• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    纳米铁对地下水中As(III)的吸附动力学

    黄园英 刘丹丹 李桂荣

    黄园英, 刘丹丹, 李桂荣, 2012. 纳米铁对地下水中As(III)的吸附动力学. 地球科学, 37(2): 294-300. doi: 10.3799/dqkx.2012.032
    引用本文: 黄园英, 刘丹丹, 李桂荣, 2012. 纳米铁对地下水中As(III)的吸附动力学. 地球科学, 37(2): 294-300. doi: 10.3799/dqkx.2012.032
    HUANG Yuan-ying, LIU Dan-dan, LI Gui-rong, 2012. Adsorption Kinetics of As (III) from Groundwater by Nanoscale Zero-Valent Iron. Earth Science, 37(2): 294-300. doi: 10.3799/dqkx.2012.032
    Citation: HUANG Yuan-ying, LIU Dan-dan, LI Gui-rong, 2012. Adsorption Kinetics of As (III) from Groundwater by Nanoscale Zero-Valent Iron. Earth Science, 37(2): 294-300. doi: 10.3799/dqkx.2012.032

    纳米铁对地下水中As(III)的吸附动力学

    doi: 10.3799/dqkx.2012.032
    基金项目: 

    水体污染控制与治理科技重大专项 2009ZX07424-002

    污染土壤和水体的环境控制与地球化学修复技术 1212011120286

    国家地质实验测试中心基本科研业务费项目 201012CSJ02

    详细信息
      作者简介:

      黄园英(1978-), 女, 副研究员, 博士, 主要从事水中污染物监测与治理技术研究.E-mail: yuanyinghuang304@163.com

    • 中图分类号: X523

    Adsorption Kinetics of As (III) from Groundwater by Nanoscale Zero-Valent Iron

    • 摘要: 实验室合成制得的纳米铁BET比表面积为49.16 m2/g, 直径范围为20~40 nm.通过批实验考察纳米铁对As(Ⅲ)吸附动力学情况.结果表明, 在20℃、pH为7时, 纳米铁能够快速地去除As(Ⅲ), 在60 min内, 0.1 g纳米铁对起始浓度为910 μg/L溶液As(Ⅲ)去除率大于99%.反应遵循准一级反应动力学方程, 标准化后的As(Ⅲ)速率常数kSA为2.6 mL/(m2·min).纳米铁对As(Ⅲ)的吸附等温曲线能够很好地满足Langmuir和Freundlich方程, 相关系数R2>0.95, 由Langmuir模型获得单层纳米铁的最大吸附量为76.3 mg/g.0.1 mol/L NaOH对吸附在纳米零价铁(NZVI)的As(Ⅲ)解吸率为21%.在竞争阴离子中, SiO32-和H2PO4-对As(Ⅲ)的去除有明显阻碍作用, 而其他离子基本上没有影响.纳米铁对As(Ⅲ)的去除机理主要是吸附和共沉淀.

       

    • 图  1  在25℃和101.3 kPa时,砷的存在形式与Eh-pH关系

      Fig.  1.  The Eh-pH relations for arsenic at 25℃ and 101.3 kPa

      图  2  纳米铁对As(Ⅲ)的去除效果随时间变化关系(固液比为0.10 g/200 mL)

      Fig.  2.  As (Ⅲ) removal versus time

      图  3  纳米铁对As(Ⅲ) Langmuir吸附等温曲线

      Fig.  3.  Langmuir isotherms for adsorption of As (Ⅲ) on NZVI

      图  4  纳米铁对As(Ⅲ) Freundlich吸附等温曲线

      Fig.  4.  Freundlich isotherms for adsorption of As (Ⅲ) on NZVI

      图  5  0.1 mol/L NaOH对吸附在纳米铁上的As(Ⅲ)解吸过程

      Fig.  5.  Desorption by of As (Ⅲ) after 21 h sorption step on NZVI by 0.1 mol/L NaOH

      图  6  XPS的分析谱图NZVI(a),吸附As(III)后的NZVI(b)

      Fig.  6.  XPS analysis of pristine NZVI (a), As (III) sorbed on NZVI (b)

      表  1  共存离子对As(III)去除率的影响

      Table  1.   Effect of coexisting ions on arsenic removal by NZVI

      共存离子浓度(mM) HCO3- SO42- Br- CO32- NO3- H2PO4- SiO32-
      20 99.8 99.8 99.8 99.8 97.5 66.5 28.8
      200 99.8 99.8 99.8 95.5 98.9 18.5 0.0
      下载: 导出CSV

