• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    盆地地下水流模式及其转化与控制因素

    梁杏 牛宏 张人权 刘彦 靳孟贵

    梁杏, 牛宏, 张人权, 刘彦, 靳孟贵, 2012. 盆地地下水流模式及其转化与控制因素. 地球科学, 37(2): 269-275. doi: 10.3799/dqkx.2012.028
    引用本文: 梁杏, 牛宏, 张人权, 刘彦, 靳孟贵, 2012. 盆地地下水流模式及其转化与控制因素. 地球科学, 37(2): 269-275. doi: 10.3799/dqkx.2012.028
    LIANG Xing, NIU Hong, ZHANG Ren-quan, LIU Yan, JIN Meng-gui, 2012. Basinal Groundwater Flow Patterns and Their Transformation and Dominant Factors. Earth Science, 37(2): 269-275. doi: 10.3799/dqkx.2012.028
    Citation: LIANG Xing, NIU Hong, ZHANG Ren-quan, LIU Yan, JIN Meng-gui, 2012. Basinal Groundwater Flow Patterns and Their Transformation and Dominant Factors. Earth Science, 37(2): 269-275. doi: 10.3799/dqkx.2012.028

    盆地地下水流模式及其转化与控制因素

    doi: 10.3799/dqkx.2012.028
    基金项目: 

    国家重点基础研究发展计划"973计划" 2010CB428802

    中国地质调查局计划项目专题 12120733908

    详细信息
      作者简介:

      梁杏(1958-), 女, 教授, 从事地下水流系统理论与工程水文地质方向的教学科研工作.E-mail: xliang@cug.edu.cn

    • 中图分类号: X141

    Basinal Groundwater Flow Patterns and Their Transformation and Dominant Factors

    • 摘要: Tóth(1963)在复杂盆地给定上边界水头条件下, 推演出多级次地下水流系统.运用此方法探讨水流模式, 改变盆地介质或盆地深度等条件, 盆地水均衡会同步发生变化; 同时, 给定上边界水头也固化了盆地的势源与势汇的位置与数目, 这与实际条件不相符合, 也限制了地下水流模式的转化研究.在总结实验条件下多级水流系统特征的基础上, 提出了通量上边界的地下水流系统模拟方法(简称CUG-GWFS方法), 并进行了水流系统数值模拟.结果表明: (1)在多个可能势汇的盆地中, 可以发育5种地下水流模式, 即: 简单区域水流系统(RS)、局部+区域两级嵌套水流系统(LS+RS)、局部+中间+区域三级嵌套水流系统(LS+MS+RS)、局部+中间两级嵌套水流系统(LS+MS)和简单局部水流系统(LS).(2)盆地地下水流模式受盆地入渗强度、介质条件、盆地长度与深度比值, 以及盆地可能势汇的多少与位置的影响.(3)保持其他条件不变, 单独加大盆地入渗强度比Ric, 或加大盆地长深比Rld, 盆地水流模式按照上述5种模式呈现有序转化.

       

    • 图  1  小型潜水盆地二维剖面数学模型图示(Tóth, 1963)

      Fig.  1.  Idealized cross-section of a drainage basin's valley flank of the sinusoidal water table

      图  2  均质各向同性潜水盆地地下水流系统(Tóth, 1963;理论地形势垂向放大)

      图中1、3、5、7、9代表地形势源区;2、4、6、8、10代表地形势汇区

      Fig.  2.  Theoretical flow pattern and boundaries between different flow systems

      图  3  A类模型概化及势汇分布

      Fig.  3.  Model generalization, discretization and distribution of potential sinks for Model A

      图  4  一组改变入渗强度ε的盆地地下水流模式

      a.ε=0.05 mm/d;b.ε=0.2 mm/d;c.ε=0.5 mm/d;d.ε=1 mm/d;e.ε=1.25 mm/d

      Fig.  4.  Groundwater flow patterns for different infiltration intensities

      图  5  一组改变入盆地深度d的盆地地下水流模式

      a.等水头线取水头差0.2,且垂向比例显示减小了一倍;b~e为等水头线取水头差0.5;a.Rld=1;b.Rld=4;c.Rld=10;d.Rld=20;e.Rld=25

      Fig.  5.  Groundwater flow patterns under different basin depths

      表  1  不同入渗强度比Ric的地下水流模拟结果

      Table  1.   Simulated results for different ratios of infiltration intensity to hydraulic conductivity

      A类Ⅰ组 A类Ⅱ组 Ric(10-3) 地下水流模式
      渗透系数K(m/d) 入渗强度ε(mm/d) 渗透系数K(m/d) 入渗强度ε(mm/d)
      AⅠ-a 0.1 0.05 AⅡ-a 1.00 0.5 0.5 一级RS
      AⅠ-b 0.1 0.20 AⅡ-b 0.25 0.5 2.0 二级RS+LS
      AⅠ-c 0.1 0.50 AⅡ-c 0.10 0.5 5.0 三级RS+MS+LS
      AⅠ-d 0.1 1.00 AⅡ-d 0.05 0.5 10.0 二级MS+LS
      AⅠ-e 0.1 1.25 AⅡ-e 0.04 0.5 12.5 一级LS
      注:模拟的盆地长度与深度之比为10;Ric=ε/k
      下载: 导出CSV

