• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    Spatial Modeling Techniques for Characterizing Geomaterials: Deterministic vs.Stochastic Modeling for Single-Variable and Multivariate Analyses

    Koike Katsuaki

    Koike Katsuaki, 2011. Spatial Modeling Techniques for Characterizing Geomaterials: Deterministic vs.Stochastic Modeling for Single-Variable and Multivariate Analyses. Earth Science, 36(2): 209-226. doi: 10.3799/dqkx.2011.022
    Citation: Koike Katsuaki, 2011. Spatial Modeling Techniques for Characterizing Geomaterials: Deterministic vs.Stochastic Modeling for Single-Variable and Multivariate Analyses. Earth Science, 36(2): 209-226. doi: 10.3799/dqkx.2011.022

    doi: 10.3799/dqkx.2011.022

    Spatial Modeling Techniques for Characterizing Geomaterials: Deterministic vs.Stochastic Modeling for Single-Variable and Multivariate Analyses

    More Information
      • 关键词:
      •  / 
      •  / 
      •  / 
      •  / 
      •  / 
      •  / 
      •  
    • Fig.  1.  (A) Hohi geothermal region in central Kyushu, Southwest Japan, showing topography, location of wells, and the lengths of the downhole logs used in the study.Depths range from 80 to 3 300 m. (B) Three-dimensional geological model of the Hohi geothermal region constructed using the OPTSIM method and showing the eight main rock types.The topography of the ground surface is shown.V.R.: volcanic rock. (C) Integration of the temperature model, geological model, and large-magnitude fluid flow velocity vectors.The geological model and vectors are overlaid onto the high-temperature zones (>150 ℃).Two ovals circled represent the geothermal reservoirs inferred from the relationship between the temperature and the geological models

      Fig.  2.  (A) Semivariogram constructed from the indicator values, 0 for conductive type and 1 for convective type, assigned to each borehole site depending on the temperature profile in the Hohi geothermal region.(B) Horizontal temperature-distributions estimated by neural kriging at 0 m, -500 m, and -1 000 m levels.Values indicate temperatures retrieved at each borehole site

      Fig.  3.  (A) Distributions of sensitivity vectors for Zn in the Kuroko-mine areas in the Hokuroku District, northern Japan.(B) Distribution of estimation points with large sensitivity vectors.The colors of the points represent the directions of the sensitivity vectors.(C) Schematic model of the occurrence of Kuroko ores, by mixing ore solutions with sea water, for upward vector (left) and downward vector (right)

      Fig.  4.  (A) Topography of the study area (Tono District, central Japan) and the arrangement of 19 sites of deep boreholes ranging 500 to 1 000 m depth.(B) Perspective views showing the distribution pattern of simulated continuous fractures composed of fifty or more facets.(C) Superimposition of the zones of large hydraulic conductivity of more than 10-5 cm/s onto the continuous simulated fractures

      Fig.  5.  (A) Pore simulation results for different area sizes under conditions of porosity 40% by simulated annealing with scaling laws on size and the spatial correlation of pores.(B) Relationship between the calculation of area size and the maximum connection length of pores from pore simulation results for porosity 40%

      Fig.  6.  Estimated distributions of the concentrations of the nutritive salts NO2-N and NO3-N over the Ariake Sea, central Kyushu.MCK and SK denote space-time models by multivariate standardized ordinary cokriging and single variable ordinary kriging

      Fig.  7.  (A) Three-dimensional distribution of the 57 ℃ surface and its relationship to topography over Kyushu Island.(B) Computed 3D temperature distribution at 500 and 900 m depths.Low-temperature zones bounded by the long active faults are circled in the map of 500 m depth

