mitchell-Sulphurets地区金铜矿化蚀变带研究中的应用.

       

    • 图  2  多维分形对1 030岩石样品Au质量分数分析结果

      (a) Q—Q图表明Au质量分数背景值基本服从对数正态分布; (b) 多维分形谱函数; (c) Au质量分数等值线值与等值线包围的面积之间的关系.两条直线分别为最小二乘拟合直线.由两条直线的交点所对应的Au的分界值w (Au) =200×10-9可区分异常与背景的值; (d) 阴影范围表示Au异常(w (Au) ≥200×10-9) 范围; 黑点表示已知地表出露的蚀变带范围

      Fig.  2.  Results obtained by multifractal modelling to the Au

      图  1  研究区地质图及地表岩石取样位置

      (a) 简化地质图, 包括蚀变带轮廓. (b) 岩石取样位置.Mitchell侵入岩: 1.正长岩, 二长岩, 闪长岩, 二长闪长岩; 2.Bowser湖组Hazelton群.3.Mount Dilworth建造; 4.Untik河建造和Betty溪建造; 5.Jack建造Stuhint群; 6.沉积岩; 7.火山岩; 8.黄铁矿蚀变岩; 9.冰川、湖泊和未知区

      Fig.  1.  Geology of the study area and the locations of rock samples

    • [1] Agterberg F P, Cheng Q, Wright D F. Fractal modeling of mineral deposits: applications of computers and operations research in the mineral industry[A]. In: Elbrond J, Tang X, eds. Proc 24th APCOM Symposium(Montreal) [C]. Can: Inst Mining, Metallurgy and Petroleum Eng, 1993. 43~53.
      [2] Cheng Q, Agterberg F P, Bonham-Carter G F. A spatial analysis method for geochemical anomaly separation[J]. Explor Geochem, 1996, 56: 183~195. doi: 10.1016/S0375-6742(96)00035-0
      [3] Cheng Q, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Geochem Explor, 1994, 51: 109~130. doi: 10.1016/0375-6742(94)90013-2
      [4] Cheng Q, Bonham-Carter G F, Hall G E M, et al. Statistical study of trace elements in the soluble organic and amorphous Fe-Mn phases of surficial sediments, Sudbury basin: 1. Multivariate and spatial analysis[J]. Explor Geochem, 1997, 59: 27~46. doi: 10.1016/S0375-6742(96)00046-5
      [5] Cheng Q. Multifractality and spatial statistics[J]. Computer & Geosciences, 1999b, 25(9): 949~962.
      [6] Cheng Q. Gliding box method and multifractal modelling [J]. Computer & Geosciences, 1999c, 25(9): 1073~1080.
      [7] Cheng Q. Multifractal modelling and spatial analysis[A]. In: Vera Pawlowsky Glahn, ed. Proceedings, IAMG' 97 meeting, Barcelona[C]. Barcelona: International Center for Numerical Methods in Engineering(CIMNE), 1997. 57~72.
      [8] Agterberg F P. Multifractal modelling of the sizes and grades of giant and supergiant deposits[J]. Int Geology Review, 1995, 37: 1~8. doi: 10.1080/00206819509465388
      [9] Agterberg F P. Fractals, multifractals, and change of support: geostatistics for the next century[M]. Dordrecht: Kluwer Academic Pub, 1994. 223~234.
      [10] Mandelbrot B B. The Fractal geometry of nature[M]. San Francisco: W HFreeman and Company, 1983. 468.
      [11] Bak P. How nature works[M]. New York: Springer-Verlag, 1996. 212.
      [12] Agterberg F P. How nature works: the science of self-organized criticality, book review[J]. Computer & Geosciences, 1998, 24: 205~207.
      [13] Korvin G. Fractal models in the earth sciences[M]. Amsterdam: Elsevier, 1992. 408.
      [14] Evertsz C J G, Mandelbrot B B. Multifractal measures [A]. In: Peitgen HO, Jurgens H, Saupe D, eds. Chaos and fractals[C]. New York: Springer-Verlag, 1992. 922~953.
      [15] Schertzer D, Lovejoy S. Nonlinear variability in geophysics[M]. Dordrecht: Kluwer Academic Publ, 1991. 318.
