• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高氯酸盐在硝酸盐还原条件下的厌氧生物降解

    王蕊 刘菲 秦莉红 陈鸿汉

    王蕊, 刘菲, 秦莉红, 陈鸿汉, 2012. 高氯酸盐在硝酸盐还原条件下的厌氧生物降解. 地球科学, 37(2): 307-312. doi: 10.3799/dqkx.2012.034
    引用本文: 王蕊, 刘菲, 秦莉红, 陈鸿汉, 2012. 高氯酸盐在硝酸盐还原条件下的厌氧生物降解. 地球科学, 37(2): 307-312. doi: 10.3799/dqkx.2012.034
    WANG Rui, LIU Fei, QIN Li-hong, CHEN Hong-han, 2012. Anaerobic Biological Reduction of Perchlorate in the Presence of Nitrate. Earth Science, 37(2): 307-312. doi: 10.3799/dqkx.2012.034
    Citation: WANG Rui, LIU Fei, QIN Li-hong, CHEN Hong-han, 2012. Anaerobic Biological Reduction of Perchlorate in the Presence of Nitrate. Earth Science, 37(2): 307-312. doi: 10.3799/dqkx.2012.034

    高氯酸盐在硝酸盐还原条件下的厌氧生物降解

    doi: 10.3799/dqkx.2012.034
    基金项目: 

    水体污染控制与治理科技重大专项项目 2009ZX07424-002

    详细信息
      作者简介:

      王蕊(1984-), 女, 博士研究生, 主要研究方向为地下水污染与控制.E-mail: wangruijoy@126.com

    • 中图分类号: X52

    Anaerobic Biological Reduction of Perchlorate in the Presence of Nitrate

    • 摘要: 利用厌氧微生物降解法, 以醋酸根为碳源, 考察了高氯酸盐在不同浓度的硝酸盐还原环境下的生物降解能力, 分析硝酸盐对高氯酸盐生物降解的影响.实验结果表明, 10mg/L的高氯酸盐在不同浓度硝酸盐环境下均可被富集培养物降解.20mg/L硝酸盐还原环境中, 高氯酸盐的降解未受到抑制; 在碳源充足的条件下, 100mg/L、200mg/L及500mg/L的硝酸盐环境中, 高氯酸盐降解出现滞后期, 分别为7d、13d和38d.反应初期, 高氯酸盐降解滞后是由于硝酸盐为优先级别较高的电子受体, 更易于被微生物利用.随着硝酸盐快速降解和亚硝酸盐的累积, 高氯酸盐降解停滞可能是由于电子竞争和较高浓度的亚硝酸盐对高氯酸盐降解菌酶活性产生毒性抑制这两方面共同作用的结果.

       

    • 图  1  高氯酸盐降解菌的驯化结果

      Fig.  1.  Acclimation results of perchlorate reduction microorganisms

      图  2  硝酸盐还原环境中NO3-的变化情况

      Fig.  2.  Changes in nitrate concentration in the presence of nitrate conditions

      图  3  硝酸盐还原环境中高氯酸盐的浓度变化情况

      Fig.  3.  Changes in perchlorate concentration in two control sets and active sets in the absence and the presence of nitrate

      图  4  (a) 100 mg/L、(b)200 mg/L、(c)500 mg/L硝酸盐环境中ClO4-、NO3-及NO2-变化

      Fig.  4.  Changes in perchlorate and nitrate/nitrite concentration in the active medium in the presence of 100 mg/L nitrate (a)、200 mg/L nitrate (b) and 500 mg/L nitrate (c)

      图  5  (a) 20 mg/L、(b)100 mg/L硝酸盐环境中的Cl-平衡

      Fig.  5.  Chloride balance in 20 mg/L (a) and 100 mg/L (b) nitrate-reducing conditions

