• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    咸水湖泊沉积物中正构烷烃及其氢同位素组成与成因

    段毅 何金先 吴保祥 徐丽 张晓丽 孙涛

    段毅, 何金先, 吴保祥, 徐丽, 张晓丽, 孙涛, 2011. 咸水湖泊沉积物中正构烷烃及其氢同位素组成与成因. 地球科学, 36(1): 53-61. doi: 10.3799/dqkx.2011.006
    引用本文: 段毅, 何金先, 吴保祥, 徐丽, 张晓丽, 孙涛, 2011. 咸水湖泊沉积物中正构烷烃及其氢同位素组成与成因. 地球科学, 36(1): 53-61. doi: 10.3799/dqkx.2011.006
    DUAN Yi, HE Jin-xian, WU Bao-xiang, XU Li, ZHANG Xiao-li, SUN Tao, 2011. Composition and Genesis of n-Alkanes and Their Hydrogen Isotope in Sediments from Saline Lake, China. Earth Science, 36(1): 53-61. doi: 10.3799/dqkx.2011.006
    Citation: DUAN Yi, HE Jin-xian, WU Bao-xiang, XU Li, ZHANG Xiao-li, SUN Tao, 2011. Composition and Genesis of n-Alkanes and Their Hydrogen Isotope in Sediments from Saline Lake, China. Earth Science, 36(1): 53-61. doi: 10.3799/dqkx.2011.006

    咸水湖泊沉积物中正构烷烃及其氢同位素组成与成因

    doi: 10.3799/dqkx.2011.006
    基金项目: 

    国家自然科学基金 40772069

    国家自然科学基金 40872092

    国家重点基础研究发展规划"973"项目 2005CB422105

    详细信息
      作者简介:

      段毅(1956-), 男, 研究员, 博士生导师, 主要从事油气地球化学和有机地球化学研究及教学工作.E-mail: duany@ns.lzb.ac.cn

    • 中图分类号: P618

    Composition and Genesis of n-Alkanes and Their Hydrogen Isotope in Sediments from Saline Lake, China

    • 摘要: 青海湖是我国最大的内陆咸水湖泊.对这种湖泊沉积物中正构烷烃及其氢同位素进行了分析, 研究了沉积物中正构烷烃及其同位素组成, 并且与青海湖水生植物及其周围陆生植物的研究结果进行了对比, 研究了它们的成因.结果显示了青海湖表层和柱状沉积物中正构烷烃分布都是类似的, 其特征反映了它们起源于湖泊周围陆生草本植物.青海湖表层沉积物中正构烷烃氢同位素组成特征也与柱状沉积物中的类似, 沉积物样品中正构烷烃氢同位素的组成和分布特征反映了它们主要来自陆生草本植物.从而进一步证实了水体中沉积物的正构烷烃氢同位素组成, 反映了生物源的氢同位素组成, 后者与古气候相关, 因此沉积物的正构烷烃氢同位素组成可以指示古气候.

       

    • 图  1  采样位置示意

      Fig.  1.  Collection sites for the studied samples

      图  2  青海湖表层沉积物中正构烷烃分布

      Fig.  2.  Histograms of the molecular distributions of n-alkanes in the surface sediments from Qinghai Lake

      图  3  青海湖柱状沉积物中正构烷烃分布

      Fig.  3.  Histograms of the molecular distributions of n-alkanes in the core sediments from Qinghai Lake

      图  4  青海湖沉积物中正构烷烃平均δD值分布

      Fig.  4.  Histograms of the δD mean value distributions of n-alkanes in the sediments from Qinghai Lake

      图  5  青海湖沉积物中正构烷烃平均δD值与ACL值相关图

      Fig.  5.  Cross plot of mean δD values vs. ACL values of n-alkanes in the studied samples

      图  6  青海湖及其周围植物中正构烷烃平均δD值分布

      Fig.  6.  Histograms of the δD mean value distributions of n-alkanes in plants from Qinghai Lake and its surrounding areas

      图  7  青海湖柱状沉积物中正构烷烃δD值(a)和ACL(b)值随深度变化

      Fig.  7.  Cross plot of mean δD (a) and ACL (b) values of n-alkanes in the studied samples vs. depth

