• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地质异常的奇异性度量与隐伏源致矿异常识别

    成秋明

    成秋明, 2011. 地质异常的奇异性度量与隐伏源致矿异常识别. 地球科学, 36(2): 307-316. doi: 10.3799/dqkx.2011.032
    引用本文: 成秋明, 2011. 地质异常的奇异性度量与隐伏源致矿异常识别. 地球科学, 36(2): 307-316. doi: 10.3799/dqkx.2011.032
    CHENG Qiu-ming, 2011. Singularity Modeling of Geo-Anomalies and Recognition of Anomalies Caused by Buried Sources. Earth Science, 36(2): 307-316. doi: 10.3799/dqkx.2011.032
    Citation: CHENG Qiu-ming, 2011. Singularity Modeling of Geo-Anomalies and Recognition of Anomalies Caused by Buried Sources. Earth Science, 36(2): 307-316. doi: 10.3799/dqkx.2011.032

    地质异常的奇异性度量与隐伏源致矿异常识别

    doi: 10.3799/dqkx.2011.032
    基金项目: 

    国家杰出青年科学研究基金项目 40525009

    国家"863"项目 2009AA06Z110

    教育部创新团队基金 IRT0755

    详细信息
      作者简介:

      成秋明(1960-),男,教授,博士生导师,教育部长江学者特聘教授,国家杰出青年基金获得者,国际数学地球科学协会最高奖-克伦宾奖章获得者,主要从事矿产普查与勘探、数学地质、地理信息系统以及矿产资源评价的教学和研究.E-mail: qiuming@yorku.ca

    • 中图分类号: P628

    Singularity Modeling of Geo-Anomalies and Recognition of Anomalies Caused by Buried Sources

    • 摘要: 以个旧锡多金属矿床为例,研究了致矿地质异常的非线性特征.从异常地质事件和成矿作用的奇异性出发,定量分析了地质异常的奇异性、不连续性、非平稳性、混沌性、自相似性、临界性等非线性特征.在此基础上,详细介绍了局部奇异性分析原理和方法,论述了奇异性指数对隐伏源异常的识别能力.结果表明,奇异性分析方法在个旧地区水系沉积物地球化学数据处理和隐伏源地球化学异常识别和圈定应用中是有效的.分析结果一定程度上消除了隐伏源深度的影响,所圈定的局部地球化学异常不仅在个旧东区较好地对应了已发现的大型锡矿床的分布,而且在其他低缓地球化学异常区也圈定了多处局部异常,为进一步开展锡矿勘查提供了重要靶区.奇异性理论和方法有望为深部矿产预测、隐伏矿预测、覆盖区矿产预测等特殊环境开展矿产预测提供了新的实用性理论和方法技术.

       

    • 图  1  个旧地区简化地质图

      紫红色多边形代表个旧岩体;黄色多边形代表个旧组碳酸盐地层;白色区域表示其他地层;黑色实线代表断裂构造;圆点代表锡矿床;箭头线A-A'表示剖面线(图 2c)的位置

      Fig.  1.  Simplified geology of the Gejiu mineral district

      图  2  云南个旧东区锡矿床与花岗岩接触关系以及地表地球化学剖面(位置见图 1A-A')

      a.水系沉积物Sn含量剖面;b.Sn局部奇异性指数值剖面;c.地质剖面示意图(见程彦博等,2008);1.中三叠统个旧组;2.辉绿岩;3.蚀变黑云母花岗岩;4.脉状矿体;5.燕山晚期花岗岩;6.花岗岩;7.砂铜矿;8.矽卡岩;9.碳酸盐岩;10.似斑状黑云母花岗岩;11.层间矿体;12.网状矿

      Fig.  2.  Profile of Sn ore, granites and surface geochemical anomalies

      图  3  (a) 水系沉积物Sn含量图;(b)密度-面积关系图, 四段直线段由最小二乘法拟合

      a图中黑三角形表示锡矿床,等值线表示由图b中密度-面积关系确定的异常区间;白色等值线表示Sn>344×10-6(Ⅰ),黑粗等值线6×10-6<Sn≤344×10-6(Ⅱ),黑细等值线2×10-6<Sn≤6×10-6(Ⅲ)

      Fig.  3.  (a) Distribution of log-transformed values (10-6) of Sn in stream sediment samples.; (b) C-A (concentration-area) plot showing the cumulative area (number of cells of 4 km2) versus the tin concentration value; the base of logarithms is e

      图  4  云南个旧东区某地水系沉积物As元素密度与面积关系(Cheng and Zhao, 2011)