    • Bardiya, N., Bae, J.H., Nusslein, K.R., et al., 2005. Bioremediation potential of a perchlorate-enriched sewage sludge consortium. Chemosphere, 58(1): 83-90. doi: 10.1016/j.chemosphere.2004.09.001
      Cai, Y.Q., Shi, Y.L., Zhang, P., et al., 2006. Perchlorate related environmental problems. Progress in Chemistry, 18(11): 1554-1564 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HXJZ200611017.htm
      Dasgupta, P.K., Martinelango, P.K., Jachson, W.A., et al., 2005. The origin of naturally occurring perchlorate: the role of atmospheric processes. Environ. Sci. Technol. , 39(6): 1569-1575. doi: 10.1021/es048612x
      Dudley, M., Salamone, A., Nerenberg, R., 2008. Kinetics of a chlorate-accumulating, perchlorate-reducing bacterium. Water Res. , 42(10-11): 2403-2410. doi: 10.1016/ j.watres.2008.01.009
      Farhan, Y.H., Hatzinger, P.B., 2009. Modeling the biodegradation kinetics of perchlorate in the presence of oxygen and nitrate as competing electron acceptors. Biorem. J. , 13(2): 2, 65-78. doi: 10.1080/10889860902902016
      Furdui, V.I., Tomassini, F., 2010. Trends and sources of perchlorate in Arctic snow. Environ. Sci. Technol. , 44(2): 588-592. doi: 10.1021/es902243b
      Gal, H., Ronen, Z., Weisbrod, N., et al., 2008. Perchlorate biodegradation in contaminated soils and the deep unsaturated zone. Soil Biol. Biochem. , 40(7): 1751-1757. doi: 10.1016/j.soilbil.2008.02.015
      Jackson, W.A., Bohlke, J.K., Gu, B.H., et al., 2010. Isotopic composition and origin of indigenous natural perchlorate and co-occurring nitrate in the southwestern United States. Environ. Sci. Technol. , 44(13): 4869-4876. doi: 10.1021/es903802j
      Jin, Z.F., Li, W.T., Pan, Z.Y., et al., 2006. Methods for nitrate removal from underground water. Technology of Water Treatment, 32(8): 34-37 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=22497484
      Ju, X.M., Sierra-Alvarez, R., Field, J.A., et al., 2008. Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors. Chemosphere, 71(1): 114-122. doi: 10.1016/j.chemosphere.2007.09.045
      Lee, J.W., Lee, K.H., Park, K.Y., et al., 2010. Hydrogenotrophic denitrification in a packed bed reactor: effects of hydrogen-to-water flow rate ratio. Bioresour. Technol. , 101(11): 3940-3946. doi: 10.1016/j.biortech.2010.01.022
      Nerenberg, R., Kawagoshi, Y., Rittnann, B.E., 2006. Kinetics of a hydrogen-oxidizing, perchorate-reducing bacterium. Water. Res. , 40(17): 3290-3296. doi: 10.1016/j.watres.2006.06.035
      Nozawa-Inoue, M., Scow, K.M., Rolston, D.E., 2005. Reduction of perchlorate and nitrate by microbial communities in vadose soil. Appl. Environ. Microbiol. , 71(7): 3928-3934. doi: 10.1128/AEM.71.7.3928-3934.2005
      Qian, H.J., Xi, S.L., He, P., et al., 2009. Biological reduction of perchlorate and optimization. Environmental Science, 30(5): 1402-1407 (in Chinese with English abstract). http://europepmc.org/abstract/MED/19558109
      Sahu, A.K., Conneely, T., Nusslein, K.R., et al., 2009. Biological perchlorate reduction in packed bed reactors using elemental sulfur. Environ. Sci. Technol. , 43(12): 4466-4471. doi: 10.1021/es900563f
      Shrout, J.D., Parkin, G.F., 2006. Influence of electron donor, oxygen, and redox potential on bacterial perchlorate degradation. Water Res. , 40(6): 1191-1199. doi: 10.1016/j.watres.2006.01.035
      Son, A., Lee, J., Chiu, P.C., et al., 2006. Microbial reduction of perchlorate with zero-valent iron. Water. Res. , 40(10): 2027-2032. doi: 10.1016/j.watres.2006.03.027
      Srinivasan, A., Viraraghavan, T., 2009. Perchlorate: health effects and technologies for its removal from water resources. Int. J. Environ. Res. Public Health, 6(4): 1418-1442. doi: 10.3390/ijerph6041418
      Tan, K., Anderson, T.A., Jackson, W.A., 2004. Degradation kinetics of perchlorate in sediments and soils. Water, Air, Soil Pollut. , 151(1-4): 245-259. doi: 10.1023/B:WATE.0000009904.23410.89
      Wang, D.M., Shah, S.I., Chen, J.G., et al., 2008. Catalytic reduction of perchlorate by H2 gas in dilute aqueous solutions. Sep. Purif. Technol. , 60(1): 14-21. doi: 10.1016/j.seppur.2007.07.039
      Wang, H.C., Sun, C., 2009. Inorganic and analytical chemistry experiment. Chemical Industry Publishing House, Beijing, 1-134 (in Chinese).
      Wu, D.L., He, P., Xu, X.H., et al., 2008. The effect of various reaction parameters on bioremediation of perchlorate-contamiated water. J. Hazard. Mater. , 150(2): 419-423. doi: 10.1016/j.jhazmat.2007.04.124
      Xu, J., Trimble, J.J., Steinberg, L., et al., 2004. Chlorate and nitrate reduction pathways are separately induced in the perchlorate-respiring bacterium Dechlorosoma sp. KJ and chlorate-respiring bacterium Pseudomonas sp. PDA. Water Res. , 38(3): 673-680. doi: 10.1016/j.watres.20083.10.017
      Yu, X.Y., Amrhein, C., Deshusses, M.A., et al., 2007. Perchlorate reduction by autotrophic bacteria attached to zero-valent iron in a flow-through reactor. Environ. Sci. Technol. , 41(3): 990-997. doi: 10.1021/es061959a
      Ziv-EI, M.C., Rittmann, B.E., 2009. Systematic evaluation of nitrate and perchlorate bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm reactor. Water Res. , 43(1): 173-181. doi: 10.1016/j.watres.2008.09.035
      蔡亚岐, 史亚利, 张萍, 等, 2006. 高氯酸盐的环境污染问题. 化学进展, 18(11): 1554-1564. doi: 10.3321/j.issn:1005-281X.2006.11.018
      金赞芳, 李文腾, 潘志彦, 等, 2006. 地下水硝酸盐去除方法. 水处理技术, 32(8): 34-37. doi: 10.3969/j.issn.1000-3770.2006.08.009
      钱慧静, 奚胜兰, 何平, 等, 2009. 生物法降解高氯酸盐及其优化研究. 环境科学, 30(5): 1402-1407. doi: 10.3321/j.issn:0250-3301.2009.05.025
      王和才, 孙成, 2009. 无机及分析化学实验. 北京: 化学工业出版社.
    • 加载中
    图(5)
    计量
    • 文章访问数:  3357
    • HTML全文浏览量:  387
    • PDF下载量:  77
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-09-20
    • 刊出日期:  2012-03-15

    目录

      /

      返回文章
      返回