      表  2  NZVI表面各元素含量

      Table  2.   Element amount of NZVI

      元素 特征能谱(eV) 反应前含量(At. %) 反应后含量(At. %)
      C1s 284.8 29.81 17.94
      O1s 530.7 55.93 56.04
      Fe2p3 711.2 11.51 10.65
      As3d 44.9 0 3.25
      Na1s 1 071.6 0 12.11
      下载: 导出CSV
    • Bang, S., Johnson, M.D., Korfiatis, G.P., et al., 2005a. Chemical reactions between arsenic and zero-valent iron in water. Water Res. , 39(5): 763-770. doi: 10.1016/j.watres.2004.12.022
      Bang, S., Korfiatis, G.P., Meng, X.G., 2005b. Removal of arsenic from water by zero-valent iron. J. Hazard. Mater. , 121(1-3): 61-67. doi: 10.1016/j.jhazmat.2005.01.030
      Boddu, V.M., Abburi, K., Talbott, J.L., et al., 2008. Removal of arsenic (III) and arsenic (V) from aqueous medium using chitosan-coated biosorbent. Water Res. , 42(3): 633-642. doi: 10.1016/j.watres.2007.08.014
      Cumbal, L., Greenleaf, J., Leun, D., et al., 2003. Polymer supported inorganic nanoparticles: characterization and environmental applications. React. Funct. Polym. , 54(1-3): 167-180. doi: 10.1016/S1381-5148(02)00192-X
      Diamadopoulos, E., Ioanidis, S., Sakellaropoulos, G.P., 1993. As (V) removal from aqueous solutions by fly ash. Water Res. , 27(12): 1773-1777. doi: 10.1016/0043-1354(93)90116-Y
      Farquhar, M.L., Charnock, J.M., Livens, F.R., et al., 2002. Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lpidocrocite, mackinawite, and pyrite: an X-ray absorption spectroscopy study. Environ. Sci. Technol. , 36(8): 1757-1762. doi: 10.1021/es010216g
      Farrell, J., Wang, J.P., O'Day, P., et al., 2001. Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media. Environ. Sci. Technol. , 35(10): 2026-2032. doi: 10.1021/es0016710
      Giménez, J., Martinez, M., de Pablo, J., et al., 2007. Arsenic sorption on to natural hematite, magnetite and goethite. J. Hazard. Mater. , 141(3): 575-580. doi: 10.1016/j.jhazmat.2006.07.020
      Guo, H.M., Stüben, D., Berner, Z., 2007. Adsorption of arsenic (III) and arsenic (V) from groundwater using natural siderite as the adsorbent. Journal of Colloid and Interface Science, 315(1): 47-53. doi: 10.1016/j.jcis.2007.06.035
      Guo, X., Chen, F., 2005. Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ. Sci. Technol. , 39(17): 6808-6818. doi: 10.1021/es048080k
      Huang, Y.Y., Liu, D.D., Liu, F., 2009a. Arsenic (III) removal from drinking water by nanoscale zero-valent iron. Ecology and Environmental Sciences, 18(1): 83-87 (in Chinese with English abstract).
      Huang, Y.Y., Qin, Z., Liu, F., 2009b. Removal of As (Ⅲ) and As (V) from drinking water by nanoscale zero valent iron. Rock and Mineral Analysis, 28(6): 529-534 (in Chinese with English abstract). doi: 10.1109/CESCE.2010.232
      Huang, C.P., Fu, P.L., 1984. Treatment of arsenic(V)-containing water by activated carbon process. Journal Water Pollution Control Federation, 56(3): 233-242.
      Kanel, S.R., Manning, B., Charlet, L., et al., 2005. Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. , 39(5): 1291-1298. doi: 10.1021/es048991u
      Korte, N.E., Fernando, Q., 1991. A review of arsenic (III) in groundwater. Critical Reviews in Environmental Control, 21(1): 1-39. doi: 10.1080/10643389109388408
      Kundu, S., Gupta, A.K., 2006. Arsenic adsorption onto iron oxide-coated cement (IOCC): regression analysis of equilibrium data with several isotherm models and their optimization. Chem. Eng. J. , 122 (1-2): 93-106. doi: 10.1016/j.cej.2006.06.002
      Lien, H.L., Wilkin, R., 2005. High-level arsenite removal from groundwater by zero-valent iron. Chemosphere, 59(3): 377-386. doi: 10.1016/j.chemosphere.2004.10.055
