• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    CO2地质储存的纳米尺度流体-岩石相互作用研究

    王焰新 毛绪美 DonaldDePaolo

    王焰新, 毛绪美, DonaldDePaolo, 2011. CO2地质储存的纳米尺度流体-岩石相互作用研究. 地球科学, 36(1): 163-171. doi: 10.3799/dqkx.2011.017
    引用本文: 王焰新, 毛绪美, DonaldDePaolo, 2011. CO2地质储存的纳米尺度流体-岩石相互作用研究. 地球科学, 36(1): 163-171. doi: 10.3799/dqkx.2011.017
    WANG Yan-xin, MAO Xu-mei, Donald DePaolo, 2011. Nanoscale Fluid-Rock Interaction in CO2 Geological Storage. Earth Science, 36(1): 163-171. doi: 10.3799/dqkx.2011.017
    Citation: WANG Yan-xin, MAO Xu-mei, Donald DePaolo, 2011. Nanoscale Fluid-Rock Interaction in CO2 Geological Storage. Earth Science, 36(1): 163-171. doi: 10.3799/dqkx.2011.017

    CO2地质储存的纳米尺度流体-岩石相互作用研究

    doi: 10.3799/dqkx.2011.017
    基金项目: 

    国家自然科学重点基金 40830748

    国家自然科学青年基金 40602031

    国家自然科学基金中俄国际合作项目 40910122

    详细信息
      作者简介:

      王焰新(1963-), 男, 教授, 博士生导师, 主要从事水文地球化学及环境地质学研究.E-mail: yx.wang@cug.edu.cn

    • 中图分类号: X141

    Nanoscale Fluid-Rock Interaction in CO2 Geological Storage

    • 摘要: 大气中持续增长的CO2是引起"温室效应"的主要原因, 并给全球带来越来越严重的环境问题.消减CO2是人类共同面临的生存挑战, 也是技术难题.在全球碳循环过程中, 有多种调节方法可以减少大气中CO2含量, 但目前只有地质储存被认为是可快速实施、见效明显的CO2减排方式.CO2流体-岩石相互作用是地质储存的核心科学问题, 其直接影响CO2灌注效率、储存容量和效率、储存安全性和稳定性.纳米尺度的物质拥有奇异特性, 具有很大的表面原子数和表面能.CO2流体-岩石相互作用存在多种尺度变化, 由于微纳岩矿的表面原子数和表面能与离子、晶体之间的巨大差异, 纳米尺度的CO2流体-岩石相互作用的速度和效率远远大于其他尺度.因此, 急需开展CO2流体-岩石相互作用纳米尺度变化的主要控制因素与变化机理的研究; 通过CO2地质储存研究, 寻找、制备天然微纳岩矿以用于经济高效地捕获、储存和转化CO2, 推动CO2减排理论和技术的发展.

       

    • 图  1  地质储存中CO2流体-岩石相互作用示意(据Tokunaga and Wan, 2001)

      a.储存场地尺度CO2的分布;b.孔隙网络尺度CO2的扩散;c.孔尺度的毛细作用;d.多相流;e.CO2-H2O界面的扩散和反应;f、g、h、i.纳米孔隙和分子尺度CO2流体-岩石相互作用

      Fig.  1.  CO2-fluid and rock interaction in geologic storage

      表  1  挪威、美国和加拿大主要CO2地质储存实际工程

      Table  1.   The main projects of geologic storage of carbon dioxide in different reservoirs in Norway, USA and Canada

      储存类型 工程起始时间 储存地点 储存效果
      深层含水层 1996年8月 挪威北海海床 年注入量100万t,占挪威CO2年排放量的3%,目前正在开展对储存容量、储存机制的评估,以及储层中CO2的运移模拟和相关的监测方法研究
      2002年11月 美国西维吉尼亚 该项目最需要解决的问题是咸水层以上的岩石是否足够结实,从而保证CO2不会逐渐泄漏
      CO2-EOR 2000年10月 加拿大维宾油田 可储存未来25年加拿大所有省份所排放的二氧化碳,同时油田产油量也可增加50%
      CO2-ECBM 2004年 美国San Juan盆地 初期结果表明这一工艺可以使甲烷回收率增加约75%
      下载: 导出CSV

