• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    鄂西晚泥盆世含磷鲕状铁矿石中磷的赋存状态与形成

    柴辛娜 李明 金振民 高山

    柴辛娜, 李明, 金振民, 高山, 2011. 鄂西晚泥盆世含磷鲕状铁矿石中磷的赋存状态与形成. 地球科学, 36(3): 440-454. doi: 10.3799/dqkx.2011.047
    引用本文: 柴辛娜, 李明, 金振民, 高山, 2011. 鄂西晚泥盆世含磷鲕状铁矿石中磷的赋存状态与形成. 地球科学, 36(3): 440-454. doi: 10.3799/dqkx.2011.047
    CHAI Xin-na, LI Ming, JIN Zhen-min, GAO Shan, 2011. Occurrence and Formation of Phosphorus in Late Devonian Phosphate-Bearing Ooidal Ironstones from Western Hubei, China. Earth Science, 36(3): 440-454. doi: 10.3799/dqkx.2011.047
    Citation: CHAI Xin-na, LI Ming, JIN Zhen-min, GAO Shan, 2011. Occurrence and Formation of Phosphorus in Late Devonian Phosphate-Bearing Ooidal Ironstones from Western Hubei, China. Earth Science, 36(3): 440-454. doi: 10.3799/dqkx.2011.047

    鄂西晚泥盆世含磷鲕状铁矿石中磷的赋存状态与形成

    doi: 10.3799/dqkx.2011.047
    基金项目: 

    国家自然科学基金 40821061

    教育部高等学校学科创新引智计划 B07039

    地质过程与矿产资源国家重点实验室科技部专项基金 MSFGPMR201009

    中央高校基本科研业务费专项资金 CUG090105

    详细信息
      作者简介:

      柴辛娜(1980-), 女, 博士研究生, 主要从事分析地球化学的研究.E-mail: chaixinna2233@163.com

      通讯作者:

      高山, sgao@263.net

    • 中图分类号: P596

    Occurrence and Formation of Phosphorus in Late Devonian Phosphate-Bearing Ooidal Ironstones from Western Hubei, China

    • 摘要: 广泛分布于我国南方泥盆纪地层的"宁乡式"铁矿储量巨大, 然而含磷高严重制约了该类型铁矿的开发利用.铁矿石中磷的赋存状态是设计该类型铁矿"提铁降磷"方案的理论基础, 是开发该铁矿首先要了解的问题.充分利用湿化学全岩分析、电感耦合等离子体质谱分析等全岩元素分析, 扫描电子显微镜、X射线衍射等物相分析, 电子探针微分析、激光剥蚀电感耦合等离子体质谱分析等微区分析技术, 对鄂西晚泥盆世含磷鲕状铁矿石中磷的赋存状态、物质来源与磷矿物形成过程进行了初步探讨.铁矿石中的含磷矿物主要为碳氟磷灰石, 分别以短柱状磷灰石晶体颗粒(65%以上粒径小于20 μm)、磷灰石内碎屑(粗砂至极粗砂级, 集中形成透镜状或带状层理)以及鲕粒中与赤铁矿相互包裹的凝胶状磷灰石(层厚度10~50 μm)3种形式存在.磷灰石晶体是在孔隙水中重结晶而生成, 磷质可能来源于晚震旦世地层的磷块岩; 磷灰石内碎屑是古海水体中原位化学沉积的产物, 磷质可能来源于古海周边的大陆; 鲕粒中凝胶状磷灰石也是原位化学沉积的产物, 但与铁质沉积位置相同, 并与富铁的鲕绿泥石混合或相互包裹形成鲕粒.

