• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华北克拉通南缘小秦岭金矿区基性脉岩时代及地质意义

    毕诗健 李建威 李占轲

    毕诗健, 李建威, 李占轲, 2011. 华北克拉通南缘小秦岭金矿区基性脉岩时代及地质意义. 地球科学, 36(1): 17-32. doi: 10.3799/dqkx.2011.003
    引用本文: 毕诗健, 李建威, 李占轲, 2011. 华北克拉通南缘小秦岭金矿区基性脉岩时代及地质意义. 地球科学, 36(1): 17-32. doi: 10.3799/dqkx.2011.003
    BI Shi-jian, LI Jian-wei, LI Zhan-ke, 2011. Geological Significance and Geochronology of Paleoproterozoic Mafic Dykes of Xiaoqinling Gold District, Southern Margin of the North China Craton. Earth Science, 36(1): 17-32. doi: 10.3799/dqkx.2011.003
    Citation: BI Shi-jian, LI Jian-wei, LI Zhan-ke, 2011. Geological Significance and Geochronology of Paleoproterozoic Mafic Dykes of Xiaoqinling Gold District, Southern Margin of the North China Craton. Earth Science, 36(1): 17-32. doi: 10.3799/dqkx.2011.003

    华北克拉通南缘小秦岭金矿区基性脉岩时代及地质意义

    doi: 10.3799/dqkx.2011.003
    基金项目: 

    国家重大科研计划"华北克拉通破坏" 90814004

    国家自然科学基金创新群体基金 40521001

    详细信息
      作者简介:

      毕诗健(1982-), 男, 博士研究生, 主要从事矿床学研究.E-mail: Shijianbi_1982@163.com

      通讯作者:

      李建威, E-mail: jwl@cug.edu.cn

    • 中图分类号: P571;P611

    Geological Significance and Geochronology of Paleoproterozoic Mafic Dykes of Xiaoqinling Gold District, Southern Margin of the North China Craton

    • 摘要: 产于太古代-古元古代变质地体中的石英脉型金矿是世界上最重要的金矿类型之一, 大多数金矿区内基性脉岩非常发育, 空间上与含金石英脉密切相关.但目前对基性脉岩与石英脉型金矿的成因联系尚未取得一致认识.以华北克拉通南缘小秦岭金矿区为例, 对典型矿区(东闯、大湖、枪马)采矿巷道内的基性脉岩开展精确的U-Pb年代学研究.4个脉岩样品给出一致的锆石207Pb/206Pb加权平均年龄(1 819±10 Ma, 1σ); 1个样品中的黑云母给出了略微年轻的40Ar/39Ar坪年龄(1 719.0±21.0 Ma, 2σ).定年结果表明: (1)小秦岭金矿区内大量基性脉岩形成于古元古代晚期, 是华北克拉通东西块体在1.85 Ga左右发生碰撞后伸展作用的产物; (2)前人获得的基性脉岩K-Ar和Rb-Sr年龄(187.6~75.9 Ma)可能并非脉岩真实侵位年龄, 而是代表这些脉岩遭受中生代构造-热事件影响的扰动年龄(或冷却年龄).最新的成矿年代学研究结果表明, 小秦岭地区绝大多数金矿床形成于早白垩世130~120 Ma, 大大晚于上述古元古代基性脉岩的侵位时代, 因此两者之间没有成因联系(尽管它们的空间关系十分密切).小秦岭地区是否存在与金矿床同时的晚中生代基性岩浆活动, 对于讨论本区金矿床的矿床成因和成矿构造环境非常重要, 但本文工作尚不能明确回答这一问题, 今后需要对矿区内各期基性脉岩进行系统的同位素定年.

       

    • 图  1  华北克拉通古元古代构造单元简图(a)(据Zhao et al., 2002)及中部造山带基性岩墙群分布(b)(据Peng et al., 2008)

      Fig.  1.  (a) Schematic illustration of Paleoproterozoic tectonic units for the North China craton (after Zhao et al., 2002); (b) Distribution of the ca. 1.8 Ga mafic dyke swarms in the Trans-North China orogen (after Peng et al., 2008)

      图  2  华北克拉通南缘小秦岭金矿区域地质和金矿床分布

      Fig.  2.  Map showing the simplified geology and distribution of gold deposits in the Xiaoqinling region, southern North China craton

      图  3  小秦岭地区杨砦峪金矿床平面(a)及东闯金矿床剖面(b)

      Fig.  3.  Geological plan and section from typical gold deposits in the Xiaoqinling gold district, showing spatial relationship between mafic dykes (a) and auriferous quartz veins (b)

      图  4  小秦岭金矿区基性岩脉与围岩野外穿插关系

      Fig.  4.  Field photographs in the mining tunnel of the Xiaoqinling gold district, showing intercalating relationship between dykes and Taihua Group, and gold-bearing veins

      图  5  小秦岭地区基性岩脉中锆石阴极发光(CL)图像

      圆圈标准为分析点位置及207Pb/206Pb年龄,圆圈直径为24 μm或32 μm

      Fig.  5.  CL images of zircons for the dykes from Xiaoqinling gold district

      图  6  小秦岭地区基性岩脉中锆石U-Pb谐和曲线(加权平均年龄207Pb/206Pb)