      表  2  目前各国开展的CO2地质储存系统研究工作

      Table  2.   The systems researches of CO2 geologic storage in some countries

      国家 资助者 主要研究者 主要目的
      欧洲各国 欧盟“GESTCO”计划 欧洲的8个地质调查部门(丹麦、英国、荷兰、挪威、德国、希腊、比利时和法国) 对全欧的潜在储存量进行评估
      丹麦等4个国家 欧盟“CO2STORE”研究项目 开展CO2储集区地质特征、地球化学模拟、CO2在储层长期储存的行为等研究
      美国 美国能源部 Sandia、Lawrence Berkeley等国家实验室及犹他州大学等多家高校联合开展研究 通过试验、模拟和工程等方面的实际工作对CO2地下储存技术在实施过程中可能遇到的问题开展全面的研究
      加拿大 加拿大政府,国际能源署“SACS”,国际合作研究计划 阿尔伯达研究院国际共同研究体 通过计算机模拟分析了二氧化碳在含水层的流动、扩散及其与矿物的化学反应过程,明确了二氧化碳的储存机制;采用多种物理和地球化学探查方法在加拿大的维宾油田监测二氧化碳促进石油开采的过程
      澳大利亚 “GEODISC”计划 澳大利亚联邦科学和工业组织石油资源研究院及多家大学和研究机构共同参与 寻找适合的储存场所和开发相关的调查评价技术
      日本 经济产业省和新能源技术综合开发机构 地球环境产业技术研究机构会同十几所大学共同实施 通过综合研究确立适合日本自然和经济技术条件的分离概念
      下载: 导出CSV
    • Albritton, D.L., Meira Filho, L.G., Cubasch, U., et al., 2001. Climate change 2001: the scientific basis, contributions of working group Ⅰ to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, UK.
      Bachu, S., 2002. Sequestration of CO2 in geological media in response to climate change: road map for site selection using the transform of the geological space into the CO2 phase space. Energy Conversion and Management, 43(1): 87-102. doi: 10.1016/S0196-8904(01)00009-7
      Bachu, S., Gunter, W.D., Perkins, E.H., 1996. Carbon dioxide disposal. In: Hitchon, B., ed., Aquifer disposal of carbon dioxide: hydrodynamic and mineral trapping-proof on concept. Geosciences Publishing Ltd. Sherwood Park, Alberta, Canada.
      Baker, J.C., Bai, G.P., Hamilton, P.J., et al., 1995. Continental scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney basin system, eastern Australia. Journal of Sediment Research, 65(3): 522-530. doi: 10.1306/D4268117-2B26-11D7-8648000102C1865D
      Blunt, M., Fayers, F.J., Orr Jr, F.M., 1993. Carbon dioxide in enhanced oil-recovery. Energy Conversion and Management, 34(9-11): 1197-1204. doi: 10.1016/0196-8904(93)90069-M
      Bruant, R.G. Jr., Guswa, A.J., Celia, M.A., et al., 2002. Safe storage of CO2 in deep saline aquifers. Environmental Science and Technology, 36(11): 240-245. doi: 10.1021/es0223325
      Celia, M.A., 2002. How hydrogeology can save the world. Ground Water, 40(2): 113. doi: 10.1111/j.1745-6584.2002.tb02495.x
      Chesworth, W., 1971. Laboratory synthesis of dawsonite and its natural occurrences. National Physical Science, 231: 40-41. doi: 10.1038/physci231040a0
      Chiquet, P., Daridon, J.L., Broseta, D., et al., 2007. CO2/water interfacial tensions under pressure and temperature conditions of CO2 geological storage. Energy Conversion and Management, 48(3): 736-744. doi: 10.1016/j.enconman.2006.09.011
      Chudaev, O.V., Schartzev, S.L., Chudaeva, V.A., et al., 2003. Hydrogeology and water chemistry of folded areas in the Siberia and the Far East. Vladivostok: Dalnauka.
      Davison, J., Freund, P., Smith, A., 2001. Putting carbon back in the ground. IEA greenhouse gas R & D programme, Cheltenham, United Kingdom.
      Falkowski, P., Scholes, R.J., Boyle, E., et al., 2000. The global carbon cycle: a test of our knowledge of earth as a system. Science, 290(5490): 291-296. doi: 10.1126/science.290.5490.291
      Gale, J., 2004. Geological storage of CO2: what do we know, where are the gaps and what more needs to be done?Energy, 29(9-10): 1329-1338. doi: 10.1016/j.energy.2004.03.068
      Gao, Y.Q., Liu, L., 2007. Basic characteristics of dawsonite-bearing sandstone and its geologic significance. Geological Review, 53(1): 104-110 (in Chinese with English abstract). http://www.researchgate.net/publication/313749939_Basic_characteristics_of_dawsonite-bearing_sandstone_and_its_geologic_significance
      Gentzis, T., 2000. Subsurface sequestration of carbon dioxide—an overview from an Alberta (Canada) perspective. International Journal of Coal Geology, 43(1-4): 287-305. doi: 10.1016/S0166-5162(99)00064-6