       

    • 图  1  (a) 湖北泥盆-石炭纪地层混层及鄂西鲕状铁矿石分布简图;(b)采样点

      Fig.  1.  (a) Devonian-Carboniferous strata in Hubei and distribution of ooidal ironstone deposits in western Hubei; (b) Sampling point

      图  2  铁矿石样品剖面

      (a)铁矿石BY-1剖面颜色均匀,局部石英碎屑集中而颜色略浅;(b)铁矿石BY-3剖面存在黄白或黑灰色碎屑颗粒,并形成水平或透镜状层理

      Fig.  2.  Ironstone profiles

      图  3  铁矿石样品(a)稀土元素页岩(PAAS)标准化曲线和(b)微量元素页岩(PAAS)标准化曲线

      Fig.  3.  Post-Archean Australian shale (PAAS) normalized (a) REE and (b) trace elements patterns of ironstones

      图  4  铁矿石BY-3中碎屑层与铁矿层XRD图样

      Fig.  4.  XRD patterns of debris layer and ironstone layer in ironstone BY-3

      图  5  铁矿石光片扫描电子显微镜背散射电子成像及铁矿石新鲜断面扫描电子显微镜二次电子成像

      (a)孔隙式胶结鲕粒构造;(b)赤铁矿基质中的磷灰石晶体;(c)鲕绿泥石片层中的磷灰石晶体;(d)放射状磷灰石微晶集合体;(e)镶嵌式胶结鲕粒构造;(f)鲕粒和半塑性磷灰石内碎屑;(g)鲕粒中的凝胶状磷灰石;(h)鲕粒外磷灰石内碎屑(微晶集合体);Hem.赤铁矿;Ap.磷灰石;Qz.石英;Cha.鲕绿泥石

      Fig.  5.  SEM-BSE imaging of ironstone published sections and SEI of fresh fractured ironstone surfaces

      图  6  激光剥蚀样品表面扫描电子显微镜背散射电子成像

      (a)由鲕粒外层向内依次为:磷灰石、鲕绿泥石、赤铁矿,核心为鲕绿泥石(外侧混有磷灰石);(b)赤铁矿与鲕绿泥石混层鲕粒,核心为被磷灰石交代的碎屑石英颗粒,鲕绿泥石层中混有磷灰石;(c)由鲕粒外层向内依次为:赤铁矿(在鲕粒长轴两端混有若干层鲕绿泥石)、磷灰石、鲕绿泥石,核部为3~4层磷灰石构成的球粒;Hem.赤铁矿;Ap.磷灰石;Qz.石英;Cha.鲕绿泥石;●.激光剥蚀点