    • Ahmed, S., Marsily, G.D., 1987. Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity. Water Resources Research, 23(9): 1717-1737. doi: 10.1029/WR023i009p01717
      Bonnet, E., Bour, O., Odling, N.E., et al., 2001. Scaling of fracture systems in geological media. Reviews of Geophysics, 39(3): 347-383. doi: 10.1029/1999RG000074
      Briggs, I.C., 1974. Machine contouring using minimum curvature. Geophysics, 39(1): 39-48. doi: 10.1190/1.1440410
      Cacas, M.C., Ledoux, E., DeMarsily, G., et al., 1990. Modelling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model. Water Resources Research, 26(3): 479-489. doi: 10.1029/WR026i003p00491/pdf
      Caers, J., Zhang, T., 2005. Multiple-point geostatistics: a quantitative vehicle for integrating geological analogs into multiple reservoir model. AAPG Memoir, 80: 383-394.
      Casanova, P.G., Alvarez, R., 1985. Splines in geophysics. Geophysics, 50(12): 2831-2848. doi: 10.1190/1.1441903
      Chaplot, V., Darboux, F., Bourennane, H., et al., 2006. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology, 77(1-2): 126-141. doi: 10.1016/j.geomorph.2005.12.010
      Chilès, J.P., 1988. Fractal and geostatistical methods for modeling of a fracture network. Mathematical Geology, 20(6): 631-654. doi: 10.1007/BF00890581
      Costa, J.F., Zingano, A.C., Koppe, J.C., 2000. Simulation—an approach to risk analysis in coal mining. Exploration and Mining Geology, 9(1): 43-49. doi: 10.2113/0090043
      Cressie, N., Huang, H., 1999. Classes of nonseparable, spatial-temporal stationary covariance functions. Journal of the American Statistical Association, 94(448): 1330-1340. doi: 10.1080/01621459.1999.10473885
      Daïan, J.F., Fernandes, C.P., Philippi, P.C., et al., 2004.3D reconstitution of porous media from image processing data using a multiscale percolation system. Journal of Petroleum Science & Engineering, 42(1): 15-28. http://www.sciencedirect.com/science/article/pii/S0920410503002031
      de Kemp, E.A., 2000.3-D visualization of structural field data: examples from the Archean Caopatina Formation. Computers & Geosciences, 26 (5): 509-530. http://www.sciencedirect.com/science/article/pii/S0098300499001429
      de Iaco, S., Myers, E.D., Posa, D., 2002. Nonseparable space-time covariance models: some parametric families. Mathematical Geology, 34(1): 23-42. doi: 10.1023/A:1014075310344
      de Iaco, S., Myers, E.D., Posa, D., 2003. The linear coregionalization model and the product-sum space-time variogram. Mathematical Geology, 35(1): 25-38. doi: 10.1023/A:1022425111459
      Dekking, M., Elfeki, A., Kraaikamp, C., et al., 2001. Multi-scale and multi-resolution stochastic modeling of subsurface heterogeneity by tree-indexed Markov Chains. Computational Geosciences, 5(1): 47-60. doi: 10.1023/A:1011610003277
      Gatrell, A., L?y?nen, M., 1998. GIS and health. Taylor & Francis, London, 230.
      Gómez-Hernández, J.J., Srivastava, R.M., 1990. ISIM3D: an ANSI-C three-dimensional multiple indicator conditional simulation program. Computers & Geosciences, 16(4): 395-440. http://dl.acm.org/citation.cfm?id=84572
      Heriawan, M.N., Koike, K., 2008a. Identifying spatial heterogeneity of coal resource quality in a multilayer coal deposit by multivariate geostatistics. International Journal of Coal Geology, 73(3-4): 307-330. doi: 10.1016/j.coal.2007.07.005
      Heriawan, M.N., Koike, K., 2008b. Uncertainty assessment of coal tonnage by spatial modeling of seam structure and coal quality. International Journal of Coal Geology, 76(3): 217-226. doi: 10.1016/j.coal.2008.07.014
      Journel, A.G., 1989. Fundamentals of geostatistics in five lessons: short course in geology, Vol. 8. American Geophysical Union, 40, Washington D.C. .
      Kay, M., Dimitrakopoulos, R., 2000. Integrated interpolation methods for geophysical data: applications to mineral exploration. Natural Resources Research, 9(1): 53-63. http://www.ingentaconnect.com/content/klu/narr/2000/00000009/00000001/00224167
      Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., 1983. Optimization by simulated annealing. Science, 4598: 671-680. http://www.zhangqiaokeyan.com/open-access_resources_thesis/0100057209782.html
      Koike, K., Gu, B., Ohmi, M., 1998a. Three-dimensional distribution analysis of phosphorus content of limestone through a combination of geostatistics and artificial neural network. Nonrenewable Resources, 7(3): 197-210. doi: 10.1007/BF02767670
      Koike, K., Shiraishi, Y., Verdeja, E., et al., 1998b. Three-dimensional interpolation and lithofacies analysis of granular composition data for earthquake-engineering characterization of shallow soil. Mathematical Geology, 30(6): 733-759. doi: 10.1023/A:1022473320050