      Fig.  6.  Concordia diagrams of LA-ICPMS zircon U-Pb data for the dykes from Xiaoqinling area

      图  7  XQL-QM黑云母40Ar/39Ar年龄谱

      Fig.  7.  Step-heating spectra of biotite sample (XQL-QM), showing 40Ar/39Ar spectrum age and total fusion age

      表  1  小秦岭金矿区内基性脉岩锆石的LA-ICPMS锆石U-Pb分析结果

      Table  1.   Results of LA-ICPMS zircons U-Pb dating for the mafic dykes from the Xiaoqinling gold district

      测试点号 含量(μg/g) U-Th-Pb同位素比值 年龄(Ma)
      Th U Th/U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      XQL-DC
      DC-1 219 3 206 0.07 0.112 0.002 5.160 0.098 0.330 0.005 1 839 28 1 846 16 1 839 23
      DC-2 746 3 615 0.21 0.112 0.002 5.128 0.126 0.329 0.009 1 836 64 1 841 21 1 833 42
      DC-3 150 3 984 0.04 0.112 0.001 5.106 0.069 0.328 0.003 1 827 22 1 837 11 1 830 15
      DC-4 194 3 642 0.05 0.112 0.001 5.160 0.070 0.330 0.003 1 837 21 1 846 12 1 839 15
      DC-5 156 4 034 0.04 0.111 0.001 5.075 0.054 0.328 0.003 1 820 16 1 832 9 1 828 14
      DC-6 800 3 294 0.24 0.110 0.001 4.974 0.044 0.325 0.002 1 811 13 1 815 7 1 812 12
      XQL-DH
      DH-1 4 029 1 020 3.95 0.106 0.003 4.883 0.162 0.326 0.010 1 800 50 1 799 28 1 821 50
      DH-2 2 742 1 251 2.19 0.110 0.005 4.885 0.237 0.320 0.016 1 796 78 1 800 41 1 791 78
      DH-3 1 178 928 1.27 0.109 0.004 4.621 0.168 0.312 0.014 1 791 61 1 753 30 1 749 71
      DH-4 5 340 1 456 3.67 0.109 0.001 4.916 0.148 0.323 0.008 1 789 27 1 805 25 1 807 41
      DH-5 188 234 0.80 0.111 0.002 5.233 0.111 0.343 0.005 1 810 19 1 858 18 1 902 25
      DH-6 1 584 1 275 1.24 0.162 0.002 10.426 0.187 0.462 0.006 2 479 22 2 473 17 2 448 27
      DH-7 394 281 1.40 0.110 0.005 4.991 0.237 0.304 0.011 1 795 75 1 818 40 1 712 53
      DH-8 642 866 0.74 0.112 0.002 5.076 0.079 0.329 0.005 1 832 13 1 832 13 1 833 23
      DH-9 411 240 1.71 0.110 0.004 5.064 0.183 0.327 0.007 1 802 33 1 830 31 1 826 32
      DH-10 321 503 0.64 0.161 0.003 10.322 0.172 0.465 0.007 2 467 13 2 464 15 2 462 30
      DH-11 365 890 0.41 0.153 0.003 9.381 0.146 0.445 0.006 2 479 12 2 476 14 2 474 29
      DH-12 7 422 7 700 0.96 0.110 0.002 4.599 0.073 0.303 0.004 1 804 13 1 749 13 1 705 21
      DH-13 856 413 2.07 0.113 0.004 5.033 0.185 0.324 0.006 1 844 39 1 825 31 1 809 30
      DH-14 828 408 2.03 0.113 0.005 4.799 0.216 0.308 0.007 1 848 50 1 785 38 1 732 33
      DH-15 793 471 1.68 0.113 0.004 4.926 0.150 0.317 0.006 1 844 31 1 807 26 1 776 27
      DH-16 1 105 4 568 0.24 0.158 0.002 10.024 0.145 0.459 0.006 2 439 11 2 437 13 2 436 29
      XQL-QM
      QM-1 48 201 0.24 0.156 0.015 10.048 0.942 0.464 0.014 2 413 161 2 439 87 2 457 61
      QM-2 242 105 2.29 0.112 0.005 5.005 0.222 0.325 0.007 1 827 48 1 820 38 1 814 35
      QM-3 88 119 0.74 0.111 0.004 5.100 0.164 0.328 0.005 1 833 62 1 836 27 1 830 26
      QM-4 137 112 1.22 0.140 0.006 8.240 0.659 0.413 0.022 2 221 78 2 258 73 2 231 100
      QM-5 200 830 0.24 0.095 0.001 2.783 0.055 0.211 0.003 1 524 27 1 351 15 1 236 17