      Fig.  6.  SEM-BSE imaging of published sections used for LA-ICP-MS analysis

      图  7  铁矿石样品LA-ICP-MS微区各主量元素对P2O5的变化趋势

      Fig.  7.  Relationship between P2O5 and major elements of ironstones

      图  8  矿石样品LA-ICP-MS微区代表性微量元素对P2O5的变化趋势

      Fig.  8.  Relationship between P2O5 and trace elements of ironstones

      图  9  铁矿石样品微区稀土元素页岩标准化

      a.磷灰石晶体;b.磷灰石内碎屑;c.鲕粒中较纯净的磷灰石层;c.鲕粒中较纯净的赤铁矿层

      Fig.  9.  PAAS normalized REE patterns of ironstones

      表  1  铁矿石样品全岩主、微量元素分析结果

      Table  1.   Whole-rock major and trace element analysis of ironstones

      BY-1 BY-2 BY-3 BY-4 BY-5 铁矿层 碎屑层
      %
      Na2O 0.05 0.12 0.05 0.03 0.11 1.72 17.27
      MgO 0.55 0.16 0.22 0.20 0.27
      Al2O3 4.60 2.66 3.44 4.24 3.07
      SiO2 14.06 28.51 12.83 15.11 13.14
      K2O 0.03 0.03 0.02 0.03 0.03
      CaO 3.99 3.36 6.55 3.64 6.20
      TiO2 0.24 0.18 0.19 0.22 0.16
      MnO 0.01 0.01 0.02 0.01 0.02
      P2O5 3.40 2.68 5.01 2.77 4.56
      Fe2O3 63.50 59.73 65.50 70.16 63.96
      FeO 4.62 0.54 3.33 0.67 4.45
      CO2 0.10 0.10 0.13 0.13 0.13
      H2O+ 3.85 1.76 2.17 2.45 3.51
      Total 99.00 99.84 99.46 99.66 99.61
      TFe 48.00 42.20 48.40 49.59 48.19 53.32 24.82
      μg·g-1
      Be 48.0 9.0 19.6 14.5 18.8 12.1 41.0
      B 18.4 16.6 22.0 14.6 18.2 21.0 22.0
      Sc 44.0 21.0 24.0 24.0 27.0 16.8 52.0
      V 823 373 436 473 423 510 239
      Cr 84 61 59 62 59 58 33
      Co 39 37 47 51 100 44 38
      Ni 52 35 44 49 48 39 33
      Cu 1.0 2.5 2.5 2.2 1.9 1.8 9.1
      Zn 139 79 124 105 150 113 114
      Ga 22.0 8.5 9.6 12.1 11.5 9.3 8.1
      Rb 0.43 0.28 0.22 0.30 0.89 0.16 0.13
      Sr 104 146 285 151 235 130 897
      Y 286 86 114 73 127 39 389
      Zr 61 84 76 90 79 55 104
      Nb 4.2 1.9 2.2 2.7 2.3 2.0 1.0
      Mo 2.4 4.8 5.4 6.8 5.3 6.8 4.0
      Cd 0.086 0.050 0.150 0.041 0.050 0.059 0.110
      Sn 2.00 1.50 1.20 1.40 1.40 1.30 0.52
      Cs 0.560 0.140 0.180 0.180 0.900 0.150 0.069
      Ba 45 28 43 30 45 24 104
      La 206.0 11.6 14.4 13.0 14.4 11.4 20.0
      Ce 521 36 44 36 45 34 83
      Pr 79.0 6.5 8.1 6.2 8.5 5.4 16.7
      Nd 357 38 47 34 50 27 105
      Sm 81.0 11.7 14.4 10.4 16.6 6.4 46.0
      Eu 15.8 2.4 3.1 2.1 3.6 1.2 11.0
      Gd 75.0 13.2 16.8 11.5 19.2 6.2 56.0
      Tb 11.5 2.3 2.9 2.1 3.4 1.1 9.9
      Dy 62.0 14.1 18.5 13.0 21.0 8.2 74.0
      Ho 10.8 2.8 3.8 2.6 4.2 1.3 11.2
      Er 24.0 7.1 9.7 6.8 10.9 4.1 34.0
      Tm 3.20 1.10 1.50 1.00 1.60 0.59 4.70
      Yb 17.1 6.2 8.5 6.3 9.5 3.9 28.0
      Lu 2.20 0.86 1.20 0.87 1.30 0.56 3.60
      Hf 1.6 2.1 2.1 2.3 2.1 1.4 2.6
      Ta 0.21 0.14 0.16 0.20 0.16 0.10 0.14
      W 5.1 1.6 2.0 2.3 2.6 2.5 1.1
      Pb 16.3 9.2 19.2 13.0 14.7 10.8 21.0
      Th 25.0 10.8 12.9 13.1 12.1 10.4 8.1
      U 4.1 4.8 6.1 6.4 6.4 3.3 13.4
      ∑REE 1467 153 194 146 210 112 503
      (La/Nd)SN 0.51 0.27 0.27 0.34 0.25 0.37 0.17
      (Er/Lu)SN 1.71 1.26 1.28 1.18 1.28 1.11 1.45
      (La/Yb)SN 0.89 0.14 0.13 0.15 0.11 0.21 0.05
      下载: 导出CSV

      表  2  铁矿石样品较纯净矿物相EMPA微区主量元素分析结果(%)

      Table  2.   EMPA data of major elements of single minerals in thin section of ironstones

