• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    科学选靶的理论与途径

    赵鹏大 陈永清

    赵鹏大, 陈永清, 2011. 科学选靶的理论与途径. 地球科学, 36(2): 181-188. doi: 10.3799/dqkx.2011.019
    引用本文: 赵鹏大, 陈永清, 2011. 科学选靶的理论与途径. 地球科学, 36(2): 181-188. doi: 10.3799/dqkx.2011.019
    ZHAO Peng-da, CHEN Yong-qing, 2011. Theories and Approaches on Scientific Targeting at Mineral Deposits. Earth Science, 36(2): 181-188. doi: 10.3799/dqkx.2011.019
    Citation: ZHAO Peng-da, CHEN Yong-qing, 2011. Theories and Approaches on Scientific Targeting at Mineral Deposits. Earth Science, 36(2): 181-188. doi: 10.3799/dqkx.2011.019

    科学选靶的理论与途径

    doi: 10.3799/dqkx.2011.019
    基金项目: 

    国家自然科学基金项目 40972232

    国家自然科学基金项目 40772197

    国家高技术研究发展计划"863"项目 2006AA06Z113

    详细信息
      作者简介:

      赵鹏大(1931-), 男, 中科院院士, 教授, 博士生导师, 矿产普查与勘探、地球探测与信息技术专业.E-mail: pdzhao@cugb.edu.cn

    • 中图分类号: P628

    Theories and Approaches on Scientific Targeting at Mineral Deposits

    • 摘要: 针对隐伏矿床和新类型矿床, 科学选靶是矿产勘查成功的关键.根据地质异常致矿理论, 将地壳结构复杂的地质异常区域定义为找矿有利地段; 在找矿有利地段内, 根据成矿系统理论, 将成矿关键要素(源、运、储、盖)发育的地段定义为找矿潜在地段; 在找矿潜在地段内, 根据成矿系列理论, 将可能出现矿床共生组合的地段定义为找矿远景地段.研究表明: (1)矿产资源体等级性和不均一分布, 矿集区内, 矿床规模-频率幂律分布和大型矿床通常在找矿初期发现的规律奠定了多尺度聚焦找矿战略的理论基础; (2)地质矿化单一信息的多解性和不确定性奠定了应用综合致矿信息找矿战略的理论基础; (3)基于成矿系统模式的概率模拟和基于综合找矿模型的概率模拟是从成矿的本质和现象两个方面评价可能矿化地段的最有效途径.

       