      QM-6 287 1 149 0.25 0.095 0.001 2.726 0.044 0.206 0.002 1 531 24 1 335 12 1 208 12
      QM-7 847 555 1.53 0.111 0.001 5.023 0.086 0.326 0.004 1 817 22 1 823 15 1 818 19
      QM-8 83 111 0.74 0.110 0.004 4.824 0.153 0.318 0.007 1 811 67 1 789 27 1 779 33
      QM-9 57 89 0.64 0.112 0.004 5.060 0.161 0.321 0.005 1 832 64 1 830 27 1 794 23
      QM-10 75 32 2.31 0.112 0.007 4.774 0.306 0.307 0.006 1 832 113 1 780 54 1 728 32
      QM-11 374 138 2.70 0.112 0.002 4.919 0.118 0.324 0.007 1 826 38 1 805 20 1 811 34
      QM-12 63 30 2.10 0.113 0.004 5.139 0.186 0.331 0.007 1 841 37 1 843 31 1 844 33
      QM-13 627 445 1.41 0.111 0.002 5.014 0.103 0.327 0.006 1 822 17 1 822 17 1 821 27
      XQL-QM2
      QM2-1 449 1 066 0.42 0.110 0.002 4.929 0.107 0.324 0.006 1 804 18 1 807 18 1 810 28
      QM2-2 527 807 0.65 0.110 0.002 4.853 0.091 0.320 0.005 1 798 15 1 794 16 1 791 27
      QM2-3 361 731 0.49 0.111 0.002 5.029 0.096 0.330 0.006 1 810 15 1 824 16 1 837 27
      QM2-4 352 298 1.18 0.111 0.003 4.905 0.137 0.321 0.006 1 810 26 1 803 24 1 797 29
      QM2-5 347 999 0.35 0.111 0.002 4.976 0.089 0.325 0.005 1 818 14 1 815 15 1 813 27
      QM2-6 1 232 758 1.63 0.112 0.002 5.007 0.089 0.325 0.005 1 831 14 1 821 15 1 812 27
      QM2-7 562 410 1.37 0.110 0.002 4.880 0.091 0.321 0.005 1 803 15 1 799 16 1 795 27
      QM2-8 389 887 0.44 0.111 0.002 4.991 0.099 0.326 0.006 1 816 16 1 818 17 1 820 27
      QM2-9 414 470 0.88 0.110 0.002 4.873 0.091 0.322 0.005 1 797 15 1 798 16 1 798 27
      QM2-10 528 416 1.27 0.112 0.002 5.049 0.090 0.328 0.006 1 829 14 1 828 15 1 826 27
      QM2-11 445 896 0.50 0.111 0.002 4.949 0.084 0.324 0.005 1 812 14 1 811 14 1 809 26
      QM2-12 402 272 1.48 0.111 0.002 5.020 0.094 0.327 0.006 1 822 15 1 823 16 1 824 27
      QM2-13 905 573 1.58 0.112 0.002 5.090 0.090 0.329 0.006 1 838 14 1 834 15 1 832 27
      QM2-14 424 295 1.44 0.111 0.003 4.986 0.116 0.325 0.006 1 820 20 1 817 20 1 814 28
      QM2-15 619 641 0.96 0.111 0.002 4.968 0.095 0.324 0.005 1 818 15 1 814 16 1 811 27
      QM2-16 1 665 2 556 0.65 0.110 0.002 4.925 0.089 0.324 0.005 1 805 15 1 807 15 1 808 26
      QM2-17 276 497 0.56 0.111 0.002 4.980 0.091 0.325 0.005 1 817 15 1 816 16 1 815 27
      QM2-18 413 910 0.45 0.112 0.002 5.068 0.087 0.329 0.005 1 830 14 1 831 15 1 831 26
      QM2-19 469 1 009 0.46 0.111 0.002 5.007 0.088 0.327 0.005 1 818 14 1 821 15 1 823 26
      QM2-20 324 598 0.54 0.112 0.002 5.068 0.089 0.328 0.005 1 836 14 1 831 15 1 826 27
      QM2-21 322 195 1.65 0.135 0.002 7.357 0.140 0.395 0.007 2 165 15 2 156 17 2 146 31
      QM2-22 460 341 1.35 0.112 0.002 5.104 0.095 0.330 0.006 1 837 15 1 837 16 1 837 27
      QM2-23 563 424 1.33 0.112 0.002 5.106 0.094 0.330 0.006 1 838 15 1 837 16 1 836 27
      注:中国地质大学(武汉)地质过程与矿产资源国家重点实验室测试.
      下载: 导出CSV

      表  2  小秦岭地区枪马金矿基性脉岩黑云母40Ar/39Ar分析结果

      Table  2.   40Ar/39Ar analytical results for incremental heating experiments on mafic dykes from Qiangma gold deposit, Xiaoqinling gold district