      实线代表采用最小二乘法拟合的幂率模型

      Fig.  4.  Relationship between the concentration density values (10-6/km2) of As and square windows with various window sizes

      图  5  (a) 由主成分分析方法所计算的地球化学组合元素(Sn、Cu、As、Pb、Zn and Cd)分布;(b) 采用局部奇异性分析方法所计算的奇异性指数值分布

      透明的多边形表示个旧岩体分布范围;白色的圆圈代表锡矿床;黑色线条代表断裂构造

      Fig.  5.  (a) Scoring map of the first principle component showing the spatial distribution of multiple elements of Sn, Cu, As, Pb, Zn and Cd; (b) Singularity obtained from the anomalies in Fig. 5a, with a positive value of 5 added so that the map has positive values. Singularity was calculated with square windows sized within 26 km

      图  6  矿体分布示意

      a.矿体出露地表;b.矿体未出露地表但原生晕带出露地表;c.构造原生晕带出露地表;d.矿体及原生晕均被上覆盖层掩埋;A.岩石;B.矿体原生晕带;C.矿体;D.构造原生晕带;E.上覆盖层;F.覆盖层中的元素富集带

      Fig.  6.  Schematic diagram showing situations of location of ore bodies and primary halos in relations to rock surface and over burdens

    • Cheng, Q.M., 1999. Multifractality and spatial statistics. Computers & Geosciences, 25(10): 949-961. http://www.sciencedirect.com/science/article/pii/S0098300499000606
      Cheng, Q.M., 2007a. Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 32(1-2): 314-324. doi: 10.1016/j.oregeorev.2006.10.002
      Cheng, Q.M., 2007b. Multifractal imaging filtering and decomposition methods in space, fourier frequency, and eigen domains. Nonlinear Processes in Geophysics, 14(3): 293-303. doi: 10.5194/npg-14-293-2007
      Cheng, Q.M., 2007c. Singular mineralization processes and mineral resources quantitative prediction: new theories and methods. Earth Science Frontiers, 14(5): 42-53.
      Cheng, Q.M., 2007d. GIS based fractal/multifractal anomaly analysis for modeling and prediction of mineralization and mineral deposits. In: Harris, J., Wright, D., eds., GIS for geosciences. Geological Association of Canada, 285-296.
      Cheng, Q.M., Agterberg, F.P., 2009. Singularity analysis of ore-mineral and toxic trace elements in stream sediments. Computers & Geosciences, 35(2): 234-244. http://www.sciencedirect.com/science/article/pii/S0098300408002203
      Cheng, Q.M., Agterberg, F.P., Ballantyne, S.B., 1994. The separation of geochemical anomalies from background by fractal methods. J. Geochemical Exploration, 51(2): 109-130. doi: 10.1016/0375-6742(94)90013-2
      Cheng, Q.M., Xu, Y., Grunsky, E., 1999. Integrated spatial and spectral analysis for geochemical anomaly separation. In: Lippard, S.J., Naess, A., Sinding-Larsen, R., eds., Proceedings of the Firth Annual Conference of the International Association for Mathematical Geology, Trondheim, Norway 6-11th August, 1, 87-92.
      Cheng, Q.M., Zhao, P.D., 2011. Singularity theories and methods for characterizing mineralization processes and mapping geo-anomalies for mineral deposit prediction. Geoscience Frontiers, doi: 10.1016/j.gsf.2010.12.003
      Cheng, Q.M., Zhao, P.D., Chen, J.G., et al., 2009a. Application of singularity theory in prediction of tin and copper mineral deposits in Gejiu district, Yunnan, China: weak information extraction and mixing information decomposition. Earth ScienceJournal of China University of Geosciences, 34(2): 232-242 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.021
      Cheng, Q.M., Zhao. P.D., Zhang, S.Y., et al., 2009b. Application of singularity theory in prediction of tin and copper mineral deposits in Gejiu district, Yunnan, China: information integration and delineation of mineral exploration targets. Earth ScienceJournal of China University of Geosciences, 34(2): 243-252 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.022
      Cheng, Y.B., Mao, J.W., Xie, G.Q., et al., 2008. Petrogenesis of the Laochang-Kafang granite in the Gejiu area, Yunnan Province: constraints from geochemistry and zircon U-Pb dating. Acta Geologica Sinica, 82(11): 1478-1493 (in Chinese with English abstract).
