• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    软弱地质体对挤压构造变形影响的物理模拟及其应用

    徐子英 孙珍 周蒂 张云帆 孙龙涛 赵中贤 李付成

    徐子英, 孙珍, 周蒂, 张云帆, 孙龙涛, 赵中贤, 李付成, 2011. 软弱地质体对挤压构造变形影响的物理模拟及其应用. 地球科学, 36(5): 921-930. doi: 10.3799/dqkx.2011.097
    引用本文: 徐子英, 孙珍, 周蒂, 张云帆, 孙龙涛, 赵中贤, 李付成, 2011. 软弱地质体对挤压构造变形影响的物理模拟及其应用. 地球科学, 36(5): 921-930. doi: 10.3799/dqkx.2011.097
    XU Zi-ying, SUN Zhen, ZHOU Di, ZHANG Yun-fan, SUN Long-tao, ZHAO Zhong-xian, LI Fu-cheng, 2011. Discussion on the Influence of Weakness Body on Compression Structure Deformation Through Analogue Modeling and Its Application. Earth Science, 36(5): 921-930. doi: 10.3799/dqkx.2011.097
    Citation: XU Zi-ying, SUN Zhen, ZHOU Di, ZHANG Yun-fan, SUN Long-tao, ZHAO Zhong-xian, LI Fu-cheng, 2011. Discussion on the Influence of Weakness Body on Compression Structure Deformation Through Analogue Modeling and Its Application. Earth Science, 36(5): 921-930. doi: 10.3799/dqkx.2011.097

    软弱地质体对挤压构造变形影响的物理模拟及其应用

    doi: 10.3799/dqkx.2011.097
    基金项目: 

    中国科学院知识创新工程重要方向项目群项目 KZCX2-YW-Q05-04

    国家重点基础研究发展“973”计划 2009CB219401

    国家重点基础研究发展“973”计划 2007CB41170405

    国家自然科学基金项目 40876026

    详细信息
      作者简介:

      徐子英(1981—), 女, 博士研究生, 主要从事构造分析与油气系统模拟研究

      通讯作者:

      孙珍, E-mail: zhensun@scsio.ac.cn

    • 中图分类号: P736.1

    Discussion on the Influence of Weakness Body on Compression Structure Deformation Through Analogue Modeling and Its Application

    • 摘要: 为了研究软弱地质体对挤压构造变形的影响, 利用物理模拟方法, 设置了6组实验模型, 探讨软弱体不同面积、所处位置和挤压应力方向对构造变形的影响, 最后基于模拟结果, 讨论了软弱体对莺—琼两盆地凹陷中心挤压褶皱发育的影响.结果表明: 在挤压作用下, 软弱区先迅速隆起, 随后隆起向无软弱体区延伸发育, 软弱区隆起发育范围大于无软弱体区隆起范围, 且其褶皱变形比无软弱体区变形更强烈; 随着软弱体铺设面积不断增大, 软弱区的变形范围越来越大, 变形也越来越强烈, 而无软弱体区变形范围基本保持不变; 软弱区离所受挤压边界距离越近, 挤压构造变形发育就越早, 表现越强烈, 反之, 构造变形发育晚且表现弱; 正向挤压比斜向挤压形成的构造变形更强烈.由分析可知, 与莺—琼两盆地凹陷中心的挤压褶皱发育特征相关的因素主要是: 软弱体和其与受斜向挤压作用带间有一定距离.笔者推测, 斜压应力主要来源于印支地块的左旋挤出作用, 其褶皱个体发育的区域大小与软弱体初始面积大小有关.

       

    • 图  1  南海北部莺—琼盆地拉张因子分布特征及相关反转构造发育剖面

      a.南海北部地壳拉张因子等值分布(改自Zhang et al., 2008); b.莺歌海盆地临高隆起地震解释剖面(钟志洪等, 2007);c.琼东南盆地南部坳陷测线结构

      Fig.  1.  The distribution of stretching factor and the profiles with inversion structures in the Yinggehai and Qiongdongnan basins, north of the South China Sea

      图  2  模拟实验系统及初始岩石圈流变结构

      a.实验装置; b.实验剖面; c.正常岩石圈初始流变结构; d.含软弱体的岩石圈初始流变结构; 黑实线.理论曲线(据Brun et al., 1999); 虚线.实验曲线; VD.速度不连续带; BC.脆性地壳; DC.韧性地壳; BM.脆性地幔; DM.韧性地幔