      CaO P2O5 Fe2O3 SiO2 Al2O3 F Cr2O3 MgO TiO2 MnO K2O
      磷灰石 56.00 39.0 1.1 0.3 0.6 2.1 0.10 0.03 0.030 0.080 0.020
      赤铁矿 0.07 0.2 97.0 1.5 1.3 n.d. 0.15 0.06 0.120 0.020 0.013
      鲕绿泥石 0.50 0.3 41.0 27.0 22.0 n.d. 1.00 1.80 0.036 0.045 0.200
      下载: 导出CSV
    • Baioumy, H.M., 2007. Iron-phosphorus relationship in the iron and phosphorite ores of Egypt. Chemie der Erde-Geochemistry, 67: 229-239. doi: 10.1016/j.chemer.2004.10.002
      Becker, J.S., Matusch, A., Depboylu, C., et al., 2007. Quantitative imaging of selenium, copper, and zinc in thin sections of biological tissues (slugs-genus arion) measured by laser ablation inductively coupled plasma mass spectrometry. Analytical Chemistry, 79: 6074-6080. doi: 10.1021/ac0700528
      Bhattacharyya, D.P., 1989. Concentrated and lean oolites: examples from the Nubia Formation at Aswan, Egypt, and significance of the oolite types in ironstone genesis. In: Young, T.P., Taylor, W.E.G., eds., Phanerozoic ironstones. Geological Society Special Publication, 46: 93-103.
      Bhattacharyya, D.P., Kakimoto, P., 1982. Origin of ferriferous ooids: an SEM study of ironstone ooids and bauxite pisiods. Joumal of Sedimentary Petrology, 52(3): 849-857. http://www.researchgate.net/publication/282542526_Origin_of_Ferriferous_Ooids_An_Sem_Study_of_Ironstone_Ooids_and_Bauxite_Pisoids
      Cotter, E., 1992. Diagenetic alteration of chamositic clay minerals to ferric oxide in oolitic ironstone. Joumal of Sedimentary Petrology, 62(1): 54-60.
      Franceschelli, M., Puxeddu, M., Carta, M., 2000. Mineralogy and geochemistry of Late Ordovician phosphate-bearing oolitic ironstones from NW Sardinia, Italy. Mineralogy and Petrology, 69: 267-293. doi: 10.1007/s007100070024
      Gagnon, J.E., Fryer, B.J., Samson, I.M., et al., 2008. Quantitative analysis of silicate certified reference materials by LA-ICP-MS with and without an internal standard. Journal of Analytical Atomic Spectrometry, 23: 1529-1537. doi: 10.1039/b801807n
      Garzanti, E., Haas, R., Jadoul, F., 1989. Ironstones in the Mesozoic passive margin sequence of the Tethys Himalaya (Zanskar, northern India): sedimentology and metamorphism. In: Young, T.P., Taylor, W.E.G., eds., Phanerozoic ironstons. Geological Society Special Publication, 46: 229-244.
      Gehring, A.U., 1989. The formation of goethitic ooids in condensed Jurassic deposits in northern Switzerland. In: Young, T.P., Taylor, W.E.G., eds., Phanerozoic ironstons. Geological Society Special Publication, 46: 133-139.
      Guillong, M., Hametner, K., Reusser, E., et al., 2005. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by Laser Ablation inductively coupled plasma mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths. Geostandards and Geoanalytical Research, 29: 315-331. doi: 10.1111/j.1751-908X.2005.tb00903.x
      Gunnars, A., Blomqvist, S., Martinsson, C., 2004. Inorganic formation of apatite in brackish seawater from the Baltic Sea: an experimental approach. Marine Chemistry, 91: 15-26. doi: 10.1016/j.marchem.2004.01.008
      Günther, D., Heinrich, C.A., 1999. Comparison of the ablation behaviour of 266 nm Nd: YAG and 193 nm ArF excimer lasers for LA-ICP-MS analysis. Journal of Analytical Atomic Spectrometry, 14: 1369-1374. doi: 10.1039/A901649J
      Halicz, L., Günther, D., 2004. Quantitative analysis of silicates using LA-ICP-MS with liquid calibration. Journal of Analytical Atomic Spectrometry, 19: 1539-1545. doi: 10.1039/b410132
      Heikoop, J.M., Tsujita, C.J., Risk, M.J., et al., 1996. Modorn iron ooids from a shallow-marine volcanic setting: mahengetang, Indonesia. Geology, 24(8): 759-762. doi: 10.1130/0091-7613(1996)024<0759:MIOFAS>2.3.CO;2