      Editorial Board, 2010. Hand book of advanced technologies for geological (deep) mineral exploration (Vol. 4). Geological Publishing House, Beijing (in Chinese).
      Journel, A.G., Huijbregts, C.J., 1978. Mining Geostatistics. Academic Press, London, 600.
      Qing, D.X., Tan, S.C., Fan, Z.G., 2004. Geotectonic evolution and tin-polymetallic metallogenesis in Gejiu-Dachang area. Journal of Mineralogy, 24(2): 118-123 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=9972391
      Tan, S.C., Qing, D.X., Chen, A.B., et al., 2004. Regional crust evolution and metallogenesis of Gejiu tin deposit—a discussion. Journal of Mineralogy, 24(2): 157-163 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200402011.htm
      Xia, Q.L., Zhang, S.T., Chen, S.Y., et al., 2007. The key problems for deep mineral potential assessment in Gejiu tin deposit, Yunnan, China. Acta Mineralogica Sinica, 27(Suppl. ): 530-531 (in Chinese with English abstract).
      Xiong, G.C., Shi, S.T., 1994. Physico-geologic model of the Gejiu tin district and its application. Geological Review, 40(1): 19-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199401002.htm
      Xu, Q.D., Xia, Q.L., Cheng, Q.M., 2009. Tectono-magmatic evolution related to metallogenic system in the Gejiu ore area, southeastern Yunnan of China. Earth ScienceJournal of China University of Geosciences, 34(2): 307-313 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.032
      Zhao, P.D., 2001. Three component mineral resource quantitative prediction and assessment: quantitative mineral resource prediction theory and practice. Earth ScienceJournal of China University of Geosciences, 27(5): 139-148 (in Chinese with English abstract).
      Zhao, P.D., 2007. Quantitative mineral prediction and deep mineral exploration. Earth Science Frontiers, 14(5): 1-10 (in Chinese with English abstract). http://www.researchgate.net/publication/285501491_Quantitative_mineral_prediction_and_deep_mineral_exploration
      Zhuang, Y.Q., Wang, R.Z., Yang, S.P., et al., 1996. Sn and Cu polymetallic mineral deposits in Gejiu. Seismology Press, Beijing, 124 (in Chinese).
      编委会, 2010. 现代地质(深部)找矿新技术标准手册(第4卷). 北京: 地质出版社.
      成秋明, 赵鹏大, 陈建国, 等, 2009a. 奇异性理论在个旧锡铜矿产资源预测中的应用: 成矿弱信息提取和复合信息分解. 地球科学——中国地质大学学报, 34(2): 232-242. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902001.htm
      成秋明, 赵鹏大, 张生元, 等, 2009b. 奇异性理论在个旧锡铜矿产资源预测中的应用: 综合信息集成与靶区圈定. 地球科学——中国地质大学学报, 34(2): 243-252. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902002.htm
      程彦博, 毛景文, 谢桂青, 等, 2008. 云南个旧老厂-卡房花岗岩体成因: 锆石U-Pb年代学和岩石地球化学约束. 地质学报, 82(11): 1478-1493. doi: 10.3321/j.issn:0001-5717.2008.11.003
      秦德先, 谈树成, 范柱国, 等, 2004. 个旧-大厂地区地质构造演化及锡多金属成矿. 矿物学报, 24(2): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200402004.htm
      谈树成, 秦德先, 陈爱兵, 等, 2004. 个旧锡矿区域地壳演化与成矿探讨. 矿物学报, 24(2): 157-163. doi: 10.3321/j.issn:1000-4734.2004.02.011
      夏庆霖, 张寿庭, 陈守余, 等, 2007. 云南个旧锡矿深部资源潜力评价的几个关键问题. 矿物学报, 27(增刊): 530-531.
      熊光楚, 石盛滕, 1994. 个旧锡矿区物理-地质模型及应用效果. 地质论评, 40(1): 19-27. doi: 10.3321/j.issn:0371-5736.1994.01.003
      徐启东, 夏庆霖, 成秋明, 2009. 云南个旧矿集区区域构造-岩浆演化与锡铜多金属成矿系统. 地球科学——中国地质大学学报, 34(2): 307-313. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200902013.htm
      赵鹏大, 2001. 三联式矿产资源定量预测与评价: 数值化矿产预测理论与实践. 地球科学——中国地质大学学报, 27(5): 139-148.
      赵鹏大, 2007. 成矿定量预测与深部找矿. 地学前缘, 14(5): 1-10. doi: 10.3321/j.issn:1005-2321.2007.05.001
      庄永秋, 王任重, 杨树培, 等, 1996. 云南个旧锡铜多金属矿床. 北京: 地震出版社, 124.
    • 加载中
    图(6)
    计量
    • 文章访问数:  3398
    • HTML全文浏览量:  619
    • PDF下载量:  177
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-12-20
    • 刊出日期:  2011-03-01

    目录

      /

      返回文章
      返回