• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大同盆地高砷地下水稀土元素特征及其指示意义

    谢先军 王焰新 李俊霞 苏春利 吴亚 余倩 李梦娣

    谢先军, 王焰新, 李俊霞, 苏春利, 吴亚, 余倩, 李梦娣, 2012. 大同盆地高砷地下水稀土元素特征及其指示意义. 地球科学, 37(2): 381-390. doi: 10.3799/dqkx.2012.046
    引用本文: 谢先军, 王焰新, 李俊霞, 苏春利, 吴亚, 余倩, 李梦娣, 2012. 大同盆地高砷地下水稀土元素特征及其指示意义. 地球科学, 37(2): 381-390. doi: 10.3799/dqkx.2012.046
    XIE Xian-jun, WANG Yan-xin, LI Jun-xia, Su Chun-li, WU Ya, YU Qian, Li Meng-di, 2012. Characteristics and Implications of Rare Earth Elements in High Arsenic Groundwater from the Datong Basin. Earth Science, 37(2): 381-390. doi: 10.3799/dqkx.2012.046
    Citation: XIE Xian-jun, WANG Yan-xin, LI Jun-xia, Su Chun-li, WU Ya, YU Qian, Li Meng-di, 2012. Characteristics and Implications of Rare Earth Elements in High Arsenic Groundwater from the Datong Basin. Earth Science, 37(2): 381-390. doi: 10.3799/dqkx.2012.046

    大同盆地高砷地下水稀土元素特征及其指示意义

    doi: 10.3799/dqkx.2012.046
    基金项目: 

    国家自然科学基金项目 40830748

    国家自然科学基金项目 40902071

    教育部博士点基金 20090145120004

    详细信息
      作者简介:

      谢先军(1979-), 男, 副教授, 主要从事地下水污染与防治及环境地球化学研究.E-mail: xianjun.xie@gmail.com

    • 中图分类号: X523

    Characteristics and Implications of Rare Earth Elements in High Arsenic Groundwater from the Datong Basin

    • 摘要: 对大同盆地典型高砷地下水开展了稀土元素地球化学研究.研究表明: 高砷地下水具有低∑REE含量及富集重稀土(HREEs)特征.地下水中低含量∑REE与含水层沉积物中Fe-Mn氧化物/氢氧化物对REEs的吸附有关.地下水中重稀土元素相对于轻稀土元素的富集可能是吸附作用和碳酸根离子同REEs发生络合作用的共同结果.采用平均大陆上地壳标准化的地下水稀土元素分布表现出显著的Ce及Eu正异常.地下水Ce/Ce*值及Eu含量与Fe+Mn具有显著相关性, 表明铁锰氧化物还原性溶解是控制Ce/Ce*值及Eu含量特征的主要因素.Ce/Ce*值及Eu含量与As浓度的关系表明, Ce异常及Eu含量特征能对地下水中As的富集进行有效指示.

       

    • 图  1  研究区及采样点位置示意

      Fig.  1.  Study area and sampling sites

      图  2  大同盆地地下水中∑REE与U(a)、Mo(b)和HCO3-(c)关系图及(La/Yb)N和HCO3-(d)关系

      Fig.  2.  Relationship between ∑REE and U (a), Mo (b), HCO3- (c) and (La/Yb)N and HCO3- (d) in groundwater from Datong basin

      图  3  地下水平均大陆上地壳标准化的稀土元素配分模式

      Fig.  3.  Average upper crust (AUC)-normalized REEs patterns in groundwater from Datong basin

      图  4  大同盆地地下水中Eu/Eu*与Ba/Sm比值关系

      Fig.  4.  Correlation between Eu/Eu* and Ba/Sm of the groundwater from Datong basin

      图  5  地下水中Fe+Mn与Eu及Ce/Ce*关系

      Fig.  5.  The relationship between Fe+Mn and Eu and Ce/Ce* values in groundwater from Datong basin

      图  6  地下水中As与Eu含量及Ce/Ce*值之间的关系

      Fig.  6.  The relationship between As and Eu concentration and Ce/Ce* values in groundwater from Datong basin