      样品和阶段号 激光功率 36Ar 39Ar 40Ar* 40Ar 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39Ar(%) 40Ar(mol) K/Ca ± 2σ 表观年龄 误差
      XQL-QM 照射参数J=0.009 826 0±0.000 014 7
      08G2077B 3.0 0.000 028 0.000 0.223 0.231 4 468.132 1.868 0.533 0.07 7.631E-19 0.299 0.11 6 803.36 590.31
      08G2077C 3.5 0.000 012 0.000 0.062 0.065 563.445 1.582 0.102 0.15 2.151E-19 0.354 0.08 3 305.45 323.79
      08G2077D 4.0 0.000 008 0.000 0.058 0.060 171.149 1.074 0.024 0.45 1.988E-19 0.521 0.07 1 733.19 111.30
      08G2077E 4.5 0.000 009 0.001 0.086 0.089 146.431 0.850 0.014 0.78 2.930E-19 0.658 0.06 1 578.62 20.32
      08G2077F 5.5 0.000 013 0.001 0.158 0.161 161.241 0.867 0.013 1.29 5.327E-19 0.645 0.05 1 687.92 27.21
      08G2077H 6.5 0.000 009 0.001 0.199 0.202 134.593 2.568 0.007 1.93 6.668E-19 0.218 0.02 1 509.04 14.91
      08G2077I 7.5 0.000 009 0.005 0.601 0.604 128.104 3.926 0.003 6.04 1.992E-18 0.142 0.01 1 468.82 7.63
      08G2077J 8.5 0.000 008 0.006 0.868 0.870 153.986 4.245 0.003 7.24 2.872E-18 0.131 0.01 1 663.70 8.08
      08G2077K 9.0 0.000 006 0.007 1.082 1.083 161.084 4.363 0.002 8.62 3.575E-18 0.128 0.01 1 714.29 7.29
      08G2077L 9.5 0.000 005 0.009 1.426 1.427 162.382 4.325 0.002 11.26 4.710E-18 0.129 0.01 1 723.78 5.53
      08G2077N 10.0 0.000 004 0.006 0.919 0.920 156.852 4.257 0.002 7.51 3.035E-18 0.131 0.01 1 685.34 5.22
      08G2077O 11.0 0.000 006 0.008 1.368 1.369 167.759 4.366 0.002 10.46 4.519E-18 0.128 0.01 1 760.11 6.97
      08G2077P 12.5 0.000 007 0.011 1.763 1.766 164.632 4.442 0.002 13.74 5.826E-18 0.126 0.01 1 739.07 5.05
      08G2077Q 14.0 0.000 009 0.010 1.629 1.631 164.999 4.747 0.002 12.66 5.383E-18 0.117 0.01 1 741.43 6.63
      08G2077R 16.0 0.000 006 0.011 1.789 1.791 157.448 4.565 0.002 14.57 5.910E-18 0.122 0.01 1 690.10 5.78
      08G2077T 18.0 0.000 001 0.002 0.237 0.237 145.267 4.694 0.002 2.09 7.824E-19 0.119 0.01 1 603.45 14.45
      08G2077U 25.0 0.000 001 0.001 0.135 0.135 152.195 5.176 0.002 1.14 4.454E-19 0.108 0.01 1 652.86 33.91
      注:40Ar*=40Ar-295.5×36Ar(36Ar、40Ar表示测量值),表中Ar同位素单位为伏(V);测试单位为中国科学院广州地球化学研究所同位素年代学和地球化学重点实验室.
      下载: 导出CSV
    • Andersen, T., 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X
      Chao, Y., 1989. The metallogenetic epoch of the Xiaoqinling gold deposit. Geology of Shanxi, 7(1): 52-55 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SXDY198901006.htm
      Chen, X.D., Shi, L.B., 1984. Preliminary study on diabase dike swarm in Wutai-Taihang Mountains. Chinese Science Bulletin, 29(6): 812-816. http://www.cnki.com.cn/Article/CJFDTotal-JXTW198406022.htm
      Drew, L.J., Berger, B.R., Kurbanov, N.K., 1996. Geology and structural evolution of the Muruntau gold deposit, Kyzylkum desert, Uzbekistan. Ore Geology Reviews, 11(4): 175-196. doi: 10.1016/0169-1368(95)00033-X
      Durring, P., Hagemann, S.G., Cassidy, K.F., et al., 2004. Hydrothermal alteration, ore fluid characteristics, and gold depositional processes along a trondhjemite-komatiite contact at Tarmoola, western Australia. Economic Geology, 99(3): 423-451. doi: 10.2113/gsecongeo.99.3.423
      Goldfarb, R.J., Phillips, G.N., Nokleberg, W.J., 1998. Tectonic setting of synorogenic gold deposits of the Pacific rim. Ore Geology Reviews, 13(1-5): 185-218. doi: 10.1016/S0169-1368(97)00018-8
      Halls, H.C., Li, J.H., Davis, D., et al., 2000. A precisely dated Proterozoic paleomagnetic pole from the North China craton, and its relevance to palaeocontinental reconstruction. Geophysical Journal International, 143(1): 185-203. doi: 10.1046/j.1365-246x.2000.00231.x
      Han, Y.G., Li, X.H., Zhang, S.H., et al., 2007. Single grain Rb-Sr dating of euhedral and cataclastic pyrite from the Qiyugou deposit in western Henan, Central China. Chinese Science Bulletin, 52(13): 1820-1826. doi: 10.1007/s11434-007-0248-3
      Hou, G.T., Halls, H., Davis, D., et al., 2009. Paleomagnetic poles of mafic dyke swarms from the North China craton and their relevance to the reconstruction of the supercontinent Columbia. Acta Petrologica Sinica, 25(3): 650-658 (in Chinese with English abstract). http://www.researchgate.net/publication/281475430_Paleomagnetic_poles_of_mafic_dyke_swarms_from_the_North_China_craton_and_their_relevance_to_the_reconstruction_of_the_supercontinent_Columbia