      Lumsdon, D.O., Evans, L.J., 1994, Surface complexation model parameters for goethite (α-FeOOH). J. Colloid Interface Sci. , 164 (1): 119-125. doi: 10.1006/jcis.1994.1150
      Manning, B.A., Hunt, M.L., Amrhein, C., et al., 2002. Arsenic (III) and arsenic (V) reactions with zerovalent iron corrosion products. Environ. Sci. Technol. , 36(24): 5455-5461. doi: 10.1021/es0206846
      Masscheleyn, P.H., DeLaune, R.D., Patrick, W.H., 1991. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. , 25(8): 1414-1419. doi: 10.1021/es00020a008
      Melitas, N., Wang, J., Conklin, M., et al., 2002. Understanding soluble arsenate removal kinetics by zerovalent iron media. Environ. Sci. Technol. , 36(9), 2074-2081. doi: 10.1021/es011250y
      Mohan, D., Pittman, C.U. Jr., 2007. Arsenic removal from water/wastewater using adsorbents—a critical review. J. Hazard. Mater. , 142(1-2): 1-53. doi: 10.1016/j.jhazmat.2007.01.006
      Pokhrel, D., Viraraghavan, T., 2006. Arsenic removal from aqueous solutions by a modified fungal biomass. Water Res. , 40(3): 549-552. doi: 10.1016/j.watres.2005.11.040
      Pratap, C., Shigeru, K., Toshinori, K., et al., 2009. Arsenic adsorption from aqueous solution on synthetic zeolites. J. Hazard. Mater. , 162: 440-447. doi: 10.1016/j.jhazmat.2008.05.061
      Su, C.M., Puls, R.W., 2001. Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediantion. Environ. Sci. Technol. , 35(7): 1487-1492. doi: 10.1021/es001607i
      Sun, H., Wang, L., Zhang, R., et al., 2006. Treatment of groundwater polluted by arsenic compounds by zero valent iron. J. Hazard. Mater. , B129: 297-303. doi: 10.1016/j.jhazmat.2005.08.026
      Sylvester, P., Westerhoff, P., Moller, T., et al., 2007. A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenic removal from drinking water. Environ. Eng. Sci. , 24(1): 104-112 doi: 10.1089/ees.2007.24.104
      U.S. EPA., 2001. National primary drinking water regulations: arsenic and clarifications to compliance and new source contaminants monitoring: final rule. Federal Register, 66(14): 69-76.
      Welch, A.H., Lico, M.S., Hughes, J.L., 1988. Arsenic in ground water of the western United States. Ground Water, 26(3): 333-347. doi: 10.1111/j.1745-6584
      Wilkie, J.A., Hering, J.G., 1998. Rapid oxidation of geothermal arsenic (III) in stream waters of the eastern Sierra Nevada. Environ. Sci. Technol. , 32(5): 657-662. doi: 10.1021/es970637r
      Zhang, W.X., Wang, C.B., Lien, H.L., 1998. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 40(4): 387-395. doi: 10.1016/S0920-5861(98)00067-4
      Zhu, H.J., Jia, Y.F., Wu, X., et al., 2009. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. , 172: 1591-1596. doi: 10.1016/j.jhazmat.2009.08.031
      Zhu, H.J., Jia, Y.F., Yao, S.H., et al., 2009. Removal of arsenate from drinking water by activated carbon supported nano zero-valent iron. Environmental Science, 30(12): 3562-3567 (in Chinese with English abstract). http://europepmc.org/abstract/MED/20187387
      黄园英, 刘丹丹, 刘菲, 2009a. 纳米铁用于饮用水中As(III)去除效果. 生态环境学报, 18(1): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200901019.htm
      黄园英, 秦臻, 刘菲, 2009b. 纳米铁去除饮用水中As(III)和As(V). 岩矿测试, 28(6): 529-534.
      朱慧杰, 贾永锋, 姚淑华, 等, 2009. 负载型纳米铁吸附剂去除饮用水中As(Ⅴ) 的研究. 环境科学, 30(12): 3562-3567. doi: 10.3321/j.issn:0250-3301.2009.12.019
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  3452
    • HTML全文浏览量:  245
    • PDF下载量:  68
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-09-20
    • 刊出日期:  2012-03-15

    目录

      /

      返回文章
      返回