      Fig.  2.  Experimental system and initial lithosphere rheological structures

      图  3  模型1:无软弱体正向挤压实验变形过程平面和剖面

      a1, b1, c1.原始平面、剖面图; a2, b2, c2.解释图; 黑体向上箭头.挤压方向; 带有三角形的白实线.逆冲断层和倾向; 黑实线.剖面线; 图中代号下同

      Fig.  3.  Model 1: the surface and profile deformation of without weakness body and normal compression

      图  4  模型2:窄软弱体跨速度不连续带正向挤压实验变形过程平面图和剖面

      黄色虚线框.软弱区大致位置; 黄色粘滞体.软弱体; 以下均同

      Fig.  4.  Model 2: the surface and profile deformation of narrow weakness body with stride VD and normal compression

      图  5  模型3:中等宽度软弱体跨速度不连续带正向挤压实验变形过程平面和剖面(图中代号及图例解释同图 3, 图 4)

      Fig.  5.  Model 3: the surface and profile deformation of moderate weakness body with stride VD and normal compression

      图  6  模型4:宽软弱体跨速度不连续带正向挤压实验变形过程平面和剖面(图中代号及图例解释同图 3, 图 4)

      Fig.  6.  Model 4: the surface and profile deformation of large weakness body with stride VD and normal compression

      图  7  模型5:软弱体远离速度不连续带分布和正向挤压实验变形过程平面和剖面(图中代号及图例解释同图 3, 图 4)

      Fig.  7.  Model 5: the surface and profile deformation of weakness body with far from VD and normal compression

      图  8  模型6:软弱体远离速度不连续带分布和斜向SE135°挤压实验变形过程平面和剖面图

      黑色实线框.隆起范围; 红色实线.细小剪切断裂

      Fig.  8.  Model 6: the surface and profile deformation of weakness body with far from VD and oblique compression

