Remediation of Chlorobenzene Polluted Aquifer by Surfactant-Enhanced Air Sparging
-
摘要: 通过一维砂柱实验研究了阴离子表面活性剂十二烷基苯磺酸钠(SDBS)对空气扰动技术(air sparging,AS)修复氯苯污染地下水的强化效果.结果表明,SDBS的加入降低了地下水的表面张力,减小了水气两相毛细压力,从而提高了地下水中的空气饱和度.当曝气量为100 mL/min,地下水的表面张力由72.2 mN/m降至49.5 mN/m时,地下水中空气饱和度由13.2%提高至50.1%,而后随着表面张力的进一步降低,空气饱和度不再提高,反而有小幅下降.通过污染物的去除实验发现,SDBS的加入大大提高了氯苯的去除率,且去除率的变化与空气饱和度的变化趋势基本相符.因此,表面活性剂的加入可以作为空气扰动技术一种十分有效的强化手段.Abstract: The strengthening effect of anionic surfactant sodium dodecyl benzene sulfonate (SDBS) on air sparging (AS) was investigated using a series of one-dimensional column experiments. The results show that the addition of SDBS into groundwater lowered the groundwater surface tension, which in turn reduced the air entry capillary pressure. As a result, the air saturation in groundwater was increased accordingly. At the air injection rate of 100 mL/min, the surface tension reduction from 72.2 mN/m to 49.5 mN/m led to air saturation enhancement from 13.2% to 50.1%. As the surface tension further decreased, the air saturation no longer increased, but slightly reduced instead. Through the contaminant removal experiment, it was found that the addition of SDBS greatly increased the chlorobenzene removal efficiency, and the change trend of removal efficiency was almost the same to the change of air saturation. Thus, the addition of surfactant into groundwater can be an effective method to enhance air sparging.
-
Key words:
- surfactant-enhanced /
- air sparging /
- pollution control /
- air saturation /
- environmental engineering
-
表 1 实验用砂理化性质
Table 1. Properties of sands used in experiment
粒径(mm) pH TOC (%) 渗透系数(m/s) 孔隙度 堆积密度(g/cm3) 中砂 0.25~0.5 6.96 0.1 4.8×10-4 0.38 1.58 注:以上数据由吉林大学环境工程实验室提供. 表 2 空气饱和度实验参数
Table 2. Schedule of testing programm in air saturation experiment
表面活性剂 介质 浓度(mg/L) 表面张力(mN/m) 曝气量(mL/min) SDBS 中砂 0 72.2 6, 16, 40, 100, 160, 400, 833, 1 667, 2 500, 3 333 150 59.0 250 54.6 350 49.5 500 45.2 1 000 39.6 -
Brooks, R.H., Corey, A.T., 1966. Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division, 92(IR2): 61-68. http://www.researchgate.net/publication/231222048_Properties_of_Porous_Media_Affecting_Fluid_Flow Corey, A.T., 1994. Mechanics of immiscible fluids in porous media. Water Resources Publications, Highland Ranch, Colorado. Fetter, C.W., 1999. Contaminant hydrology. Prentice Hall, Upper Saddle River, NJ. Hall, B.L., Lachmar, T.E., Dupont, R.R., 2000. Field monitoring and performance evaluation of an in situ air sparging system at a gasoline-contaminated site. Journal of Hazardous Materials, 74(3): 165-186. doi: 10.1016/S0304-3894(99)00189-2 Ji, W., Dahmani, A., Ahlfeld, D.P., et al., 1993. Laboratory study of air sparging: air flow visualization. Ground Water Monitoring Remediation, 13(4): 115-126. doi: 10.1111/j.1745-6592.1993.tb00455.x Johnston, C.D., Rayner, J.L., Briegel, D., 2002. Effectiveness of in situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, western Australia. Journal of Contaminant Hydrology, 59(1-2): 87-111. doi: 10.1016/S0169-7722(02)00077-3 Kim, H., Annable, M.D., 2006. Effect of surface tension reduction on VOC removal during surfactant-enhanced air sparging. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng. , 41(12): 2799-2811. http://www.ncbi.nlm.nih.gov/pubmed/17114108 McCray, J.E., Falta, R.W., 1997. Numerical simulation of air sparging for remediation of NAPL contamination. Ground Water, 35(1): 99-110. doi: 10.1111/j.1745-6584.1997.tb00065.x Reddy, K.R., Semer, R., Adams, J.A., 1999. Air flow optimization and surfactant enhancement to remediate toluene-contaminated saturated soils using air sparging. Environ. Manag. Health, 10(1): 52-63. doi: 10.1108/09566169910257239 Semer, R., Reddy, K.R., 1998. Mechanisms controlling toluene removal from saturated soils during in situ air sparing. Journal of Hazardous Materials, 57(1-3): 209-230. doi: 10.1016/S0304-3894(97)00095-2 Sharma, R.S., Mohamed, M.H.A., 2003. An experimental investigation of LNAPL migration in an unsaturated/saturated sand. Engineering Geology, 70(3-4): 305-313. doi: 10.1016/S0013-7952(03)00098-X Waduge, W.A.P., Soga, K., Kawabata, J., 2004. Effect of NAPL entrapment conditions on air sparging remediation efficiency. Journal of Hazardous Materials, 110(1-3): 173-183. doi: 10.1016/j-jhazmat.2004.02.050 Zhang, M., Burns, S.E., 2000. Surfactant effects on the transport of air bubbles in porous media. In: proceedings of Sessions of Geo-Denver 2000—Environmental Geotechnics. American Society of Civil Engineers, 121-131. [doi: 10.1061/40519(293)9] -