    • 图  1  圈定靶区的两种基本途径

      a.等级套合聚焦找矿;b.综合信息找矿;详细说明见正文

      Fig.  1.  The two basic approaches showing delineation of ore-finding targets

    • Arehart, G.B., Chakurian, A.M., Tretbar, D.R., et al., 2003. Evaluation of radioisotope dating of Carlin-type deposits in the Great basin, western North America, and implications for deposit genesis. Economic Geology, 98(2): 235-248. doi: 10.2113/gsecongeo.98.2.235
      Barnett, C.T., 2006. Mineral exploration using modern data mining techniques. In: Doggett, M.D., et al., eds., Wealth creation in the minerals industry: integrating science, business, and education. SEG, INC., 12: 295-310.
      Barton, C.C., Scholz, C.H., 1995. The fractal size and spatial distribution of hydrocarbon accumulations: implication for resource assessment and exploration strategy. In: Barton, C.C., Scholz, C.H., eds., Fractal in petroleum geology and earth science. Plenem Press, New York, 13-34.
      Chen, Y.C., Pei, R.F., Wang, D.H., 2006. On minerogenetic (metallogenetic) series: third discussion. Acta Geologica Sinica, 80(10): 1501-1508 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200610003.htm
      Chen, Y.Q., Huang, J.N., Zhai, X.M., et al., 2009. Telescoping ore targets by geochemical exploration at multiple scales in eastern Yunnan Pt geochemical province. Sciences in China (Series D), 52(5): 627-637. doi: 10.1007/s11430-009-0051-x
      Chen, Y.Q., Liu, H.G., 2001. A preliminary view on digital pattern for mineral exploration based geoanomaly. Earth Science—Journal of China University of Geosciences, 26(2): 129-134 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200102005.htm
      Chen, Y.Q., Xia, Q.L., Liu, H.G., 2000. Delineation of potential mineral resources region based on geo-anomaly unit. Journal of China University of Geosciences, 11(2): 158-163. http://www.cqvip.com/QK/84134A/20002/4000690583.html
      Chen, Y.Q., Zhao, P.D., Chen, J.G., 1997. The delineated method of geological anomaly units and its application in the statistical predication of gold deposits of large scale. Proc. 30th Int'l. Geo. Congr., 25: 23-32.
      Chen, Y.Q., Zhao, P.D., Chen, J.G., et al., 2001. Application of the geo-anomaly unit concept in quantitative delineation and assessment of gold ore targets in western Shangdong uplift terrain, eastern China. Natural Resources Research, 10(1): 35-49. doi: 10.1023/A:1011581414877
      Cheng, Q.M., 2006. Singularity-generalized self-similarity-fractal spectrum (3S) models. Earth Science—Journal of China University of Geosciences, 31(3): 337-348 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200603009
      Cheng, Y.Q., Chen, Y.C., Zhao, Y.M., 1979. Preliminary discussion on the problems of minerogenetic of mineral deposits. Bulletin of Chinese Academy of Geological Sciences, 1(1): 32-58 (in Chinese with English abstract). http://www.researchgate.net/publication/313067561_Preliminary_discussion_on_the_problems_of_minerogenetic_series_of_mineral_deposits
      Cheng, Y.Q., Chen, Y.C., Zhao, Y.M., et al., 1983. Futher discussion on the problems of minerogenetic series of mineral deposits. Bulletin of Chinese Academy of Geological Sciences, 5(6): 1-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP198302004.htm
      Gorelov, D.A., 1982. Quantitative characteristics of geological anomalies in assessing ore capacity. Internal Geology Rew. , 4: 457-465.
      Grauch, V.J.S., Rodriguez, B.D., Wooden, J.L., 2003. Geophysical and isotopic constraints on crustal structure related to mineral trends in North-Central Nevada and implications for tectonic history. Economic Geology, 98(2): 269-286. doi: 10.2113/gsecongeo.98.2.269
      Hronsky, J.M.A., Groves, D.I., 2008. Science of targeting: definition, strategies, targeting and performance measurement. Australian Journal of Earth Sciences, 55: 101-122. doi: 10.1080/08120090701673328
      John, D.A., 2001. Moicene and Early Pliocene epithermal gold-silver deposits in the northern Great basin, western United States: characteristics, distribution, and relationship to magmatism. Economic Geology, 96(8): 1827-1853. doi: 10.2113/gsecongeo.96.8.1827