      图  9  不同模型的隆起高度随加载的变化特点

      实心标记为无软弱体区隆起高度; 空心标记为有软弱体区隆起高度

      Fig.  9.  Features of uplift height with the changed load of different models

      图  10  不同模型隆起宽度随加载的变化特征

      实心标记为无软弱体区隆起高度; 空心标记为有软弱体区隆起高度

      Fig.  10.  Features of uplift wide with the changed load of different models

      表  1  实验材料与对应地质体参数

      Table  1.   1 Parameters of the analogue materials and the natural counterpart

      模拟对象 对应材料 密度(kg·m-3) 粘度(Pa·s) 流变学特征
      脆性上地壳和同构造沉积 松散石英砂 1 200 莫尔—库仑准则
      韧性下地壳 砂+红色硅酮 1 300 104~105 指数定律
      软弱体 黄色染料+丙醇 1 260 101~102 牛顿流变定律
      下载: 导出CSV
    • [1] Bigi, S., Paolo, L. D., Vadacca, L., et al., 2010. Load and unload as interference factors on cyclical behavior and kinematics of Coulomb wedges: insights from sandbox experiments. Journal of Structural Geology, 32(1): 28-44. doi: 10.1016/j.jsg.2009.06.018.
      [2] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated interpretation of magnetic anomalies and seafloor spreading in the South China Sea: implications for the Tertiary tectonics of Southeast Asia. J. Geophys. Res. , 98(B4): 6299-6328. doi: 10.1029/92JB02280.
      [3] Brun, J. P., 1999. Narrow rifts versus wide rifts: inferences for the mechanics of rifting from laboratory experiments. Phil. Trans. R. Soc. Lond. A (Philosophical Transactions of the Royal Society A), 357(1753): 695-712. doi: 10.1098/rsta.1999.0349.
      [4] Callot, J. P., Grigne, C., Geoffroy, L., et al., 2001. Development of volcanic passive margins: two-dimensional laboratory models. Tectonics, 20(1): 148-149. doi: 10.1029/2000TC900030
      [5] Corti, G., Bonini, M., Innocenti, F., et al, 2001. Centrifuge models simulating magma emplacement during oblique rifting. Journal of Geodynamics, 31(5): 557-576. doi: 10.1016/S0264-3707(01)00032-1.
      [6] Corti, G., Bonini, M., Conticelli S., et al., 2003. Analogue modeling of continental extension: a review focused on the relations between the patterns of deformation and the presenceof magma. Earth-Science Reviews, 63(3-4): 169-247. doi: 10.1016/S0012-8252(03)00035-7.
      [7] Corti, G., Manetti, P., 2006. Asymmetric rifts due to asymmetric Mohos: an experimental approach. Earth and Planetary Science Letters, 245(1-2): 315-329. doi: 10.1016/j.epsl.2006.02.004.
      [8] Cruden, A. R., Koyi, H., Schmeling, H., 1995. Diapiric basal entrainment of mafic into felsic magma. Earth and Planetary Science Letters, 131(3-4): 321-340. doi: 10.1016/0012-821X(95)00033-9.
      [9] Davy, P., 1991. Experiment on shortening of a 4-layer model of the continental lithosphere. Tectonophysics, 188(12): 1-25. doi: 10.1016/0040-1951(91)90311-F.
      [10] Duerto, L., McClay, K., 2009. The role of syntectonic sedimentation in the evolution of doubly vergent thrust wedges and foreland folds. Marine and Petroleum Geology, 26(7): 1051-1069. doi: 10.1016/j.marpetgeo.2008.07.004.
      [11] Galland, O., Cobbold, P. R., Hallot, E., et al., 2006. Use of vegetable oil and silica powder for scale modelling of magmatic intrusion in a deforming brittle crust. Earth and Planetary Science Letters, 243(3-4): 786-804. doi: 10.1016/j.epsl.2006.01.014.
      [12] Graveleau, F., Dominguez, S., 2008. Analogue modelling of the interaction between tectonics, erosion and sedimentation in foreland thrust belts. Tectonics, 340(5): 324-333. doi: 10.1016/j.crte.2008.01.005.
      [13] Keep, M., 2003. Physical modelling of deformation in the Tasman orogenic zone. Tectonophysics, 375(1-4): 37-47. doi: 10.1016/j.tecto.2003.06.002.
      [14] Marques, F. O., 2008. Thrust initiation and propagation during shortening of a 2-layer model lithosphere. Journal of Structural Geology, 30(1): 29-38. doi: 10.1016/j.jsg.2007.09.005
      [15] McClay, K. R., Whitehouse, P. S., Dooley, T., et al., 2004.3D evolution of fold and thrust belts formed by oblique convergence. Marine and Petroleum Geology, 21(7): 857-877. doi: 10.1016/j.marpetgeo.2004.03.009.
      [16] Montanari, D., Corti, G., Sani, F., et al., 2010. Experiment investigation on granite emplacement during shortening. Tectonophysics, 484(1-4): 147-155. doi: 10.1016/j.tecto.2009.09.010.
      [17] Pichot, T., Nalpas, T., 2009. Influence of synkinematic sedimentation in a thrust system with two decollement levels; analogue modeling. Tectonophysics, 473(3-4): 466-475. doi: 10.1016/j.tecto.2009.04.003.
      [18] Shan, J. Z., 2004. Three-dimensional physical experiments of symmetrical fold. Petroleum Exprolation and Development, 31(5): 8-10 (in Chinese with English abstract).