      表  1  青海湖沉积物中正构烷烃参数

      Table  1.   Parameters of n-alkanes in the studied samples

      样号 沉积物 深度(cm) 相对湖泊位置 坐标 碳数范围 Cmax ACL CPI
      表层沉积物
      QM-1 黑色泥 表层 北部 37°11′ 15″N;100°04′38″E C16-C33 C27 27.9 4.5
      QM-2 黑色泥 表层 西部 37°11′ 48″N;99°49′34″E C21-C31 C29 27.9 8.0
      QM-6 灰色泥 表层 北部 37°08′ 18″N; 100°20′44″E C16-C31 C27 27.4 4.7
      QM-9 灰色泥 表层 北部 37°11′15″N; 100°04′38″E C17-C33 C25 27.7 4.1
      QM-13 灰色泥 表层 西部 36°54′06″N; 99°38 ′01″E C17-C33 C27 27.8 5.7
      QM-15 黑色泥 表层 东部 36°32′52″N; 100°41′27″E C21-C31 C29 28.0 5.2
      QM-17 灰色泥 表层 南部 36°39′14″N; 100°16′16″E C16-C31 C27 27.5 4.0
      QM-20 黑色泥 表层 南部 36°37′ 59″N; 100°06′59″E C16-C31 C27 27.7 3.5
      QH-2-3 黑色泥 表层 西部 36°54′06″N; 99°38 ′01″E C17-C31 C27 27.1 4.9
      柱状沉积物
      QZH-2-10 黑色泥 0~10 西部 37°11′48″N; 99°49′34″E C17-C33 C27 28.0 3.7
      QZH-2-20 黑色泥 10~20 西部 37°11′48″N; 99°49′34″E C17-C31 C25 27.5 3.9
      QZH-2-30 黑色泥 20~30 西部 37°11′48″N; 99°49′34″E C19-C31 C25 27.0 3.4
      QZH-2-40 黑色泥 30~40 西部 37°11′48″N; 99°49′34″E C19-C33 C29 27.9 3.8
      QZH-2-50 黑色泥 40~50 西部 37°11′48″N; 99°49′34″E C19-C33 C29 28.0 4.8
      注:CPI= [(C25+C27+…+C33)/(C24+C26+…+C32)+(C25+C27+…+C33)/(C26+C28+…+C34)]/2;ACL=[25(nC25)+27(nC27)+29(nC29)+31(nC31)+33(nC33)]/(nC25+nC27+nC29+nC31+nC33).
      下载: 导出CSV

      表  2  青海湖及其周围植物中正构烷烃参数和氢同位素组成平均值

      Table  2.   Mean parameters of n-alkanes and their hydrogen isotopic values in plants from Qinghai Lake and its surrounding areas

      植物类型 样品数 平均ACL 平均CPI 平均δD值(‰)
      水生眼子菜、绿藻 7个 26.3 7.6 -130.2
      水生海韭菜 3个 28.4 18.4 -162.9
      陆生嵩草 3个 28.1 13.3 -138.1
      陆生早熟禾 3个 27.9 4.3 -165.0
      陆生豆黄花棘 1个 28.3 25.7 -164.5
      陆生赖草 2个 28.6 18.7 -149.9
      陆生树叶 4个 26.8 12.5 -121.7
      下载: 导出CSV

      表  3  青海湖沉积物中正构烷烃氢同位素组成(‰)