      Hou, G.T., Liu, Y.L., Li, J.H., 2006. Evidence for ~1.8 Ga extension of the eastern block of the North China craton from SHRIMP U-Pb dating of mafic dyke swarms in Shandong Province. Journal of Asian Earth Sciences, 27(4): 392-401. doi: 10.1016/j.jseaes.2005.05.001
      Huston, D.L., Vandenberg, L., Wygralak, A.S., et al., 2007. Lode-gold mineralization in the Tanami region, northern Australia. Mineralium Deposita, 42(1-2): 175-204. doi: 10.1007/s00126-006-0106-2
      Koppers, A.A.P., 2002. ArArCALC-software for 40Ar/39Ar age calculations. Computers and Geosciences, 28(5): 605-619. doi: 10.1016/S0098-3004(01)00095-4
      Kröner, A., Wilde, S.A., Zhao, G.C., et al., 2006. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan complex of northern China: evidence for Late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China craton. Precambrian Research, 146(1-2): 45-67. doi: 10.1016/j.precamres.2006.01.008
      Kusky, T.M., Li, J.H., 2003. Paleoproterozoic tectonic evolution of the North China craton. Journal of Asian Earth Sciences, 22(4): 383-397. doi: 10.1016/S1367-9120(03)00071-3
      Li, J.H., Qian, X.L., Huang, X.N., et al., 2000. Tectonic framework of North China block and its cratonization in the Early Precambrian. Acta Petrologica Sinica, 16(1): 1-10 (in Chinese with English abstract). http://www.researchgate.net/publication/283887067_Tectonic_framework_of_North_China_Block_and_its_cratonization_in_the_early_Precambrian
      Li, J.W., Li, Z.K., Zhou, M.F., et al., 2010. The Cretaceous Yangzhaiyu lode gold deposit, North China craton: a link between craton reactivation and gold veining. Submitted to Economic Geology.
      Li, J.W., Vasconcelos, P., Zhou, M.F., et al., 2006. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong gold province, northeastern China: implications for regional mineralization and geodynamic setting. Economic Geology, 101(5): 1023-1038. doi: 10.2113/gsecongeo.101.5.1023
      Li, J.W., Vasconcelos, P.M., Zhang, J., et al., 2003. 40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold province, eastern China. The Journal of Geology, 111(6): 741-751. doi: 10.1086/378486
      Li, N., Sun, Y.L., Li, J., et al., 2008. Molybdenite Re-Os isotope age of the Dahu Au-Mo deposit, Xiaoqinling and the Indosinian mineralization. Acta Petrologica Sinica, 24(4): 810-816 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200804021.htm
      Li, S.M., Qu, L.Q., Su, Z.B., et al., 1996. The geology and metallogenic prediction of the gold deposit in Xiaoqinling. Geological Publishing House, Beijing, 39-53 (in Chinese).
      Li, X.H., Sun, X.S., 1995. Lamprophyre and gold mineralization: an assessment of observations and theories. Geological Review, 41(3): 252-260 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-review_thesis/0201253284053.html
      Li, Y.F., 2005. The temporal-spital evolution of Mesozoic granitoids in the Xiong'ershan area and their relationships to molybdenum-gold mineralization (Dissertation). China University of Geosciences, Beijing, 15-17 (in Chinese with English abstract).
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In situ analysis of major and trace elements of an hydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
      Lu, S.N., Li, H.Q., Li, H.M., et al., 1997. The basement characteristics and metallogenesis of the gold congestion areas—as exampled for Xiaoqinling, Jinbei and Jiaobei gold districts, China. Geological Publishing House, Beijing, 34-39 (in Chinese).
      Lu, X.X., Li, M.L., Wang, W., et al., 2008. Indosinian movement and metallogenesis in Qinling orogenic belt. Mineral Deposits, 27(6): 762-773 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200806010.htm
      Luan, S.W., Cao, D.C., Fang, Y.K., et al., 1985. Geochemistry of Xiaoqinling gold deposits. Journal of Mineralogy and Petrology, 5(2): 1-133 (in Chinese with English abstract). http://www.researchgate.net/publication/285127428_Geochemistry_of_Xiaoqinling_gold_deposits
