• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    表面活性剂强化空气扰动修复氯苯污染含水层

    秦传玉 赵勇胜 郑苇

    秦传玉, 赵勇胜, 郑苇, 2011. 表面活性剂强化空气扰动修复氯苯污染含水层. 地球科学, 36(4): 761-764. doi: 10.3799/dqkx.2011.077
    引用本文: 秦传玉, 赵勇胜, 郑苇, 2011. 表面活性剂强化空气扰动修复氯苯污染含水层. 地球科学, 36(4): 761-764. doi: 10.3799/dqkx.2011.077
    QIN Chuan-yu, ZHAO Yong-sheng, ZHENG Wei, 2011. Remediation of Chlorobenzene Polluted Aquifer by Surfactant-Enhanced Air Sparging. Earth Science, 36(4): 761-764. doi: 10.3799/dqkx.2011.077
    Citation: QIN Chuan-yu, ZHAO Yong-sheng, ZHENG Wei, 2011. Remediation of Chlorobenzene Polluted Aquifer by Surfactant-Enhanced Air Sparging. Earth Science, 36(4): 761-764. doi: 10.3799/dqkx.2011.077

    表面活性剂强化空气扰动修复氯苯污染含水层

    doi: 10.3799/dqkx.2011.077
    基金项目: 

    国家高技术研究发展“863”计划项目 2008AA06A410

    详细信息
      作者简介:

      秦传玉(1981-),男,讲师,主要从事水土环境污染控制与治理研究

      通讯作者:

      赵勇胜,E-mail:zhaoyongsheng@jlu.edu.cn

    • 中图分类号: X13

    Remediation of Chlorobenzene Polluted Aquifer by Surfactant-Enhanced Air Sparging

    • 摘要: 通过一维砂柱实验研究了阴离子表面活性剂十二烷基苯磺酸钠(SDBS)对空气扰动技术(air sparging,AS)修复氯苯污染地下水的强化效果.结果表明,SDBS的加入降低了地下水的表面张力,减小了水气两相毛细压力,从而提高了地下水中的空气饱和度.当曝气量为100 mL/min,地下水的表面张力由72.2 mN/m降至49.5 mN/m时,地下水中空气饱和度由13.2%提高至50.1%,而后随着表面张力的进一步降低,空气饱和度不再提高,反而有小幅下降.通过污染物的去除实验发现,SDBS的加入大大提高了氯苯的去除率,且去除率的变化与空气饱和度的变化趋势基本相符.因此,表面活性剂的加入可以作为空气扰动技术一种十分有效的强化手段.

       

    • 图  1  实验装置

      a.待进溶液;b.活性炭管;c.气体取样孔;d.柱体;e.取样孔;f.流量计;g.曝气泵

      Fig.  1.  Experimental setup

      图  2  中砂中水气两相Sw-hc关系

      Fig.  2.  Water retention curves in medium sand

      图  3  不同曝气量和SDBS浓度下空气饱和度的变化情况

      Fig.  3.  Air saturation at different air flow rates and SDBS concentration

      图  4  不同表面张力下介质中孔道分布示意

      Fig.  4.  A schematic diagram of channel distribution in medium sand at different surface tension

      图  5  不同表面张力下氯苯的去除情况

      Fig.  5.  Chlorobenzene removal vs. time at different surface tension

      表  1  实验用砂理化性质

      Table  1.   Properties of sands used in experiment

      粒径(mm) pH TOC (%) 渗透系数(m/s) 孔隙度 堆积密度(g/cm3)
      中砂 0.25~0.5 6.96 0.1 4.8×10-4 0.38 1.58
      注:以上数据由吉林大学环境工程实验室提供.
      下载: 导出CSV

      表  2  空气饱和度实验参数

      Table  2.   Schedule of testing programm in air saturation experiment

      表面活性剂 介质 浓度(mg/L) 表面张力(mN/m) 曝气量(mL/min)
      SDBS 中砂 0 72.2 6, 16, 40, 100, 160, 400, 833, 1 667, 2 500, 3 333
      150 59.0
      250 54.6
      350 49.5
      500 45.2
      1 000 39.6
      下载: 导出CSV
    • Brooks, R.H., Corey, A.T., 1966. Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division, 92(IR2): 61-68. http://www.researchgate.net/publication/231222048_Properties_of_Porous_Media_Affecting_Fluid_Flow
      Corey, A.T., 1994. Mechanics of immiscible fluids in porous media. Water Resources Publications, Highland Ranch, Colorado.
      Fetter, C.W., 1999. Contaminant hydrology. Prentice Hall, Upper Saddle River, NJ.
      Hall, B.L., Lachmar, T.E., Dupont, R.R., 2000. Field monitoring and performance evaluation of an in situ air sparging system at a gasoline-contaminated site. Journal of Hazardous Materials, 74(3): 165-186. doi: 10.1016/S0304-3894(99)00189-2
      Ji, W., Dahmani, A., Ahlfeld, D.P., et al., 1993. Laboratory study of air sparging: air flow visualization. Ground Water Monitoring Remediation, 13(4): 115-126. doi: 10.1111/j.1745-6592.1993.tb00455.x
      Johnston, C.D., Rayner, J.L., Briegel, D., 2002. Effectiveness of in situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, western Australia. Journal of Contaminant Hydrology, 59(1-2): 87-111. doi: 10.1016/S0169-7722(02)00077-3
      Kim, H., Annable, M.D., 2006. Effect of surface tension reduction on VOC removal during surfactant-enhanced air sparging. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. , 41(12): 2799-2811. http://www.ncbi.nlm.nih.gov/pubmed/17114108
      McCray, J.E., Falta, R.W., 1997. Numerical simulation of air sparging for remediation of NAPL contamination. Ground Water, 35(1): 99-110. doi: 10.1111/j.1745-6584.1997.tb00065.x
      Reddy, K.R., Semer, R., Adams, J.A., 1999. Air flow optimization and surfactant enhancement to remediate toluene-contaminated saturated soils using air sparging. Environ. Manag. Health, 10(1): 52-63. doi: 10.1108/09566169910257239
      Semer, R., Reddy, K.R., 1998. Mechanisms controlling toluene removal from saturated soils during in situ air sparing. Journal of Hazardous Materials, 57(1-3): 209-230. doi: 10.1016/S0304-3894(97)00095-2
      Sharma, R.S., Mohamed, M.H.A., 2003. An experimental investigation of LNAPL migration in an unsaturated/saturated sand. Engineering Geology, 70(3-4): 305-313. doi: 10.1016/S0013-7952(03)00098-X
      Waduge, W.A.P., Soga, K., Kawabata, J., 2004. Effect of NAPL entrapment conditions on air sparging remediation efficiency. Journal of Hazardous Materials, 110(1-3): 173-183. doi: 10.1016/j-jhazmat.2004.02.050
      Zhang, M., Burns, S.E., 2000. Surfactant effects on the transport of air bubbles in porous media. In: proceedings of Sessions of Geo-Denver 2000—Environmental Geotechnics. American Society of Civil Engineers, 121-131. [doi: 10.1061/40519(293)9]
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  3310
    • HTML全文浏览量:  510
    • PDF下载量:  65
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-10-15
    • 刊出日期:  2011-07-01

    目录

      /

      返回文章
      返回