      Kerrich, R., Goldfarb, R.J., Richards, J.P., 2005. Metallogenic provinces in an evolving geodynamic framework. In: Hedenquist, J.W., et al., eds., Economic geology—one hundredth anniversary (1905-2005). Society of Economic Geologists, Inc., Littleton, Colorado, 1097-1136.
      Kreuzer, O.P., Etheridge, M.A., Guj, P., et al., 2008. Linking mineral deposit models to quantitative risk analysis and decision-making in exploration. Economic Geology, 103(4): 829-850. doi: 10.2113/gsecongeo.103.4.829
      Lian, C.Y., Su, X.S., 2000. Fractal estimation for resource extent of gold in Jiaodong exploration field. Journal of Changchun University of Science and Technology, 30(1): 24-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200001005.htm
      Lovejoy, S., Schertzer, D., Gagnon, J.S., 2005. Multifracal simulation of the Earth's surface and interior: anisotropic singularities and morphology. Proceeding of IAMG'2005: GIS and Spatial Analysis, 1: 37-54.
      Mandelbrot, B.B., 1995. The statistics of natural resources and the law of pareto. In: Barton, C.C., Scholz, C.H., eds., Fractal in petroleum geology and earth processes. Plenum Press, New York, 13-34.
      Paterson, N.R., 2003. Geophysical developments and mine discoveries in the 20th century. The Leading Edge, 22(6): 558-561. doi: 10.1190/1.1587678
      Penney, S.R., Allen, R.M., Harrisson, S., et al., 2004. A global-scale exploration risk analysis technique to determine the best mineral belts for exploration. Transactions of the Institution of Mining and Metallurgy, 133(3): 183-196. doi: 10.1179/037174504225005681
      Potma, W., Roberts, P.A., Schaubs, P.M., et al., 2008. Predictive targeting in Australian orogenic-gold systems at the deposit to district scale using numerical modeling. Australian Journal of Earth Sciences, 55(1): 101-122. doi: 10.1080/08120090701673328
      Schodde, R.C., 2004. Discovery performance of the western world gold industry over the period 1985-2003. Australasian Institute of Mining and Metallurgy, Pacrim 2004 Congress, Adelaide, Proceedings, 2004: 367-380.
      Sillitoe, R.H., 2006. Change in mineral exploration practice: consequences for discovery. In: Doggett, M.D., et al., eds., Wealth creation in the minerals industry: integrating science, business, and education. Seg., Inc., 295-310.
      Turcotte, D.L., 1993. Fractals and chaos in geology and geophysics (second edition). Cambridge University Press.
      Wang, S.C., Chen, Y.L., 1999. Predictive indexes of large and superlarge gold deposits on comprehensive information. Gold Geology, 5(1): 1-5 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJDZ901.000.htm
      Wang, S.C., Chen, Y.L., Xia, L.X., 2000. Theory and method of integrated prognosis of mineral resources. Science Press, Beijing, 343 (in Chinese).
      Xie, X.J., 1997. New strategy for exploration of ore resources. Geophysical & Geochemical Exploration, 21(6): 402-410 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WTYH199706001.htm
      Xie, X.J., Liu, D.W., Xiang, Y.C., 2004. Geochemical blocks for predicting large ore deposits—concept and methodology. Journal of Geochemical Exploration, 84: 77-91. doi: 10.1016/j.gexplo.2004.03.004
      Xie, X.J., Liu, D.W., Xiang, Y.C., et al., 2002. Geochemical blocks—development of concept and methodology. Geology in China, 29(3): 225-233 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200203000.htm
      Yu, C.W., 2003. The complexity of geosystems (Book 1 & 2). Geological Publishing House, Beijing, 1135 (in Chinese).
      Zhai, Y.S., 2007. Earth system, metallogenic system to exploration system. Earth Science Frontiers, 14(1): 172-181 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200701017.htm
      Zhai, Y.S., Deng, J., Cui, B., et al., 1999. Ore-forming system and comprehensive geo-anomaly. Geoscience, 13(1): 99-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ901.015.htm
      Zhai, Y.S., Peng, R.M., Den, J., et al., 2000. Metallogenic system analysis and new type ore deposits forecast. Earth Science Frontiers, 7(1): 123-132 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200001016.htm