      Mao, J.W., Goldfarb, R.J., Zhang, Z.W., et al., 2002. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling Mountains, Central China. Mineralium Deposita, 37(3-4): 306-325. doi: 10.1007/s00126-001-0248-1
      McNeil, A.M., Kerrich, R., 1986. Archean lamprophyre dykes and gold mineralization, Matheson, Ontario: the conjunction of LILE-enriched mafic magmas, deep crustal structures, and Au concentration. Canadian Journal of Earth Sciences, 23(3): 324-343. doi: 10.1139/e86-035
      Müller, D., Groves, D.I., 1997. Potassic igneous rocks and associated gold-copper mineralization. Springer, London, 85-157. http://link.springer.com/978-3-319-23051-1
      Ni, S.J., Li, C.Y., Zhang, C., et al., 1994. Contributions of meso-basic dyke rocks to gold mineralization—as exampled for Xiaoqinling, China. Journal of Chengdu University of Technology, 21(3): 70-78 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG403.009.htm
      Peng, P., Zhai, M.G., Ernst, R.E., et al., 2008. A 1.78 Ga large igneous province in the North China craton: the Xiong'er volcanic province and the North China dyke swarm. Lithos, 101(3-4): 260-280. doi: 10.1016/j.lithos.2007.07.006
      Qiu, H.N., 2006. Construction and development of new Ar-Ar laboratories in China: insight from GV-5400 Ar-Ar laboratory in Guangzhou Insitute of Geochemistry, Chinese Academy of Sciences. Geochimica, 35(2): 133-140 (in Chinese with English abstract). http://www.researchgate.net/publication/285634291_Construction_and_development_of_new_Ar-Ar_laboratories_in_China_Insight_from_GV-5400_Ar-Ar_laboratory_in_Guangzhou_Insitute_of_Geochemistry_Chinese_Academy_of_Sciences
      Rock, N.M.S., Groves, D.I., 1988. Do lamprophyres carry gold as well as diamonds? Nature, 332: 253-255. doi: 10.1038/332253a0
      Tan, J., Wei, J.H., Guo, L.L., et al., 2008. LA-ICP-MS zircon U-Pb dating and phenocryst EPMA of dikes, Guocheng, Jiaodong Peninsula: implications for North China craton lithosphere evolution. Science in China (Ser. D), 51(10): 1483-1500. doi: 10.1007/s11430-008-0079-3
      Trull, T., Nadeau, S., Pineau, F., et al., 1993. C-He systematics in hotspot xenoliths: implications for mantle carbon contents and carbon recycling. Earth and Planetary Science Letter, 118(1-4): 43-64. doi: 10.1016/0012-821X(93)90158-6
      Tsai, C.H., Lo, C.H., Liou, J.C., et al., 2000. Evidence against subduction-related magmatism for the Jiaoziyan gabbro, northern Dabieshan, China. Geology, 28(10): 943-946. doi: 10.1130/0091-7613
      Tu, H.K., 2000. Discovery and gold preconcentration study of the lamprophyre alteration-type gold deposits in the Qinling area. Geological Review, 46(5): 543-548 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200005016.htm
      Wang, H.Z., 1987. Geological characteristics and ore genesis of the Xiaoqinling gold field. Mineral Deposits, 6(1): 57-67 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ198701008.htm
      Wang, T.H., Mao, J.W., Wang, Y.B., 2008a. Research on SHRIMP U-Pb chronology in Xiaoqinling Xiong'ershan area: the evidence of delamination of lithosphere in Qinling orogenic belt. Acta Petrologica Sinica, 24(6): 1273-1287 (in Chinese with English abstract).
      Wang, T.H., Mao, J.W., Xie, G.Q., 2008b. Sr, Nd, Pb isotopic composition of the Meso-basic dykes in the Xiaoqinling-Xiong'ershan area, Henan Province, Central China and its tectonic significance. Acta Geological Sinica, 82(11): 1580-1591 (in Chinese with English abstract). http://www.researchgate.net/publication/286980339_Sr_Nd_Pb_isotopic_composition_of_the_meso-basic_dykes_in_the_Xiaoqinling-Xiong'ershan_Area_Henan_province_central_China_and_its_tectonic_significance
      Wang, Y.J., Fan, W.M., Zhang, H.F., et al., 2006. Early Cretaceous gabbroic rocks from the Taihang Mountains: implications for a paleosubduction-related lithospheric mantle beneath the Central North China craton. Lithos, 86(3-4): 281-302. doi: 10.1016/j.lithos.2005.07.001