      Hou, H.F., Wang, S.T., 1985. Devonian palaeogeography of China. Acta Palaeontologica, 24(2): 186-193 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX198502005.htm
      Hren, M.T., Lowe, D.R., Tice, M.M., et al., 2006. Stable isotope and rare earth element evidence for recent ironstone pods within the Archean Barberton greenstone belt, South Africa. Geochimica et Cosmochimica Acta, 70: 1457-1470. doi: 10.1016/j.gca.205.11.016
      Hu, N., Xu, A.W., 1998. Horizon, lithofacies and genesis of the Ningxiang-type iron deposit in western Hubei, China. Contributions to Geology and Mineral Resources Research, 13(1): 40-47 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZZK801.004.htm
      Hu, S.H., Zhang, S.C., Hu, Z.C., et al., 2007. Detection of multiple proteins on one spot by laser ablation inductively coupled plasma mass spectrometry and application to immuno-microarray with element-tagged antibodies. Analytical Chemistry, 79: 923-929. doi: 10.1021/ac061269p
      Hu, Z.C., Gao, S., Liu, Y.S., et al., 2008. Signal enhancement in Laser Ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry, 23: 1093-1101. doi: 10.1039/b804760j
      Ilyin, A.V., 1998. Rare-earth geochemistry of 'old' phosphorites and probability of syngenetic precipitation and accumulation of phosphate. Chemical Geology, 144: 243-256. doi: 10.1016/S0009-2541(97)00134-4
      Kearsley, A.T., 1989. Iron-rich ooids, their mineralogy and microfabric: clues to their origin and evolution. In: Young, T.P., Taylor, W.E.G., eds., Phanerozoic ironstons. Geological Society Special Publication, 46: 141-164.
      Leach, A.M., Hieftje, G.M., 2000. Methods for shot-to-shot normalization in laser ablation with an inductively coupled plasma time-of-flight mass spectrometer. Journal of Analytical Atomic Spectrometry, 15: 1121-1124. doi: 10.1039/b001968m
      Leach, A.M., Hieftje, G.M., 2001. Standardless semiquantitative analysis of metals using single-shot laser ablation inductively coupled plasma time-of-flight mass spectrometry. Analytical Chemistry, 73: 2959-2967. doi: 10.1021/ac001272n
      Leach, A.M., Hieftje, G.M., 2002. Identification of alloys using single shot laser ablation inductively coupled plasma time-of-flight mass spectrometry. Journal of Analytical Atomic Spectrometry, 17: 852-857. doi: 10.1039/b203523n
      Lécuyer, C., Grandjean, P., Barrat, J., et al., 1998. δ18O and REE contents of phosphatic brachiopods: a comparison between modern and Lower Paleozoic populations. Geochimica et Cosmochimica Acta, 62(14): 2429-2436. doi: 10.1016/S0016-7037(98)00170-7
      Lécuyer, P.G., Feist, R., Albarède, F., 1993. Rare earth elements in old biogenic apatites. Geochimica et Cosmochimica Acta, 57: 2507-2514. doi: 10.1016/0016-7037(93)90413Q
      Li, M., Hu, Z.C., Gao, S., et al., 2011. Direct quantitative determination of trace elements in fine-grained whole rocks by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research, 35: 7-22. doi: 10.1111/j.1751-908X.2010.00028.x
      Liao, S.F., 1993. Phanerozoic oolitic ironstone in China. Sedimentary Geology and Tethyan Geology, 13(3): 1-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD199303000.htm
      Liao, S.F., Wei, L.H., Liu, C.D., et al., 1993. Sedimentary environments and origin of the Devonian oolitic ironstones in China. Acta Sedimentologica Sinica, 11(1): 93-102 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199301010.htm
      Liu, Y.J., Cao, L.M., Li, Z.L., et al., 1984. Elemental Geochemistry. Science Press, Beijing (in Chinese).
      Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51: 537-571. doi: 10.1093/petrology/egp082
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008a. In-situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004