      表  2  逐渐减小盆地深度的地下水流模拟结果

      Table  2.   Simulated results for different ratios of basin length to depth

      B类 长度l(m) 深度d(m) S1坐标(x, z) S2坐标(x, z) S3坐标(x, z) Rld 地下水流模式
      B-a 500 515 (0,500) (200,503) (400,506) 1 一级RS
      B-b 500 140 (0,125) (200,128) (400,131) 4 二级RS+LS
      B-c 500 65 (0,50) (200,53) (400,56) 10 三级RS+MS+LS
      B-d 500 40 (0,25) (200,28) (400,31) 20 二级MS+LS
      B-e 500 35 (0,20) (200,23) (400,26) 25 一级LS
      下载: 导出CSV

      表  3  入渗强度比Ric×长深比Rld相等时的水流模式

      Table  3.   Flow patterns for different Ric×Rld

      A类改变入渗强度比Ric B类改变长深比Rld 地下水流模式
      Rld Ric(10-3) Ric×Rld Ric(10-3) Rld Ric×Rld
      10 0.5 5 5 1 5 一级RS
      10 2.0 20 5 4 20 二级RS+LS
      10 5.0 50 5 10 50 三级RS+MS+LS
      10 10.0 100 5 20 100 二级MS+LS
      10 12.5 125 5 25 125 一级LS
      下载: 导出CSV
    • Engelen, G.B., Jones, G.P., 1986. Developments in the analysis of groundwater flow sytems, No. 163. IAHS Publication, Wallingford.
      Engelen, G.B., Kloosterman, F.H., 1996. Hydrological systems analysis: methods and applications. Kluwer Academic Publisher, Dordrecht.
      Eótvós Loránd University. (ed. ), 2008. From the artesian paradigm to basin hydraulics—the contribution of József Tóth to hungarian hydrogeology. Publishing Company of Budapest University of Technology and Economics, Budapest.
      Freeze, R.A., Witherspoon, P.A., 1966. Theoretical analysis of regional groundwater flow: 1. analytical and numerical solutions to the mathematical model. Water Resource. Res., 2(4): 641-656. doi: 10.1029/WR002i004p00641
      Freeze, R.A., Witherspoon, P.A., 1967. Theoretical analysis of regional groundwater flow: 2. effect of water-table configuration and subsurface permeability variations. Water Resource. Res., 3(2): 623-634. doi: 10.1029/WR003i002p00623
      Freeze, R.A., Witherspoon, P.A., 1968. Theoretical analysis of regional groundwater flow: 3. quantitative interpretation. Water Resource. Res., 4: 581-590. doi: 10.1029/WR004i003p00581
      Jiang, X.W., Wan, L., Cardenas, M.B., et al., 2010. Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying hydraulic conductivity and porosity. Geophysical Research Letters, 37(5): L05403, doi: 10.1029/2010GL042387
      Jiang, X.W., Wan, L., Wang, X.S., et al., 2009. Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow. Geophysical Research Letters, 36(24): L24402. doi: 10.1029/2009GL041251
      Liang, X. Liu, Y., Jin, M.G., et al., 2010. Direct observation of complex Tóthian groundwater flow systems in the laboratory. Hydrological Processes, 24: 3568-3573. doi: 10.1002/hyp.7758
      Liang, X., Shen, Z.Z., Liu, Y., et al., 2008. A multi-level sub-groundwater flow system demonstrator, China. National utility model patent, 200820066726, 2009-01-14 (in Chinese).
      Liu, Y., Jia, J., 2009. Study of groundwater flow system simulation of small drainage basin based on matlab. Groundwater, 31(3): 1-3 (in Chinese with English abstract).
      Liu, Y., Liang, X., Dong, Q.J., et al., 2010. Experiment of groundwater flow patterns under changes of infiltration intensity. Earth Science Frontiers, 17(6): 111-116 (in Chinese with English abstract). http://www.ingentaconnect.com/content/el/18725791/2010/00000017/00000006/art00015
      Tóth, J., 1963. Theoretical analysis of groundwater flow in small drainage basin. Journal of Geophysical Research, 67(11): 4375-4387. http://www.researchgate.net/publication/335339434_A_theoretical_analysis_of_groundwater_flow_in_small_drainage_basins
      Tóth, J., 1980. Cross-formation gravity flow of groundwater: a mechanism of the transport and accumulation of petroleum (The generalized hydraulic theory of petroleum migration). In: Robert Ⅲ, W., H., Cordell, R., J., eds., Problems of petroleum migration. AAPG Studies in Geology, 10: 121-167.
      Tóth, J., 1999. Groundwater as a geological agent: an overview of the cause, process, and manifestations. Hydrogeology Journal, 7(1): 1-14. doi: 10.1016/j.jcrs.2009.07.023
      Tóth, J., 2009. Gravitational system of groundwater: theory, evaluation, utilization. Cambridge University Press, New York, 297.
      Zijl, W., 1999. Scale aspects of groundwater flow and transport systems. Hydrogeology Journal, 7(1): 139-150. doi: 10.1007/s100400050185
      刘宇, 贾静, 2009. 基于Matlab小型潜水盆地地下水流动系统模拟研究. 地下水, 31(3): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-DXSU200903002.htm
      刘彦, 梁杏, 权董杰, 等, 2010. 改变入渗强度的地下水流模式实验. 地学前缘, 17(6): 111-116. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006015.htm
      梁杏, 沈仲智, 刘宇, 等, 2008. 一种多级次地下水流系统演示仪. 中国国家实用新型专利, 200820066726, 2009-01-14.
    • 加载中
    图(5) / 表(3)
    计量
    • 文章访问数:  4027
    • HTML全文浏览量:  635
    • PDF下载量:  107
    • 被引次数: 0
    出版历程
    • 收稿日期:  2011-09-20
    • 刊出日期:  2012-03-15

    目录

      /

      返回文章
      返回