• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    模拟有机质—矿质复合体对三氯乙烯的吸附

    李巨峰 陈鸿汉 何江涛 张坤峰

    李巨峰, 陈鸿汉, 何江涛, 张坤峰, 2012. 模拟有机质—矿质复合体对三氯乙烯的吸附. 地球科学, 37(2): 327-331. doi: 10.3799/dqkx.2012.037
    引用本文: 李巨峰, 陈鸿汉, 何江涛, 张坤峰, 2012. 模拟有机质—矿质复合体对三氯乙烯的吸附. 地球科学, 37(2): 327-331. doi: 10.3799/dqkx.2012.037
    LI Ju-feng, CHEN Hong-han, HE Jiang-tao, ZHANG Kun-feng, 2012. Sorption of Trichloroethylene by the Simulated Organo-Mineral Complexes. Earth Science, 37(2): 327-331. doi: 10.3799/dqkx.2012.037
    Citation: LI Ju-feng, CHEN Hong-han, HE Jiang-tao, ZHANG Kun-feng, 2012. Sorption of Trichloroethylene by the Simulated Organo-Mineral Complexes. Earth Science, 37(2): 327-331. doi: 10.3799/dqkx.2012.037

    模拟有机质—矿质复合体对三氯乙烯的吸附

    doi: 10.3799/dqkx.2012.037
    基金项目: 

    国家自然科学基金项目 40702060

    详细信息
      作者简介:

      李巨峰(1971-), 男, 博士, 主要从事环境监测技术和地下水修复技术的研究.E-mail: lijufeng@cnpc.com.cn

    • 中图分类号: X52

    Sorption of Trichloroethylene by the Simulated Organo-Mineral Complexes

    • 摘要: 为了研究土壤中有机质-矿质复合体结合形式对有机污染物吸附的影响, 利用批实验的方法, 对比研究有机质-矿质复合体与无机矿物和腐殖酸简单的混合物对三氯乙烯的吸附.结果表明, 与腐殖酸相比, 高岭石和石英砂吸附三氯乙烯量很小.模拟有机质-矿质复合体吸附三氯乙烯是线性吸附, Koc值随腐殖酸含量的增加而减小, 并且比纯腐殖酸样品的Koc值小.有机质与矿质的相互作用影响了有机质的吸附性能.对有机质在复合体中的形态变化进行了分析, 提出了有机质-矿质复合体模型, 并对实验结果进行了合理的解释.

       

    • 图  1  模拟土壤KdKocfoc变化关系曲线

      Fig.  1.  Effect of foc on Kd and on Koc for TCE sorption on the simulated soils

      图  2  模拟有机质—矿质复合体KdKocfoc变化关系曲线

      Fig.  2.  Effect of foc on Kd and on Koc for TCE sorption on the simulated SOM-mineral complexes

      图  3  有机质—矿质复合体形成示意

      Fig.  3.  Schematic diagram of formation of organo-mineral complexes

      表  1  模拟矿物和模拟土样参数

      Table  1.   The parameters of model minerals and simulated soils

      编号 foc(%) 高岭石∶石英砂
      KW1 0.00 3∶7
      KW2 0.00 纯高岭石
      S1 0.16 3∶7
      S2 0.29 3∶7
      S3 0.58 3∶7
      S4 0.82 3∶7
      S5 1.19 3∶7
      S6 1.55 3∶7
      S7 2.29 3∶7
      下载: 导出CSV

      表  2  模拟矿物质对TCE的等温吸附方程

      Table  2.   TCE sorption isotherm equations of simulated minerals

      样品 Langmuir方程 R2 K(kg·L-1) Sm(μg·kg-1)
      KW1 y=4.083x+0.017 0.992 0.004 60.606
      KW2 y=0.751x+0.005 0.998 0.007 192.308
      下载: 导出CSV

      表  3  模拟土壤样品对TCE的等温吸附方程

      Table  3.   TCE adsorption isotherm equations of simulated soils

      编号 foc(%) Freundlich吸附方程 n R2 Kd(L·kg-1) Koc(L·kg-1)
      S1 0.16 y=0.797x+0.245 0.797 0.996 0.57 355.21
      S2 0.29 y=0.805x+0.612 0.805 0.997 1.42 490.86
      S3 0.58 y=0.834x+0.730 0.834 0.994 2.23 384.5
      S4 0.82 y=0.899x+0.734 0.899 0.989 3.22 392.2
      S5 1.19 y=0.864x+0.984 0.864 0.989 4.90 411.38
      S6 1.55 y=0.899x+1.060 0.899 0.996 7.06 455.77
      S7 2.29 y=1.031x+0.938 1.031 0.992 10.07 439.87
      下载: 导出CSV

      表  4  模拟有机质—矿质复合体和腐殖酸的TCE等温吸附方程

      Table  4.   TCE sorption isotherm equations of simulated SOM-minerals and huimic acid