      Liu, Y.S., Zong, K.Q., Kelemen, P.B., et al., 2008b. Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology, 247: 133-153. doi: 10.1016/j.chemgeo.2007.10.016
      Liu, Y.X., Ge, D.Y., Zeng, Y.F., et al., 1994. The enrichment characteristics of apatite from phosphorites in East Yunnan. Journal of Mineralogy and Petrology, 14(4): 17-34 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS404.002.htm
      Mclennan, S.M., 1989. Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21(1): 169-200. http://www.researchgate.net/publication/313503357_Rare_earth_elements_in_sedimentary_rocks_influence_of_provenance_and_sedimentary_processes
      Mücke, A., 2000. Environmental conditions in the Late Cretaceous African Tethys: conclusions from a microscopic-microchemical study of ooidal ironstones from Egypt, Sudan and Nigeria. Journal of African Earth Sciences, 30(1): 25-46. doi: 10.1016/S0899-5362(00)00006-3
      Mücke, A., 2006. Chamosite, siderite and the environmental conditions of their formation in chamosite-type Phanerozoic ooidal ironstones. Ore Geology Reviews, 28: 235-249. doi: 10.1016/j.oregeorev.2005.03.004
      Mücke, A., Farshad, F., 2005. Whole-rock and mineralogical composition of Phanerozoic ooidal ironstones: comparison and differentiation of types and subtypes. Ore Geology Reviews, 26: 227-262. doi: 10.1016/j.oregeorev.2004.08.001
      Pisonero, J., Kroslakova, I., Günther, D., 2006. Laser ablation inductively coupled plasma mass spectrometry for direct analysis of the spatial distribution of trace elements in metallurgical-grade silicon. Analytical and Bioanalytical Chemistry, 386: 12-20. doi: 10.1007/s00216-006-0658-0
      Reynard, B., Lécuyer, C., Grandjean, P., 1999. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chemical Geology, 155: 233-241. doi: 10.1016/S0009-2541(98)00169-7
      Riquier, L., Tribovillard, N., Averbuch, O., et al., 2006. The Late Frasnian Kellwasser horizons of the Harz Mountains (Germany): two oxygen-deficient periods resulting from different mechanisms. Chemical Geology, 233: 137-155. doi: 10.1016/j.chemgeo.2006.02.21
      Rollinson, H.R., 1993. Using Geochemical data: evaluation, presentation, interpretation. Longman Group Ltd., London.
      Sarah, G., Gratuze, B., Barrandon, J.N., 2007. Application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the investigation of ancient silver coins. Journal of Analytical Atomic Spectrometry, 22: 1163-1167. doi: 10.1039/B704879C
      Sha, L.K., Chappell, B.W., 1999. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861-3881. doi: 10.1016/S0016-7037(99)00210-0
      Shields, G., Stille, P., 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chemical Geology, 175: 29-48. doi: 10.1016/S0009-2541(00)00362-4
      Stefánsson, A., Gíslason, S.R., Arnórsson S., 2001. Dissolution of primary minerals in natural waters Ⅱ. Mineral saturation state. Chemical Geology, 172: 251-276. doi: 10.1016/S0009-2541(00)00262-X
      Sturesson, U., 1995. Llanvirnian (Ord. ) iron ooids in Baltoscandia: element mobility, REE distribution patterns, and origin of the REE. Chemical Geology, 125: 45-60. doi: 10.1016/0009-2541(95)00076-X
      Sturesson, U., 2003. Lower Palaeozoic iron oolites and volcanism from a Baltoscandian perspective. Sedimentary Geology, 159: 241-256. doi: 10.1016/S0037-0738(2)00330-5
      Sturesson, U., Dronov, A., Saadre, T., 1999. Lower Ordovician iron ooids and associated oolitic clays in Russia and Estonia: a clue to the origin of iron oolites? Sedimentary Geology, 123: 63-80. doi: 10.1016/S0037-0738(98)00112-2