      Gherardi, F., Xu, T.F., Pruess, K., 2007. Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir. Chemical Geology, 244(1-2): 103-129. doi: 10.1016/j.chemgeo.2007.06.009
      Goldberg, P., Chen, Z.Y., O'Connor, W., et al., 2001. CO2 mineral sequestration studies in US. Journal of Energy and Environmental Research, 1(1): 117-126. http://www.researchgate.net/publication/284697539_CO2_mineral_sequestration_studies_in_US
      Grimston, M.C., Karakoussis, V., Fouquet, R., et al., 2001. The European and global potential of carbon dioxide sequestration in tackling climate change. Climate Policy, 1(2): 155-171. doi: 10.1016/S1469-3062(01)00002-X
      Gu, L.B., Li, Z.P., Hou, X.L., 2008. Existing state about geological storage of carbon dioxide. Geological Science and Technology Information, 27(4): 80-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200804015.htm
      Hendriks, C.A., Blok, K., 1993. Underground storage of carbon dioxide. Energy Conversion and Management, 34(9-11): 949-957. doi: 10.1016/0196-8904(93)90041-8
      Hendriks, C.A., Blok, K., 1995. Underground storage of carbon dioxide. Energy Conversion and Management, 36(6-9): 539-542. doi: 10.1016/0196-8904(95)00062-1
      Hitchon, B., 1996. Aquifer disposal of carbon dioxide: hydrodynamic and mineral trapping-proof of concept. Geoscience Publishing Ltd., Sherwood Park, Alberta.
      Holloway, S., 1997. An overview of the underground disposal of carbon dioxide. Energy Conversion and Management, 38(Suppl. ): 193-198. doi: 10.1016/S0196-8904(96)00268-3
      Holloway, S., 2005. Underground sequestration of carbon dioxide—a viable greenhouse gas mitigation option. Energy, 30(11-12): 2318-2333. doi: 10.1016/j.energy.2003.10.023
      Huggins, C.W., Green, T.E., Turner, T.L., 1973. Evaluation of methods for determining nahcolite and dawsonite in oil shales. Report of investigations (United States, Bureau of Mines), 25. http://www.researchgate.net/publication/236363438_Evaluation_of_methods_for_determining_nahcolite_and_dawsonite_in_oil_shales
      IPCC (Intergovernmental Panel on Climate Change), 2005. Special report on carbon dioxide capture and storage. http//www. ipcc. ch.
      Juanes, R., Spiteri, E.J., Orr Jr, F.M., et al., 2006. Impact of relative permeability hysteresis on geological CO2 storage. Water Resources Research, 42, W12418. doi: 10.1029/2005WR004806
      Kaszuba, J.P., Janecky, D.R., Snow, M.G., 2003. Carbon dioxide reaction processes in a model brine aquifer at 200 ℃ and 200 bars: implications for geologic sequestration of carbon. Applied Geochemistry, 18(7): 1065-1080. doi: 10.1016/S0883-2927(02)00239-1
      Kaszuba, J.P., Williams, L.L., Janecky, D.R., et al., 2006. Immiscible CO2-H2O fluids in the shallow crust. Geochemistry Geophysics Geosystems, 7(10), Q100003. doi: 10.1029/2005GC001107
      Ketzer, J.M., Carpentier, B., Le Gallo, Y., et al., 2005. Geological sequestration of CO2 in mature hydrocarbon fields. Basin and reservoir numerical modeling of the forties field, North Sea. Oil & Gas Science and Technology-Rev. IFP, 60(2): 259-273. doi: 10.2516/ogst:2005016
      Kharaka, Y.K., Thordsen, J.J., Hovorka, S.D., et al., 2009. Potential environmental issues of CO2 storage in deep saline aquifers: geochemial results from the Frio-Ⅰ Brine Pilot test, Texas, USA. Applied Geochemistry, 24(6): 1106-1112. doi: 10.1016/j.apgechem.2009.02.010
      Li, X.C., Liu, Y.F., Bai, B., et al., 2006. Ranking and screening of CO2 saline aquifer storage zones in China. Chinese Journal of Rock Mechanics and Engineering, 25(5): 963-968 (in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&cmd=prlinks&retmode=ref&id=21866545
      Liu, L.H., Suto, Y., Bignall, G., et al., 2003. CO2 injection to granite and sandstone in experimental rock/hot water systems. Energy Conversion and Management, 44(9): 1399-1410. doi: 10.1016/S0196-8904(02)00160-7