      Wang, Y.J., Peng, T.P., Fan, W.M., et al., 2007. Early proterozic mafic dikes in the North China craton and their tectonic implications. Bulletin of Mineralogy, Petrology and Geochemistry, 26(1): 1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH200701000.htm
      Wang, Y.J., Zhao, G.C., Fan, W.M., et al., 2007. LA-ICP-MS U-Pb zircon geochronology and geochemistry of Paleoproterozoic mafic dykes from western Shandong Province: implications for back-arc basin magmatism in the eastern block, North China craton. Precambrian Research, (1-2): 107-124. doi: 10.1016/j.precamres.2006.12.010
      Wang, Y.T., Mao, J.W., Lu, X.X., et al., 2002. 40Ar-39Ar dating and geological implication of auriferous altered rocks from the middle-deep section of Q875 gold-quartz vein in Xiaoqinling area, Henan, China. Chinese Science Bulletin, 47(20): 1750-1755. doi: 10.1360/02tb9383
      Wilde, S.A., Zhao, G.C., Sun, M., 2002. Development of the North China craton during the Late Archaean and its final amalgamation at 1.8 Ga: some speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research, 5(1): 85-94. doi: 10.1016/S1342-937X(05)70892-3
      Wu, F.Y., Lin, J.Q., Wilde, S.A., et al., 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119. doi: 10.1016/j.epsl.2005.02.019
      Xie, G.Q., Mao, J.W., Li, R.L., et al., 2007. SHRIMP zircon U-Pb dating for volcanic rocks of the Daying Formation from Baofeng basin in eastern Qinling, China and its implications. Acta Petrologica Sinica, 23(10): 2387-2396 (in Chinese with English abstract). http://www.researchgate.net/publication/279695720_SHRIMP_zircon_U-Pb_dating_for_volcanic_rocks_of_the_Daying_Formation_from_Baofeng_basin_in_eastern_Qinling_China_and_its_implications
      Xu, Q.D., Zhong, Z.Q., Zhou, H.W., et al., 1998. 40Ar/39Ar dating of the Xiaoqinling gold area in Henan Province. Geological Review, 44(3): 323-327 (in Chinese with English abstract). http://www.researchgate.net/publication/284646929_40Ar39Ar_dating_of_the_Xiaoqinling_gold_area_in_Henan_Province?ev=auth_pub
      Xue, L.W., Zhou, C.M., Pang, J.Q., et al., 1996. Inversion tectonics and prospecting mineralogy of Tonggou gold deposit in Xiaoqinling region. China University of Geosciences Press, Wuhan, 50-57 (in Chinese).
      Yang, J.H., Chung, S.L., Zhai, M.G., et al., 2004. Geochemical and Sr-Nd-Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos, 73(3-4): 145-160. doi: 10.1016/j.lithos.2003.12.003
      Yang, J.H., Zhou, X.H., 2001. Rb-Sr, Sm-Nd, and Pb isotope systematics of pyrite: implications for the age and genesis of lode gold deposits. Geology, 29(8): 711-714. doi: 10.1130/0091-7613
      Ye, H.S., Mao, J.W., Xu, L.G., et al., 2008. SHRIMP zircon U-Pb dating and geochemistry of the Taishanmiao aluminous A-type granite in western Henan Province. Geological Review, 54(5): 699-711 (in Chinese with English abstract). http://www.researchgate.net/publication/285118844_SHRIMP_zircon_U-Pb_dating_and_geochemistry_of_the_Taishanmiao_aluminous_A-type_granite_in_western_Henan_Province
      Yu, Z.P., Cui, H.F., 2003. Orogeny and orogenic types and process of the Qinling Mountians. Journal of Northwest University (Natural Science Edition), 33(1): 65-69 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDZ200301019.htm
      Yuan, H.L., Gao, S., Liu, X.M., et al., 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
      Zhai, J.P., Hu, K., Lu, J.J., 1996. A discussion on the new genetic model for lamprophyres and gold mineralization. Mineral Deposits, 15(1): 80-86 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ199601009.htm
      Zhai, M.G., Liu, W.J., 2003. Palaeoproterozoic tectonic history of the North China craton: a review. Precambrian Research, 122(1-4): 183-199. doi: 10.1016/S0301-9268(02)00211-5
      Zhang, G.W., Meng, Q.R., Yu, Z.P., et al., 1996. Orogenesis and dynamics of the Qinling orogen. Science in China (Ser. D), 39(3): 225-234. http://www.cnki.com.cn/Article/CJFDTotal-JDXG199603000.htm
      Zhang, J.J., Zheng, Y.D., Liu, S.W., 1998. The Xiaoqinling metamorphic core complex: structure, genetic mechanism and evolution. Ocean Press, Beijing, 17-63 (in Chinese).