      Table  3.   Hydrogen isotopic values of n-alkanes in the studied samples

      样号 相对湖泊位置 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 平均值
      表层沉积物
      QM-1 北部 -194.1 -187.5 -179.2 -181.4 -172.9 -176.3 -165.4 -170.1 -158.0 -171.9 -174.4 -175.6
      QM-2 西部 -191.4 -189.7 -171.7 -187.6 -185.1
      QM-6 北部 -152.4 -169.4 -158.5 -170.6 -171.7 -167.0 -154.9 -164.5 -139.3 -155.9 -120.4 -161.4 -157.2
      QM-9 北部 -120.5 -162.1 -160.5 -170.5 -151.6 -161.6 -146.0 -154.8 -131.3 -148.7 -155.2 -151.2
      QM-13 西部 -117.5 -119.6 -163.7 -131.6 -169.2 -160.6 -143.6 -158.0 -133.0 -164.6 -155.3 -147.0
      QM-15 东部 -118.9 -144.4 -153.8 -174.1 -149.3 -123.1 -148.6 -148.0 -145.0
      QM-17 南部 -183.3 -174.5 -200.7 -184.1 -201.6 -210.5 -188.3 -185.4 -172.0 -135.3 -154.7 -181.0
      QM-20 南部 -137.8 -167.4 -147.3 -166.9 -172.2 -163.0 -148.9 -159.1 -135.8 -162.1 -161.5 -156.5
      QH-2-3 西部 -112.7 -119.3 -139.5 -124.4 -142.5 -129.4 -150.2 -143.8 -132.7
      表层样平均值 -143.4 -150.3 -159.8 -157.3 -167.9 -165.7 -169.0 -154.9 -162.6 -138.3 -156.5 -146.2 -163.3 -159.0
      柱状沉积物
      QZH-2-10 西部 -143.8 -173.9 -163.1 -177.2 -187.1 -177.0 -150.8 -167.9 -149.8 -162.0 -133.4 -166.5 -162.7
      QZH-2-20 西部 -157.2 -140.9 -179.9 -158.3 -166.6 -136.4 -155.2 -125.2 -150.3 -144.7 -151.5
      QZH-2-30 西部 -138.3 -120.7 -164.8 -141.3 -158.9 -121.0 -151.9 -142.3 -142.4
      QZH-2-40 西部 -136.6 -170.1 -158.6 -171.0 -172.6 -148.1 -163.7 -143.1 -161.2 -131.1 -163.2 -156.3
      QZH-2-50 西部 -149.4 -130.2 -173.5 -148.9 -166.4 -157.7 -156.0 -158.4 -155.1
      柱样平均值 -140.2 -157.8 -142.7 -173.3 -158.6 -168.3 -139.1 -159.3 -139.4 -154.4 -132.3 -158.2 -153.6
      表层和柱样总平均值 -143.4 -147.0 -159.0 -151.2 -170.0 -162.8 -168.8 -149.2 -161.4 -138.6 -155.7 -139.2 -161.5 -157.1
      下载: 导出CSV
    • Baas, M., Pancost, R., Van Geel, B., et al., 2000. A comparative study of lipids in Sphagnum species. Organic Geochemistry, 31(6): 535-541. doi: 10.1016/S0146-6380(00)00037-1
      Bi, X.H., Sheng, G.Y., Liu, X.H., et al., 2005. Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes. Organic Geochemistry, 36(10): 1405-1417. doi: 10.1016/j.orggeochem.2005.06.001
      Chikaraishi, Y., Naraoka, H., 2003. Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants. Phytochemistry, 63(3): 361-371. doi: 10.1016/S0031-9422(02)00749-5
      Chikaraishi, Y., Naraoka, H., 2005. δ13C and δD identification of sources of lipid biomarkers in sediments of Lake Haruna (Japan). Geochimica et Cosmochimica Acta, 69(13): 3285-3297. doi:10. 1016/j.gca.2005.02.023
      Chikaraishi, Y., Naraoka, H., 2006. Carbon and hydrogen isotope variation of plant biomarkers in a plant-soil system. Chemical Geology, 231(3): 190-202. doi: 10.1016/j.chemgeo.2006.01.026
      Chikaraishi, Y., Naraoka, H., 2007. δ13C and δD relationships among three n-alkyl compound classes (n-alkanoic acid, n-alkane and n-alkanol) of terrestrial higher plants. Organic Geochemistry, 38(2): 198-215. doi: 10.1016/j.orggeochem.2006.10.003
      Chikaraishi, Y., Naraoka, H., Poulson, S.R., 2004. Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants. Phytochemistry, 65(10): 1369-1381. doi: 10.1016/j.phytochem.2004.03.036
      Cranwell, P.A., Eglinton, G., Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments Ⅱ. Organic Geochemistry, 11(6): 513-527. doi: 10.1016/0146-6380(87)90007-6
      Dawson, D., Grice, K., Wang, S.X., et al., 2004. Stable hydrogen isotopic composition of hydrocarbons in torbanites (Late Carboniferous to Late Permian) deposited under various climatic conditions. Organic Geochemistry, 35(2): 189-197. doi: 10.1006/j.orggeochem.2003.09.004
      Dodd, R.S., Poveda, M.M., 2003. Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis. Biochemical Systematics and Ecology, 31(11): 1257-1270. doi: 10.1016/S0305-1978(03)00031-0
      Duan, Y., 2009. Compositions of n-alkanes and their hydrogen isotopes in plants from Qinghai Lake and its surrounding areas in China. Organic Geochemistry (in press).
      Duan, Y., Wu, B.X., 2009. Hydrogen isotopic compositions and their environmental significance for individual n-alkanes in typical plants from land in China. Chinese Science Bulletin, 54(3): 461-467. doi: 10.1007/s11434-008-0443-x
      Eglinton, G., Hamilton, R.J., 1967. Leaf epicuticular waxes. Science, 156(3780): 1322-1335. doi: 10.1126/science.156.3780.1322