      [16] Feder J. Fractals[M]. New York: Plenum Press, 1988. 283.
      [17] Halsey T C, Jensen M H, Kadanoff L P, et al. Fractal measures and their singularities, the characterization of strange sets[J]. Phys Rev, 1986A, 33: 1141~1151. doi: 10.1103/PhysRevA.33.1141
      [18] Atmanspacher H, Scheingraber H, Wiedenmann G. Determination of f(a)for a limited random point set[J]. Phys Rev, 1989, 40: 3954~3963. doi: 10.1103/PhysRevA.40.3954
      [19] Chhabra A B, Sreenivasan K R. Negative dimensions: theory, computation and experiment[J]. Phys Review A, 1991, 43: 1114~1117. doi: 10.1103/PhysRevA.43.1114
      [20] Cheng Q. Gliding box method for multifractal analysis [A]. In: Vare Pawlowsky Glahn, ed. Proceedings of IAMG' 97 meeting Part Ⅱ[C]. Barcelona: CIMNE, 1997. 489~494.
      [21] Gupta V K, Waymire E C. A statistical analysis of mesoscale rainfall as a random cascade[J]. American Meteorological Society, 1993, 32: 251~267.
      [22] Cheng Q, Agterberg F P. Multifractal modeling and spatial point processes[J]. Math Geology, 1995, 27: 831~845. doi: 10.1007/BF02087098
      [23] Cheng Q, Agterberg F P. Multifractal modeling and spatial statistics[J]. Math Geology, 1996b, 28: 1~16. doi: 10.1007/BF02273520
      [24] Cheng Q. Stochastic simulation and discrete multifractals [A]. In: Buccianti A, Nardi G, Potenza R, eds. In: Proceedings of the Fourth Annual Conference of the International Association for Mathematical Geology [C]. Ischia: [s. n. ], 1998. 572~577.
      [25] Cheng Q. Discrete multifractals[J]. Math Geol, 1997a, 29(2): 245~266. doi: 10.1007/BF02769631
      [26] Cheng Q. Markov processes and discrete multifractals [J]. Math Geology, 1999a, 31(4): 455~469. doi: 10.1023/A:1007594709250
      [27] Cheng Q. The perimeter-area fractal model and its application in geology[J]. Math Geol, 1995, 27: 69~82. doi: 10.1007/BF02083568
      [28] Cheng Q. Spatial and scaling modelling for geochemical anomaly separation[J]. J Explor Geochemistry, 1999d, 65: 175~194. doi: 10.1016/S0375-6742(99)00028-X
      [29] Agterberg F P, Cheng Q, Brown A, et al. Multifractal modeling of fractures in Lac Dc Bonnet batholith, Manitoba[J]. Computers & Geosciences, 1996, 22: 497~507.
      [30] Cheng Q. Multifractal modelling and lacunarity analysis [J]. Math Geol, 1997b, 29: 919~932. doi: 10.1023/A:1022355723781
      [31] Sim B, Agterberg F P, Beaudry C, et al. Determining the cutoff between background and relative base contamination levels using multifractal methods[J]. Computer & Geosciences, 1999, 25(9): 1023~1042.
      [32] Ballantyne S B. Geochemistry of Sulphurets area, British Columbia[A]. In: Geological Survey of Canada, ed. Program with abstracts[C]. Ottawa: [s. n. ], 1990.
      [33] Ballantyne S B, Harris D C, Shives R B K, et al. An integrated approach and model for the discovery of blind Cu-Au porphyry systems[M]. Poster: Geological Survey of Canada, Minerals Colloquium, 1992. 11.
    • 加载中
    图(2)
    计量
    • 文章访问数:  3908
    • HTML全文浏览量:  460
    • PDF下载量:  26
    • 被引次数: 0
    出版历程
    • 收稿日期:  1999-12-07
    • 刊出日期:  2000-05-25

    目录

      /

      返回文章
      返回