      [19] Sun, Z., Sun, L. T., Zhou, D., et al., 2009. Discussion on the South China Sea evolution and lithospheric breakup through 3D anologue modeling. Earth Science—Journal of China University of Geosciences, 34(3): 435-447 (in Chinese with English abstract). doi: 10.3799/dqkx.2009.049
      [20] Sun, Z., Zhong, Z. H., Zhou, D., 2007. The analysis and analogue modeling of the tectonic evolution and strong subsidence in the Yinggehai basin. Earth Science—Journal of China University of Geosciences, 32(3): 347-356.
      [21] Sun, Z., Zhou, D., Zhong, Z. H., et al., 2003. Experimental evidence for the dynamics of the formation of the Yinggehai basin, NW South China Sea. Tectonophysics, 372: 41-58. doi: 10.1016/S0040-1951(03)00230-0
      [22] Sun, Z., Zhou, D., Zhong, Z. H., et al., 2006. Research on the dynamics of the South China Sea opening; evidence from analogue modeling. Science in China (Ser. D), 49(3): 258-271. doi: 10.1007/s11430-006-0258-z
      [23] Tibaldi, A., 2008. Contractional tectonics and magma paths in volcanoes. Journal of Volcanology and Geothermal Research, 176(2): 291-301. doi: 10.1016/j.jvolgeores.2008.04.008.
      [24] Tron, V., Brun, J. P., 1991. Experiments on oblique rifting in brittle-ductile systems. Tectonophysics, 188(1-2): 71-84. doi: 10.1016/0040-1951(91)90315-J.
      [25] Wang, Y., Wang, Y. M., Zhao, X. K., 2004. Application of simulation experiment to the study of structural evolution: an example of the Zhuang Xi buried hill. Petroleum Geology and Experiment, 26(3): 308-312 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200403017.htm
      [26] Wei, C. G., Zhou, J. X., He, Y. D., 2004. Experimental study with sandbox of the influence of rock's intensity on formation of thrusts. Earth Science Frontiers, 11(4): 559-565 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200404032.htm
      [27] Xie, Y. H., Zhao, K., Zhou, J. X., et al, 2010. Physical modeling of the effects of surface configurations on structural features of thrust zones. Sedimentary Geology and Tethyan Geology, 30(1): 89-92 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD201001016.htm
      [28] Zhang, Y. F., Sun, Z., Zhou, D., et al., 2008. Stretching characteristics and its dynamic significance of the northern continental margin of South China Sea. Science in China (Ser. D), 51(3): 422-430. doi: 10.1007/s11430-008-0019-2.
      [29] Zhou, J. X., Wei, C. G., Zhu, Z. J., 2002. Influence of substrate contraction on the deformational characteristics of compressional structures: insights from sandbox experiments. Earth Science Frontiers, 9(4): 377-382 (in Chinese with English abstract).
      [30] Zhou, J. X., Xu, F. Y., Zhu, Z. J, 2003. Physical modeling of the Cenozoic deformation in northern Qaidam basin. Acta Geoscientia Sinica, 24(4): 299-304 (in Chinese with English abstract).
      [31] Zhou, J. X., Zhou, J. S., 2006. Mechanisms of Cenozoic deformation in the Bohai basin, Northeast China: physical modeling and discussions. Science in China (Ser. D), 49(10): 1053-1069. doi: 10.1007/s11430-006-1053-6
      [32] Zhu, Z. J., Zhou, J. X., 2003. Experimental study on influence of substrate contraction on structural patterns of oblique compressional basin. Geotectonica et Metallogenia, 27(4): 390-394 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=DGYK200304010&dbcode=CJFD&year=2003&dflag=pdfdown
      [33] 单家增, 2004. 对称褶皱形成的三维构造物理模拟实验. 石油勘探与开发, 31(5): 8-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200405002.htm
      [34] 孙珍, 孙龙涛, 周蒂, 等, 2009. 南海岩石圈破裂方式与扩张过程的三维物理模拟. 地球科学——中国地质大学学报, 34(3): 435-447. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200903008.htm
      [35] 孙珍, 钟志洪, 周蒂, 2007. 莺歌海盆地构造演化与强烈沉降机制的分析和模拟. 地球科学——中国地质大学学报, 32(3): 347-356. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200703006.htm
      [36] 王颖, 王英民, 赵锡奎, 2004. 构造模拟实验在构造研究中的应用——以桩西潜山为例. 石油实验地质, 26(3): 308-312. doi: 10.3969/j.issn.1001-6112.2004.03.017
      [37] 魏春光, 周建勋, 何雨丹, 2004. 岩石强度对冲断层形成特征影响的砂箱实验研究. 地学前缘, 11(4): 559-565. doi: 10.3321/j.issn:1005-2321.2004.04.022
      [38] 谢玉华, 赵坤, 周建勋, 等, 2010. 地表几何形态对冲断带构造特征影响的物理模拟实验研究. 沉积与特提斯地质, 30(1): 89-92. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201001016.htm
      [39] 周建勋, 魏春光, 朱战军, 2002. 基底收缩对挤压构造变形特征影响——来自砂箱实验的启示. 地学前缘, 9(4): 377-382. doi: 10.3321/j.issn:1005-2321.2002.04.017
      [40] 周建勋, 徐凤银, 朱战军, 2003. 柴达木盆地北缘新生代构造变形的物理模拟. 地球学报, 24(4): 299-304. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200304001.htm
      [41] 朱战军, 周建勋, 2003. 基底收缩对斜向挤压盆地构造格局影响的实验研究. 大地构造与成矿学, 27(4): 390-394. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200304010.htm
    • 加载中
    图(10) / 表(1)
    计量
    • 文章访问数:  3584
    • HTML全文浏览量:  648
    • PDF下载量:  64
    • 被引次数: 0
    出版历程
    • 收稿日期:  2011-05-28
    • 刊出日期:  2011-09-15

    目录

      /

      返回文章
      返回