      吸附剂 线性等温吸附方程 R2 Kd(L·kg-1) Koc(L·kg-1) foc(%)
      腐殖酸 y=939x-21279 0.986 939 939 100
      2%腐殖酸-高岭石 y=3.90x+43.85 0.981 3.90 629.0 0.62
      4%腐殖酸-高岭石 y=7.29x-4.83 0.988 7.29 552.0 1.32
      8%腐殖酸-高岭石 y=13.84x+131.12 0.960 13.84 425.8 3.25
      下载: 导出CSV
    • Aggarwal, V., Li, H., Boyd, S.A., et al., 2006. Enhanced sorption of trichloroethene by smectite clay exchanged with Cs+. Environmental Science & Technology, 40(3): 894-899. doi: 10.1021/es0500411
      Akyol, N.H., Yolcubal, I., Yüksel, D.I., 2011. Sorption and transport of trichloroethylene in caliche soil. Chemosphere, 82(6): 809-816. doi: 10.1016/j.chemosphere.2011.11.029
      Cheng, H., Reinhard, M., 2006. Sorption of trichloroethylene in hydrophobic micropores of dealuminated Y zeolites and natural minerals. Environmental Science & Technology, 40(24): 7694-7701. doi: 10.1021/es060886s
      Chenu, C., Plante, A.F., 2006. Clay-sized organo-mineral complexes in a cultivation chronosequence: revisiting the concept of the primary organo-mineral complex. European Journal of Soil Science, 57(4): 596-607. doi: 10.1111/j.1365-2389.2006.00834.x
      Chorover, J., Amistadi, M.K., 2001. Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces. Geochimica et Cosmochimica Acta, 65(1): 95-109. doi: 10.1016/S0016-7037(00)00511-1
      Feng, X.J., Simpson, A.J., Simpson, M.J., 2005. Chemical and mineralogical controls on humic acid sorption to clay mineral surfaces. Organic Geochemistry, 36(11): 1553-1566. doi: 10.1016/j.orggeochem.2005.06.008
      Grathwohl, P., 1990. Influence of organic-matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic-hydrocarbons-implications on Koc correlations. Environmental Science & Technology, 24(11): 1687-1693. doi: 10.1021/es00081a010
      Kahle, M., Kleber, M., Jahn, R., 2002. Carbon storage in loess derived surface soils from Central Germany: influence of mineral phase variables. Journal of Plant Nutrition and Soil Science, 165(2): 141-149. doi:10.1002/1522-2624(200204)165:2<141::AID-JPLN141>3.0.CO;2-X
      Kaiser, K., Guggenberger, G., 2003. Mineral surfaces and soil organic matter. European Journal of Soil Science, 54(2): 219-236. doi: 10.1046/j.1365-2389.2003.00544.x
      Kleber, M., Sollins, P., Sutton, R., 2007. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry, 85(1): 9-24. doi: 10.1007/s10533-007-9103-5
      Lahlou, M., Harms, H., Springael, D., et al., 2000. Influence of soil components on the transport of polycyclic aromatic hydrocarbon-degrading bacteria through saturated porous media. Environmental Science & Technology, 34(17): 3649-3656. doi: 10.1021/es000021t
      Lin, C.J., Lo, S.L., 2005. Effects of iron surface pretreatment on sorption and reduction kinetics of trichloroethylene in a closed batch system. Water Research, 39(6): 1037-1046. doi: 10.1016/j.water.2005.06.035
      Liu, M.Z., Chen, H.H., Hu, L.Q., et al., 2006. Modeling of transformation and transportation of PCE and TCE by biodegradation in shallow groundwater. Earth Science Frontiers, 13(1): 155-159 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200601022.htm
      McCarthy, J.F., Ilavsky, J., Jastrow, J.D., et al., 2008. Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter. Geochimica et Cosmochimica Acta, 72(19): 4725-4744. doi: 10.1016/j.gca.2008.06.015
      Ruffino, B., Zanetti, M., 2009. Adsorption study of several hydrophobic organic contaminants on an aquifer material. American Journal of Environmental Sciences, 5(4): 508-516. doi: 10.3844/ajessp.2009.508.516
      Tombacz, E., Libor, Z., Illes, E., et al., 2004. The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Organic Geochemistry, 35(3): 257-267. doi: 10.1016/j.orggeochem.2003.11.002
      Wang, K.J., Xing, B.S., 2005. Structural and sorption characteristics of adsorbed humic acid on clay minerals. Journal of Environmental Quality, 34(1): 342-349. doi: 10.2134/jeq2005.0342
      Wu, W.L., Sun, H.W., 2006. Sorption characteristics of trichloroethylene on model sorbents. Ecology and Environment, 15(2): 207-211 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRYJ200602001.htm
      Zhang, D.Z., Chen, H.H., Li, H.M., et al., 2002. Halogenated hydrocarbon comtaminants in shallow groundwater. Geology in China, 29(3): 326-329 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200203016.htm
      Zhang, K.F., He, J.T., Liu, M.L., et al., 2009. The effects of different contents of organic carbon on the adsorption of trichlorinated hydrocarbon in soil. Acta Petrologica et Mineralogica, 28(6): 649-652 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200906025.htm
      Zhao, H., Vance, G.F., 1998. Sorption of trichloroethylene by organo-clays in the presence of humic substances. Water Research, 32(12): 3710-3716. doi: 10.1016/s0043-1354(98)00172-9
      刘明柱, 陈鸿汉, 胡丽琴, 等, 2006. 生物降解作用下地下水中TCE、PCE迁移转化的数值模拟研究. 地学前缘, 13(1): 155-159. doi: 10.3321/j.issn:1005-2321.2006.01.021
      吴文伶, 孙红文, 2006. 三氯乙烯在模型吸附剂上的吸附特性. 生态环境, 15(2): 207-211. doi: 10.3969/j.issn.1674-5906.2006.02.001
      张达政, 陈鸿汉, 李海明, 等, 2002. 浅层地下水卤代烃污染初步研究. 中国地质, 29(3): 326-329. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200203016.htm
      张坤峰, 何江涛, 刘明亮, 等, 2009. 土壤中有机碳含量对三氯乙烯的吸附影响实验. 岩石矿物学杂志, 28(6): 649-652. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200906025.htm
    • 加载中
    图(3) / 表(4)
    计量
    • 文章访问数:  3575
    • HTML全文浏览量:  445
    • PDF下载量:  76
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-08-12
    • 刊出日期:  2012-03-15

    目录

      /

      返回文章
      返回