      Koike, K., Matsuda, S., Gu, B., 2001a. Evaluation of interpolation accuracy of neural kriging with application to temperature-distribution analysis. Mathematical Geology, 33(4): 421-448. doi: 10.1023/A:1011084812324
      Koike, K., Sakamoto, H., Ohmi, M., 2001b. Detection and hydrologic modeling of aquifers in unconsolidated alluvial plains through combination of borehole data sets: a case study of the Arao area, Southwest Japan. Engineering Geology, 62(4): 301-317. doi: 10.1016/S0013-7952(01)00031-X
      Koike, K., Matsuda, S., Suzuki, T., et al., 2002. Neural network-based estimation of principal metal contents in the Hokuroku district, northern Japan, for exploring Kuroko-type deposits. Natural Resources Research, 11(2): 135-156. doi: 10.1023/A:1015520204066
      Koike, K., Fujiyoshi, H., 2003. Spatial modeling of pore distribution in porous media using geostatistics for detecting hydraulic property. In: Saito, T., Murata, S., eds., Environmental rock engineering. A.A. Balkema Publishers, Lisse, 259-264.
      Koike, K., Matsuda, S., 2005. Spatial modeling of discontinuous geological attributes with geotechnical applications. Engineering Geology, 78(1-2): 143-161. doi: 10.1016/j.enggeo.2004.12.004
      Koike, K., Ichikawa, Y., 2006. Spatial correlation structures of fracture systems for identifying a scaling law and modeling fracture distributions. Computers & Geosciences, 32(8): 1079-1095. http://www.sciencedirect.com/science/article/pii/S0098300406000318
      Koike, K., Matsuda, S., 2006. New indices for characterizing spatial models of ore deposits by the use of a sensitivity vector and influence factor. Mathematical Geology, 38(5): 541-564. doi: 10.1007/s11004-006-9030-3
      Koike, K., Liu, C., 2007. Spatial modeling method considering scaling-law with application to pore simulation in porous media. Geoinformatics, 18(3): 159-175 (in Japanese with English abstract).
      Koike, K., Liu, C., Masoud, A.A., et al., 2009. Large-scale modeling of 3D fracture distributions for hydrogeological characterization. Proceedings iamg09. Stanford Univ., CA, USA.
      Liu, C., Koike, K., 2007. Extending multivariate space-time geostatistics for environmental data analysis. Mathematical Geology, 39(3): 289-305. doi: 10.1007/s11004-007-9085-9
      Long, J.C.S., Gilmour, P., Witherspoon, P.A., 1985. A model for steady fluid flow in random three-dimensional networks of disc-shaped fractures. Water Resources Research, 21(8): 1105-1115. doi: 10.1029/WR021i008p01105
      Lu, S., Molz, F.J., Liu, H.H., 2003. An efficient, three-dimensional, anisotropic, fractional Brownian motion and truncated fractional Levy motion simulation algorithm based on successive random additions. Computers & Geosciences, 29(1): 15-25. http://www.sciencedirect.com/science/article/pii/S0098300402000730
      Magnussen, S., N?sset, E., Wulder, M.A., 2007. Efficient multiresolution spatial predictions for large data arrays. Remote Sensing of Environment, 109(4): 451-463. doi: 10.1016/j.rse.2007.01.018
      Masoud, A.A., Koike, K., 2009. Spatial quality modeling of the Kaolin resources integrating GIS and geostatistics. Proc. MMIJ Annual Meeting (2009), Vol. I: 125-126.
      Matías, J.M., Vaamonde, A., Taboada, J., et al., 2004. Support vector machines and gradient boosting for graphical estimation of a slate deposit. Stochastic Environmental Research and Risk Assessment, 18(5): 309-323. doi: 10.1007/s00477-004-0185-5
      Matsuda, S., Koike, K., 2003. Sensitivity analysis of a feedforward neural network for considering genetic mechanisms of Kuroko deposits. Natural Resources Research, 12(4): 291-301. doi: 10.1023/B:NARR.0000007807.14126.a2
      Merwade, V., 2009. Effect of spatial trends on interpolation of river bathymetry. Journal of Hydrology, 371(1-4): 169-181. doi: 10.1016/j.jhydrol.2009.03.026
      Mitasova, H., Mitas, L., 1993. Interpolation by regularized spline with tension: I. theory and implementation. Mathematical Geology, 25(6): 641-655. doi: 10.1007/BF00893171
      Palmer, D.J., H?ck, B.K., Kimberley, M.O., et al., 2009. Comparison of spatial prediction techniques for developing Pinus radiata productivity surfaces across New Zealand. Forest Ecology and Management, 258(9): 2046-2055. doi: 10.1016/j.foreco.2009.07.057
      Pardo-Igúzquiza, E., Dowd, P.A., 2002. FACTOR2D: a computer program for factorial cokriging. Computers & Geosciences, 28(8): 857-875. http://www.sciencedirect.com/science/article/pii/S0098300402000031