      Sturesson, U., Heikoop, J.M., Risk, M.J., 2000. Modern and Palaeozoic iron ooids-a similar volcanic origin. Sedimentary Geology, 136: 137-146. doi: 10.1016/S0037-0738(00)00091-9
      Taylor, K.G., Simo, J.A., Yocum, D., et al., 2002. Stratigraphic significance of ooidal ironstones from the Cretaceous western interior seaway: the peace river formation, Alberta, Canada, and the castlegate sandstone, Utah, U.S.A. . Journal of Sedimentary Research, 72: 316-327. doi: 10.1306/060801720316
      Trythall, R.J.B., 1989. The Mid-Ordovician oolitic ironstones of North Wales: a field guide. In: Young, T.P., Taylor, W.E.G., eds., Phanerozoic ironstons. Geological Society Special Publication, 46: 213-220. doi: 10.1144/GSL.SP.1989.046.01.18
      Tucker, M.E., 1991. Sedimentary Petrology. Blackwell, London.
      Yang, J.Z., Mu, E.Z., 1953. The Devonian strata in western Hubei Province. Acta Palaeontologica, 1(2): 58-66 (in Chinese). http://www.researchgate.net/publication/286016970_The_Devonian_strata_in_western_Hubei_Province
      Ye, L.J., Chen, Q.Y., Zhao, D.X., et al., 1989. Chinese Phosporite. Science Press, Beijing (in Chinese).
      Young, T.P., 1989a. Phanerozoic ironstones: an introduction and review. In: Young, T.P., Taylor, W.E.G., eds., Phanerozoic ironstons. Geological Society Special Publication, 46: Ⅸ-ⅩⅩⅤ. doi: 10.1144/GSL.SP.1989.046.01.02
      Young, T.P., 1989b. Ecstatically controlled ooidal ironstone deposition: facies relationships of the Ordovician open-shelf ironstones of western Europe. In: Young, T.P., Taylor, W.E.G., eds., Phanerozoic ironstons. Geological Society Special Publication: 46: 51-63.
      Zhao, Y.M., Bi, C.S., 2000. Time-space distribution and evolution of the Ningxiang type sedimentary iron deposits. Mineral Deposits, 19(4): 350-362 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200004007.htm
      Zheng, W. Z, Dongye, M.X., Hu, L.L., 1992. REE geochemistry of phosphorites of the sinian doushantou formation in western Hubei. Geological Review, 38(4): 352-359 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP199204007.htm
      Zhu, X.Q., Wang, Z.G., Huang, Y., et al., 2004. REE content and distribution in apatite and its geological tracing significance. Chinese Rare Earths, 25(5): 41-45 (in Chinese with English abstract). http://www.researchgate.net/publication/309347819_REE_content_and_distribution_in_apatite_and_its_geological_tracing_significance
      候鸿飞, 王士涛, 1985. 中国泥盆纪古地理. 古生物学报, 24(2): 186-193. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX198502005.htm
      胡宁, 徐安武, 1998. 鄂西宁乡式铁矿分布层位岩相特征与成因探讨. 地质找矿论丛, 13(1): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK801.004.htm
      廖士范, 1993. 我国显生宙鲕铁石. 岩相古地理, 13(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD199303000.htm
      廖士范, 魏梁鸿, 刘成德, 等, 1993. 中国泥盆纪鲕铁石沉积环境、成因. 沉积学报, 11(1): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199301010.htm
      刘英俊, 曹励明, 李兆麟, 等, 1984. 元素地球化学. 北京: 科学出版社.
      刘永先, 戈定夷, 曾允孚, 等, 1994. 滇东磷块岩矿床中磷灰石的富集特征. 矿物岩石, 14(4): 17-34. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS404.002.htm
      杨敬之, 穆思之, 1953. 鄂西泥盆纪地层. 古生物学报, 1(2): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX195302001.htm
      叶连俊, 陈其英, 赵东旭, 等, 1989. 中国磷块岩. 北京: 科学出版社.
      赵一鸣, 毕承思, 2000. 宁乡式沉积铁矿床的时空分布和演化. 矿床地质, 19(4): 350-362. doi: 10.3969/j.issn.0258-7106.2000.04.008
      郑文忠, 东野脉兴, 胡珞兰, 1992. 鄂西震旦纪陡山沱组磷块岩稀土元素地球化学. 地质论评, 38(4): 352-359. doi: 10.3321/j.issn:0371-5736.1992.04.008
      朱笑青, 王中刚, 黄艳, 等, 2004. 磷灰石的稀土组成及其示踪意义. 稀土, 25(5): 41-45. doi: 10.3969/j.issn.1004-0277.2004.05.013
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  3486
    • HTML全文浏览量:  817
    • PDF下载量:  73
    • 被引次数: 0
    出版历程
    • 收稿日期:  2011-02-05
    • 刊出日期:  2011-05-01

    目录

      /

      返回文章
      返回