      Ficken, K.J., Li, B., Swain, D.L., et al., 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31(8): 745-749. doi: 10.1016/S0146-6380(00)00081-4
      Huang, Y.S., Shuman, B., Wang, Y., et al., 2002. Hydrogen isotope ratios of palmitic acid in lacustrine sediments record Late Quaternary climate variations. Geology, 30(12): 1103-1106. doi:10.1130/0091-7613(2002)030<1103:HIROPA>2.0.CO;2
      Huang, Y.S., Shuman, B., Wang, Y., et al., 2004. Hydrogen isotope ratios of individual lipids in lake sediments as novel tracers of climatic and environmental change: a surface sediment test. Journal of Paleolimnology, 31(3): 363-375. doi: 10.1023/B:JOPL.0000021855.80535.13
      Huang, Y.S., Shuman, B., Wang, Y., et al., 2006. Climatic and environmental controls on the variation of C3 and C4 plant abundances in Central Florida for the past 62 000 years. Palaeogeography Palaeoclimatology Palaeoecology, 237(2-4): 428-435. doi: 10.1016/j.palaeo.2005.12.014
      Li, C., Sessions, A.L., Kinnaman, F.S., et al., 2009. Hydrogen-isotopic variability in lipids from Santa Barbara basin sediments. Geochimica et Cosmochimica Acta, 73(16): 4803-4823. doi: 10.1016/j.gca.2009.05.056
      Li, M.W., Huang, Y.S., Obermajer, M., et al., 2001. Hydrogen isotopic compositions of individual alkanes as a new approach to petroleum correlation: case studies from the western Canada sedimentary basin. Organic Geochemistry, 32(2): 1387-1399. doi: 10.1016/S0146-6380(01)00116-4
      Meyers, P.A., 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry, 34(2): 261-289. doi: 10.1016/S0146-6380(02)00168-7
      Mügler, I., Sachse, D., Werner, M., et al., 2008. Effect of lake evaporation on δD values of lacustrine n-alkanes: a comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany). Organic Geochemistry, 39(6): 711-729. doi: 10.1016/j.orggeochem.2008.02.008
      Sachse, D., Radke, J., Gleixner, G., 2004. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability. Geochimica et Cosmochimica Acta, 68(23): 4877-4889. doi: 10.1016/j.gca.2004.06.004
      Sachse, D., Radke, J., Gleixner, G., 2006. δD values of individual n-alkanes from terrestrial plants along a climatic gradient-implications for the sedimentary biomarker record. Organic Geochemistry, 37(4): 469-483. doi: 10.1016/j.orggeochem.2005.12.003
      Sauer, P.E., Eglinton, T.I., Hayes, J.M., et al., 2001. Compound-specific D/H ratios of lipid biomarkers from sediments as a proxy for environmental and climatic conditions. Geochimica et Cosmochimica Acta, 65(2): 213-222. doi: 10.1016/S0016-7037(00)00520-2
      Seki, O., Meyers, P.A., Kawamura, K., et al., 2009. Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in Northeast China during the last 16 kyr. Organic Geochemistry, 40(6): 671-677. doi: 10.1016/j.orggeochem.2009.03.007
      Sessions, A.L., 2006. Seasonal changes in D/H fractionation accompanying lipid biosynthesis in Spatina alterniflora. Geochimica et Cosmochimica Acta, 70(9): 2153-2162. doi: 10.1016/j.gca.2006.02.003
      Sun, Y.L., Li, X.Y., Xu, H.Y., 2007. Daily precipitation and temperature variations in Qinghai Lake watershed in recent 40 years. Arid Meteorology, 25(1): 7-13 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSQX200701001.htm
      Xie, S., Nott, C.J., Avsejs, L.A., et al., 2000. Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat. Organic Geochemistry, 31(10): 1053-1057. doi: 10.1016/S0146-6380(00)00116-9
      Xiong, Y.Q., Geng, A.S., Pan, C.C., et al., 2004. Hydrogen isotopic compositions of individual (n-alkanes) in terrestrial source rocks. Petroleum Exploration and Development, 31(1): 60-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200401018.htm
      Yang, H., Huang, Y.S., 2003. Preservation of lipid hydrogen isotope ratios in Miocene lacustrine sediments and plant fossils at Clarkia, northern Idaho, USA. Organic Geochemistry, 34(3): 413-423. doi: 10.1016/S0146-6380(02)00212-7
      孙永亮, 李小雁, 许何也, 2007. 近40a青海湖流域逐日降水和气温变化特征. 干旱气象, 25(1): 7-13. doi: 10.3969/j.issn.1006-7639.2007.01.002
      熊永强, 耿安松, 潘长春, 等, 2004. 陆相有机质中单体烃的氢同位素组成特征. 石油勘探与开发, 31(1): 60-63. doi: 10.3321/j.issn:1000-0747.2004.01.018
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  3746
    • HTML全文浏览量:  426
    • PDF下载量:  125
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-10-10
    • 刊出日期:  2011-01-01

    目录

      /

      返回文章
      返回