      Pardo-Igúzquiza, E., Atkinson, P.M., 2007. Modelling the semivariograms and cross-semivariograms required in downscaling cokriging by numerical convolution-deconvolution. Computers & Geosciences, 33(10): 1273-1284. doi: 10.1016/j.cageo.2007.05.004
      Rizzo, D.M., Dougherty, D.E., 1994. Characterization of aquifer properties using artificial neural networks: neural kriging. Water Resources Research, 30 (2): 483-497. doi: 10.1029/93WR02477
      Robinson, T.P., Metternicht, G., 2005. Comparing the performance of techniques to improve the quality of yield maps. Agricultural Systems, 85(1): 19-41. doi: 10.1016/j.agsy.2004.07.010
      Robinson, T.P., Metternicht, G., 2006. Testing the performance of spatial interpolation techniques for mapping soil properties. Computers and Electronics in Agriculture, 50(2): 97-108. doi: 10.1016/j.compag.2005.07.003
      Saepuloh, A., Koike, K., 2009. Detailed mapping of pyroclastic flow deposits by SAR data processing for an active volcano in the Torrid zone. In: Proceeding of International Conference on Earth and Space Sciences and Engineering 2009 (ICESSE 2009). Tokyo, Japan, 270-274.
      Sahimi, M., Mehrabi, A.R., 1999. Percolation and flow in geological formations: upscaling from microscopic to megascopic scales. Physica A, 266(1-4): 136-152. doi: 10.1016/S0378-4371(98)00586-X
      Sahimi, M., 2000. Fractal-wavelet neural-network approach to characterization and upscaling of fractured reservoirs. Computers & Geosciences, 26(8): 877-905. doi: 10.5555/351914.351917
      Salu, Y., Tilton, J., 1993. Classification of miltispectal image data by the binary diamond neural network and by nonparametric, pixel-by-pixel-methods. IEEE Transactions on Geoscience & Remote Sensing, 31(3): 606-617. http://ci.nii.ac.jp/naid/30019684845
      Samanta, B., Ganguli, R., Bandopadhyay, S., 2005. Comparing the predictive performance of neural networks with ordinary kriging in a bauxite deposit. Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 114(3): A129-A139. doi: 10.1179/037178405X53980
      Solomon, S., Qin, D., Manning, M., et al., eds., 2007. Climate change 2007—the physical science basis, contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, New York, 996.
      Strebelle, S., 2002. Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34(1): 1-21. doi: 10.1023/A:1014009426274
      Sun, Y., Kang, S., Li, F., et al., 2009. Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of Northwest China. Environmental Modelling & Software, 24(10): 1163-1170. http://www.cabdirect.org/abstracts/20133063655.html
      Tadakuma, N., Koike, K., Asaue, H., 2010.3D temperature modeling over Kyushu Island (SW Japan) and its characterization from geological structures. Proceedings World Geothermal Congress 2010, Bali, Indonesia. Paper Number 1539.
      Teng, Y., Koike, K., 2007. Three-dimensional imaging of a geothermal system using temperature and geological models derived from a well-log dataset. Geothermics, 36(6): 518-538. doi: 10.1016/j.geothermics.2007.07.006
      Tran, N.H., Chen, Z., Rahman, S.S., 2006. Integrated conditional global optimisation for discrete fracture network modeling. Computers & Geosciences, 32(1): 17-27.
      van der Meer, F., 1994. Sequential indicator conditional simulation and indicator kriging applied to discrimination of dolomitization in GER 63-channel imaging spectrometer data. Nonrenewable Resources, 3(2): 146-164. doi: 10.1007/BF02286439
      Weissmann, G.S., Carle, S.F., Fogg, G.E., 1999. Three-dimensional hydrofacies modeling based on soil surveys and transition probability geostatistics. Water Resources Research, 35: 1761-1770. doi: 10.1029/1999WR900048
      Wolf, D.J., Withers, K.D., Burnaman, M.D., 1994. Integration of well and seismic data using geostatistics. In: Yarus, J.M., Chambers, R.L., eds., Stochastic modeling and geostatistics. AAPG, Tulsa, 177-199.
      Yamamoto, J.K., 2005. Correcting the smoothing effect of ordinary kriging estimates. Mathematical Geology, 37(1): 69-94. doi: 10.1007/s11004-005-8748-7
      Zimmerman, D., Pavlik, C., Ruggles, A., et al., 1999. An experimental comparison of ordinary and universal kriging and inverse distance weighting. Mathematical Geology, 31(4): 375-390. doi: 10.1023/A:1007586507433
      Zhu, H., Journel, A., 1993. Formatting and integrating soft data: stochastic imaging via the Markov-Bayes algorithm. In: Soares A., ed., Geostatistics Toria'92. Kluwer Academic Publishers, 1-12.
    • 加载中
    图(7)
    计量
    • 文章访问数:  2846
    • HTML全文浏览量:  163
    • PDF下载量:  63
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-07-15
    • 刊出日期:  2011-03-01

    目录

      /

      返回文章
      返回