      Liu, Y.F., Li, X.C., Bai, B., 2005. Preliminary estimation of CO2 storage capacity of coalbeds in China. Chinese Journal of Rock Mechanics and Engineering, 24(16): 2947-2952 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=18046691
      Liu, Y.F., Li, X.C., Fang, Z.M., et al., 2006. Preliminary estimation of CO2 storage capacity in gas fields in China. Rock and Soil Mechanics, 27(12): 2277-2281 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YTLX200612036.htm
      Mao, X.M., Wang, Y.X., Chudaev, O.V., et al., 2009. Geochemical evidences of gas sources of CO2-rich cold springs from Wudalianchi, northeastern China. Journal of Earth Science, 20(6): 959-970. doi: 10.1007/s12583-009-0081-5
      Pruess, K., Spycher, N., 2007. ECO2N—a fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers. Energy Conversion and Management, 48(6): 1761-1767. doi: 10.1016/j.enconman.2007.01.016
      Sun, S., 2006. Geological problems of CO2 underground storage and its significance on mitigation climate change. China Basic Science, 3: 17-22 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGJB200603007.htm
      Tokunaga, T.K., Wan, J.M., 1997. Water film flow along fracture surfaces of porous rock. Water Resources Research, 33(6): 1287-1295. doi: 10.1029/97WR00473
      Tokunaga, T.K., Wan, J.M., 2001. Approximate boundaries between different flow regimes in fractured rocks. Water Resources Research, 37(8), 2103-2111. doi: 10.1029/2001WR000245
      U.S. Department of Energy, 1999. Carbon sequestration research and development. National Technical Information, 1: 1-24. http://digital.library.unt.edu/ark:/67531/metadc739790/
      Wigley, T.M.L., Richels, R., Edmonds, J.A., 1996. Economic and environmental choices in the stabilization of atmospheric CO2 concentrations. Nature, 379: 240-243. doi: 10.1038/379240a0
      Xu, T.F., Apps, J.A., Pruess, K., 2004. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Applied Geochemistry, 19(6): 917-936. doi: 10.1016/j.apgeochem.2003.11.003
      Xu, T.F., Apps, J.A., Pruess, K., 2005. Mineral sequestration of carbon dioxide in a sandstone-shale system. Chemical Geology, 217(3-4): 295-318. doi: 10.1016/j.chemgeo.2004.12.015
      Zerai, B., Saylor, B.Z., Matisoff, G., 2006. Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio. Applied Geochemistry, 21(2): 223-240. doi: 10.1016/j.apgeochem.2005.11.002
      Zhang, H.T., Wen, D.G., Li, Y.L., et al., 2005. Conditions for CO2 geological sequestration in China and some suggestions. Regional Geology of China, 24(12): 1107-1110 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=20885238
      Zhang, X.F., Wen, Z.Y., Gu, Z.H., et al., 2004. Hydrothermal synthesis and thermodynamic analysis of dawsonite-type compounds. Journal of Solid State Chemistry, 177(3): 849-855. doi: 10.1016/j.jssc.2003.09.019
      高玉巧, 刘立, 2007. 含片钠铝石砂岩的基本特征及地质意义. 地质论评, 53(1): 104-110. doi: 10.3321/j.issn:0371-5736.2007.01.014
      谷丽冰, 李治平, 侯秀林, 2008. 二氧化碳地质埋存研究进展. 地质科技情报, 27(4): 80-84. doi: 10.3969/j.issn.1000-7849.2008.04.014
      李小春, 刘延锋, 白冰, 等, 2006. 中国深部咸水含水层CO2储存优先区域选择. 岩石力学与工程学报, 25(5): 963-968. doi: 10.3321/j.issn:1000-6915.2006.05.015
      刘延锋, 李小春, 白冰, 2005. 中国CO2煤层储存容量初步评价. 岩石力学与工程学报, 24(16): 2947-2952. doi: 10.3321/j.issn:1000-6915.2005.16.023
      刘延锋, 李小春, 方志明, 等, 2006. 中国天然气田CO2储存容量初步评估. 岩土力学, 27(12): 2277-2281. doi: 10.3969/j.issn.1000-7598.2006.12.037
      孙枢, 2006. CO2地下封存的地质学问题及其对减缓气候变化的意义. 中国基础科学, 3: 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB200603007.htm
      张洪涛, 文冬光, 李义连, 等, 2005. 中国CO2地质埋存条件分析及有关建议. 地质通报, 24(12): 1107-1110. doi: 10.3969/j.issn.1671-2552.2005.12.004
    • 加载中
    图(1) / 表(2)
    计量
    • 文章访问数:  3619
    • HTML全文浏览量:  748
    • PDF下载量:  199
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-04-09
    • 刊出日期:  2011-01-01

    目录

      /

      返回文章
      返回