      Zhao, G.C., Cawood, P.A., Wilde, S.A., et al., 2002. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews, 59(1-4): 125-162. doi: 10.1016/S0012-8252(02)00073-9
      Zhao, Z.F., Zheng, Y.F., Wei, C.S., et al., 2005. Zircon U-Pb age, element and C-O isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in East-Central China. Lithos, 83(1-2): 1-28. doi: 10.1016/j.lithos.2004.12.014
      Zhou, H.W., Zhong, Z.Q., Ling, W.L., et al., 1998. Sm-Nd isochron for the amphibolites within Taihua complex from Xiaoqinling area, western Henan, and its geological implications. Geochimica, 27(4): 367-372 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX199804007.htm
      晁援, 1989. 关于小秦岭金矿的成矿时代探讨. 陕西地质, 7(1): 52-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDY198901006.htm
      侯贵廷, Halls, H., Davis, D., 等, 2009. 华北基性岩墙群的古地质磁极及其哥伦比亚超大陆重建意义. 岩石学报, 25(3): 650-658. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200903018.htm
      李江海, 钱祥麟, 黄雄南, 等, 2000. 华北陆块基底构造格局及早期大陆克拉通化过程. 岩石学报, 16(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200001000.htm
      李诺, 孙亚莉, 李晶, 等, 2008. 小秦岭大湖金钼矿床辉钼矿铼锇同位素年龄及印支期成矿事件. 岩石学报, 24(4): 810-816. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804021.htm
      黎世美, 瞿伦全, 苏振邦, 等, 1996. 小秦岭金矿地质和成矿预测. 北京: 地质出版社, 39-53.
      李献华, 孙贤鉥, 1995. "煌斑岩"与金矿的实际观察与理论评述. 地质论评, 41(3): 252-260. doi: 10.3321/j.issn:0371-5736.1995.03.008
      李永峰, 2005. 豫西熊耳山地区中生代花岗岩类时空演化与钼(金)成矿作用(学位论文). 北京: 中国地质大学, 15-17.
      陆松年, 李怀坤, 李惠民, 等, 1997. 金矿密集区的基底特征与成矿作用研究——以小秦岭、冀北和胶北金矿密集区为例. 北京: 地质出版社, 34-39.
      卢欣祥, 李明立, 王卫, 等, 2008. 秦岭造山带的印支运动及印支期成矿作用. 矿床地质, 27(6): 762-773. doi: 10.3969/j.issn.0258-7106.2008.06.009
      栾世伟, 曹殿春, 方耀奎, 等, 1985. 小秦岭金矿床地球化学. 矿物岩石, 5(2): 1-133. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS198502000.htm
      倪师军, 李朝阳, 张诚, 等, 1994. 中基性脉岩对金矿成矿的贡献——以小秦岭金矿区为例. 成都理工学院学报, 21(3): 70-78. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG403.009.htm
      邱华宁, 2006. 新一代Ar-Ar实验室建设与发展趋势: 以中国科学院广州地球化学研究所Ar-Ar实验室为例. 地球化学, 35(2): 133-140. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200602003.htm
      涂怀奎, 2000. 秦岭地区蚀变煌斑岩型金矿的发现及金的预富集研究. 地质论评, 46(5): 543-548. doi: 10.3321/j.issn:0371-5736.2000.05.014
      王亨治, 1987. 小秦岭金矿田地质特征及矿床成因. 矿床地质, 6(1): 57-67. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198701008.htm
      王团华, 毛景文, 王彦斌, 等, 2008a. 小秦岭-熊耳山地区岩墙锆石SHRIMP年代学研究——秦岭造山带岩石圈拆沉的证据. 岩石学报, 24(6): 1273-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806011.htm
      王团华, 毛景文, 谢桂青, 等, 2008b. 小秦岭-熊耳山地区中基性岩墙的Sr、Nd、Pb同位素组成及其大地构造意义. 地质学报, 82(11): 1580-1591. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200811015.htm
      王义天, 毛景文, 卢欣祥, 等, 2002. 河南小秦岭金矿区Q875脉中深部矿化蚀变岩的40Ar/39Ar年龄及其意义. 科学通报, 47(18): 1427-1431. doi: 10.3321/j.issn:0023-074X.2002.18.015
      王岳军, 彭头平, 范蔚茗, 等, 2007. 华北陆块早元古代基性岩墙群及其构造意义. 矿物岩石地球化学通报, 26(1): 1-9. doi: 10.3969/j.issn.1007-2802.2007.01.001
      谢桂青, 毛景文, 李瑞玲, 等, 2007. 东秦岭宝丰盆地大营组火山岩SHRIMP定年及其意义. 岩石学报, 23(10): 2387-2396. doi: 10.3969/j.issn.1000-0569.2007.10.007
      徐启东, 钟增球, 周汉文, 等, 1998. 豫西小秦岭金矿区的一组40Ar/39Ar定年数据. 地质论评, 44(3): 323-327. doi: 10.3321/j.issn:0371-5736.1998.03.014
      薛良伟, 周长命, 庞继群, 等, 1996. 小秦岭桐沟金矿反转构造及找矿矿物学. 武汉: 中国地质大学出版社, 50-57.
      叶会寿, 毛景文, 徐林刚, 等, 2008. 豫西太山庙铝质A型花岗岩SHRIMP锆石U-Pb年龄及其地球化学特征. 地质论评, 54(5): 699-711. doi: 10.3321/j.issn:0371-5736.2008.05.015
      于在平, 崔海峰, 2003. 造山运动与秦岭造山. 西北大学学报(自然科学版), 33(1): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ200301019.htm
      翟建平, 胡凯, 陆建军, 1996. 有关煌斑岩与金矿化新成因模式的讨论. 矿床地质, 15(1): 80-86. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199601009.htm
      张进江, 郑亚东, 刘树文, 1998. 小秦岭变质核杂岩的构造特征、形成机制及构造演化. 北京: 海洋出版社, 17-63.
      周汉文, 钟增球, 凌文黎, 等, 1998. 豫西小秦岭地区太华杂岩斜长角闪岩Sm-Nd等时线年龄及其地质意义. 地球化学, 27(4): 367-372. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199804007.htm
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  3968
    • HTML全文浏览量:  502
    • PDF下载量:  198
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-08-25
    • 刊出日期:  2011-01-01

    目录

      /

      返回文章
      返回