• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    土著微生物参与下河套平原地下水中砷的还原作用

    杨会 王焰新 谢先军 段萌语

    杨会, 王焰新, 谢先军, 段萌语, 2011. 土著微生物参与下河套平原地下水中砷的还原作用. 地球科学, 36(3): 594-598. doi: 10.3799/dqkx.2011.061
    引用本文: 杨会, 王焰新, 谢先军, 段萌语, 2011. 土著微生物参与下河套平原地下水中砷的还原作用. 地球科学, 36(3): 594-598. doi: 10.3799/dqkx.2011.061
    YANG Hui, WANG Yan-xin, XIE Xian-jun, DUAN Meng-yu, 2011. Reduction of Arsenic in Groundwater from Hetao Plain with the Involvement of Indigenous Microbes. Earth Science, 36(3): 594-598. doi: 10.3799/dqkx.2011.061
    Citation: YANG Hui, WANG Yan-xin, XIE Xian-jun, DUAN Meng-yu, 2011. Reduction of Arsenic in Groundwater from Hetao Plain with the Involvement of Indigenous Microbes. Earth Science, 36(3): 594-598. doi: 10.3799/dqkx.2011.061

    土著微生物参与下河套平原地下水中砷的还原作用

    doi: 10.3799/dqkx.2011.061
    基金项目: 

    国家杰出青年科学基金项目 40425001

    国家自然科学基金重点项目 40830748

    详细信息
      作者简介:

      杨会(1982-), 女, 硕士研究生, 研究方向为环境地球化学.E-mail: hy53022@163.com

    • 中图分类号: P593

    Reduction of Arsenic in Groundwater from Hetao Plain with the Involvement of Indigenous Microbes

    • 摘要: 为查明土著微生物活动对高砷地下水形成的影响,利用河套平原高砷地下水中分离出的土著微生物(YH002)进行了微宇宙实验研究.实验结果表明: 高砷地下水中加入的葡萄糖提供了微生物生长所需要的碳源,微生物大量繁殖,分泌的有机酸使溶液的pH值降低.在缺氧条件下,溶液中的OD值最高达到了0.189,pH值最低为6.22;在有氧条件下,OD值最高达到了0.286,pH值最低为6.04.溶液中As(III)的初始质量浓度为74 μg/L,占总砷质量浓度的11.2%,在加入微生物和葡萄糖后,在缺氧和有氧条件下,As(III)的质量浓度分别为278 μg/L和310 μg/L,占总砷质量浓度的42%和47%.微宇宙实验说明地下水中的土著微生物能将As(V)还原成As(III).

       

    • 图  1  采样点位置

      Fig.  1.  Site of sampling

      图  2  YH002与16S rRNA构建的进化树

      Fig.  2.  Phylogenetic relationships between 16S rRNA sequence of the YH002 strain and related sequences

      图  3  菌液OD值(600 nm)随土著微生物培养时间的变化

      ■表示不加微生物不加葡萄糖;●表示加葡萄糖;▲表示加微生物;▼表示加葡萄糖加微生物

      Fig.  3.  The change of OD value (600 nm) in solution with the time of indigenous microbial culture

      图  4  pH值随土著微生物培养时间的变化

      ■表示不加微生物不加葡萄糖;●表示加葡萄糖;▲表示加微生物;▼表示加葡萄糖加微生物

      Fig.  4.  The change of pH value in solution with the time of indigenous microbial culture

      图  5  As(III)含量随土著微生物培养时间的变化

      ■表示不加微生物不加葡萄糖;●表示加葡萄糖;▲表示加微生物;▼表示加葡萄糖加微生物

      Fig.  5.  The change of As (III) in solution with the time of indigenous microbial culture

    • Croal, L.R., Gralnick, J.A., Malasarn, D., et al., 2004. The genetics of geochemistry. Annual Review of Genetics, 38: 175-202. doi: 10.1146/annurev.genet.38.072902.091138
      Cullen, W.R., Reimer, K.J., 1989. Arsenic speciation in the environment. Chemical Reviews, 89(4): 713-764. doi: 10.1021/cr00094a002
      Duan, M.Y., Xie, Z.M., Wang, Y.X., et al., 2009. Microcosm studies on iron and arsenic mobilization from aquifer sediments under different conditions of microbial activity and carbon source. Environmental Geology, 57: 997-1003. doi: 10.1007/s00254-008-1384-z
      Gihring, T.M., Druschel, G.K., Mccleskey, R.B., et al., 2001. Rapid arsenite oxidation by thermus aquaticus and thermus thermophilus: field and laboratory investigations. Environmental Science and Technology, 35: 3857-3862. doi: 10.1021/es010816f
      Herbel, M., Fendorf, S., 2006. Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chemical Geology, 228(1-3): 16-32. doi: 10.1016/j.chemgeo.2005.11.016
      Humayoun, S.B., Bano, N., Hollibaugh, J.T., 2003. Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Applied and Environmental Microbiology, 69: 1030-1042. doi: 10.1128/AEM.69.2.1030-1042.2003
      Islam, F.S., Gault, A.G., Boothman, C., et al., 2004. Role of metal-reducing bacteria in arsenic release from Bengal deltasediments. Nature, 430: 68-71. doi: 10.1038/nature02638
      Kasan, H.C., 1993. The role of waste activated sludge and bacteria in metal-ion removal from solution. Environmental Science and Technology, 23(1): 79-117.
      Katsoyiannis, I., Zouboulis, A., Althoff, H., et al., 2002. As (III) removal from groundwaters using fixed-bed upflow bioreactors. Chemosphere, 47: 325-332. doi: 10.1016/S0045-6535(01)00306-X
      Le, X.C., Yalcin, S., Ma, M., 2000. Speciation of submicrogram per liter levels of arsenic in water: on-site species separation integrated with sample collection. Environmental Science and Technology, 34: 2342-1347. doi: 10.1021/es991203u
      Menna, P., Hungria, M., Barcellos, F.G., et al., 2006. Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. Systematic and Applied Microbiology, 29(4): 315-332. doi: 10.1016/j.syapm.2005.12.002
      Ng, J.C., Wang, J.P., Shraim, A., 2003. A global health problem caused by arsenic from natural sources. Chemosphere, 52: 1353-1359. doi: 10.1016/S0045-6535(03)00470-3
      Oremland, R.S., Stolz, J.F., 2005. Arsenic, microbes and contaminated aquifers. Trends in Microbiology, 13(2): 45-49. doi: 10.1016/j.tim.2004.12.002
      Stackebrandt, E., Goebel, B.M., 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal Systematic Bacteriology, 44(4): 846-849. http://mbe.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ijs&resid=44/4/846
    • 加载中
    图(5)
    计量
    • 文章访问数:  3675
    • HTML全文浏览量:  346
    • PDF下载量:  62
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-07-29
    • 刊出日期:  2011-05-01

    目录

      /

      返回文章
      返回