      Zhai, Y.S., Wang, J.P., Deng, J., et al., 2008. Temporal-spatial evolution of metallogenic systems and its significance to mineral exploration. Geoscience, 22(2): 143-150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200802001.htm
      Zhai, Y.S., Wang, J.P., Peng, R.M., et al., 2009. Research on superimposed metallogenic systems and polygenetic mineral deposits. Earth Science Frontiers, 16(6): 282-290 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200906037.htm
      Zhao, P.D., 1992. Theories, principle, and methods for statistical prediction of mineral deposits. Mathematical Geology, 24(6): 589-595. doi: 10.1007/BF00894226
      Zhao, P.D., 1995. Mathematical geology: retrospect and prospect for the future. In: Wang, H.Z., ed., Retrospect of the development of geoscience disciplines in China. China University of Geosciences Press, Wuhan, 174-178 (in Chinese).
      Zhao, P.D., Chen, Y.Q., 1998. The main way of geo-anomaly location of ore body. Earth Science—Journal of China University of Geosciences, 23(2): 111-114 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX802.000.htm
      Zhao, P.D., Chen, Y.Q., Jin, Y.Y., 2000. Quantitative delineation and assessment of "5P" ore-finding area on the basis of geoanomaly principles. Geological Review, 46(Suppl. ): 6-16 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2000S1005.htm
      Zhao, P.D., Chi, S.D., 1991. A preliminary view on geological anomaly. Earth Science—Journal of China University of Geosciences, 16(3): 241-248 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqkx199103000.htm
      陈永清, 刘红光, 2001. 初论地质异常数字找矿模型. 地球科学——中国地质大学学报, 26(2): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200102005.htm
      陈毓川, 裴荣富, 王登红, 2006. 三论矿床的成矿系列问题. 地质学报, 80(10): 1501-1508. doi: 10.3321/j.issn:0001-5717.2006.10.003
      成秋明, 2006. 非线性成矿预测理论: 多重分形奇异性-广义自相似性-分形谱系模型与方法. 地球科学——中国地质大学报, 31(3): 337-348. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200603008.htm
      程裕淇, 陈毓川, 赵一鸣, 1979. 初论矿床的成矿系列问题. 中国地质科学院院报, 1(1): 32-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB197900002.htm
      程裕淇, 陈毓川, 赵一鸣, 等, 1983. 再论矿床的成矿系列问题. 中国地质科学院院报, 5(6): 1-64. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198302000.htm
      连长云, 苏小四, 2000. 胶东地区未发现金矿床资源总量的分形估计. 长春科技大学学报, 30(1): 24-27. doi: 10.3969/j.issn.1671-5888.2000.01.005
      王世称, 陈永良, 1999. 大型、超大型金矿床综合信息成矿预测标志. 黄金地质, 5(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-HJDZ901.000.htm
      王世称, 陈永良, 夏立显, 2000. 综合信息矿产预测理论与方法. 北京: 科学出版社, 343.
      谢学锦, 1997. 矿产勘查的新战略. 物探与化探, 21(6): 402-410. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH199706001.htm
      谢学锦, 刘大文, 向运川, 等, 2002. 地球化学块体——概念和方法学的发展. 中国地质, 29(3): 225-233. doi: 10.3969/j.issn.1000-3657.2002.03.001
      於崇文, 2003. 地质系统的复杂性(上、下册). 北京: 地质出版社, 1135.
      翟裕生, 2007. 地球系统、成矿系统到勘查系统. 地学前缘, 14(1): 172-181. doi: 10.3321/j.issn:1005-2321.2007.01.017
      翟裕生, 邓军, 崔彬, 等, 1999. 成矿系统及综合地质异常. 现代地质, 13(1): 99-104. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ901.015.htm
      翟裕生, 彭润民, 邓军, 等, 2000. 成矿系统分析与新类型矿床预测. 地学前缘, 7(1): 123-132. doi: 10.3321/j.issn:1005-2321.2000.01.011
      翟裕生, 王建平, 邓军, 等, 2008. 成矿系统时空演化及其找矿意义. 现代地质, 22(2): 143-150. doi: 10.3969/j.issn.1000-8527.2008.02.001
      翟裕生, 王建平, 彭润民, 等, 2009. 叠加成矿系统与多成因矿床研究. 地学前缘, 16(6): 282-290. doi: 10.3321/j.issn:1005-2321.2009.06.030
      赵鹏大, 1995. 数学地质: 回顾与展望. 见: 王鸿祯主编, 中国地质学科发展的回顾——孙云铸教授百年诞辰纪念文集. 武汉: 中国地质大学出版社, 174-178.
      赵鹏大, 陈永清, 1998. 地质异常矿体定位的基本途径. 地球科学——中国地质大学学报, 23(2): 111-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX802.000.htm
      赵鹏大, 陈永清, 金友渔, 2000. 基于地质异常的"5P"找矿地段的定量圈定与评价. 地质论评, 46(增刊): 6-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2000S1005.htm
      赵鹏大, 池顺都, 1991. 初论地质异常. 地球科学——中国地质大学学报, 16(3): 241-248. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX199103000.htm
    • 加载中
    图(1)
    计量
    • 文章访问数:  3193
    • HTML全文浏览量:  546
    • PDF下载量:  124
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-10-28
    • 刊出日期:  2011-03-01

    目录

      /

      返回文章
      返回