      表  1  大同盆地高砷地下水水化学组成特征

      Table  1.   Chemistry of high arsenic groundwater from the Datong basin

      样号 点位 pH Cl-(mg/L) SO42-(mg/L) HCO3-(mg/L) K(mg/L) Na(mg/L) Ca(mg/L) Mg(mg/L) Ba(mg/L) Mn(μg/L) Fe(μg/L) As(μg/L) Mo(μg/L) U(μg/L)
      SHY-29 112°39.77′E39°16.80′N 8.18 21.6 1.2 436 0.45 78.69 10.65 12.18 0.73 69.68 348.48 179.10 12.10 0.07
      SHY-33 112°38.83′E39°17.89′N 7.75 100.9 204.7 495 0.72 136.53 33.65 56.91 1.44 53.03 229.52 1.55 50.21 24.72
      SHY-34 112°41.37′E39°18.29′N 8.24 105.3 71.2 328 1.58 82.87 22.18 26.44 0.80 82.65 187.82 73.07 10.41 0.34
      SHY-35 112°42.85′E39°18.62′N 8.13 44.4 49.6 473 0.71 88.37 16.43 29.93 89.44 158.25 585.10 22.04 3.19
      SHY-37 112°45.32′E39°19.11′N 7.65 497.4 515.3 825 32.09 357.73 95.78 182.79 0.47 78.10 455.97 3.70 20.03 44.88
      SHY-45 112°47.14′E39°19.74′N 8.05 44.9 24.8 416 0.43 79.80 12.12 25.86 0.91 36.49 146.99 572.00 3.80 4.41
      SHY-46 112°48.46′E39°20.19′N 8.18 21.1 1.4 341 1.47 57.50 16.35 20.91 1.84 127.52 250.04 119.90 12.14 7.66
      SHY-47 112°49.72′E39°20.57′N 8 19.8 1.9 303 0.20 40.21 13.88 21.66 0.61 83.12 134.35 284.90 10.66 0.66
      SHY-55 112°51.22′E39°21.10′N 7.97 13.2 1.4 289 0.12 34.44 13.66 18.67 1.10 78.12 125.07 348.50 0.38 0.03
      SHY-57 112°51.06′E39°20.48′N 7.64 6.6 7.8 222 0.90 17.82 34.37 6.35 1.05 279.85 218.23 14.01 9.64 2.25
      SHY-58 112°51.94′E39°22.21′N 7.82 55.7 3.6 362 0.37 52.09 16.85 27.50 0.41 156.86 1 791.48 565.80 0.38 0.02
      SHY-59 112°52.90′E39°22.45′N 7.73 658.4 613.7 750 1.89 521.16 27.47 91.54 0.32 198.3 182.03 499.70 9.85 6.64
      SHY-60 112°54.13′E39°22.54′N 7.88 13.5 2.0 359 0.43 31.30 17.19 33.02 0.56 5.82 196.57 417.10 0.74 0.06
      SHY-61 112°54.27′E39°23.20′N 7.93 12.0 <0.1 317 0.24 38.35 14.00 16.78 1.20 4.02 187.35 135.20 0.64 0.02
      SHY-63 112°54.61′E39°24.21′N 7.8 492.3 516.6 847 3.55 416.29 32.07 122.59 0.58 14.48 202.25 83.48 12.57 3.09
      SHY-70 112°56.30′E39°26.34′N 8.13 15.9 1.3 364 0.29 48.41 11.41 23.55 0.42 18.32 140.27 280.80 0.59 0.04
      SHY-71 112°58.66′E39°26.48′N 8.1 14.4 2.9 303 0.42 31.83 22.98 19.45 0.25 2.86 222.97 2.21 16.77 15.3
      SHY-72 112°59.40′E39°27.11′N 7.96 17.5 1.3 275 0.29 38.48 13.60 14.20 2.93 168.77 274.80 4.37 0.04
      SHY-73 112°59.23′E39°28.42′N 8.34 17.9 1.5 398 0.22 58.88 13.39 22.27 0.82 3.02 168.14 247.80 1.15 0.06
      SHY-74 113°0.24′E39°29.03′N 7.8 229.4 255.2 1 012 3.17 334.45 13.52 40.37 0.21 59.76 122.54 43.33 148.96 12.99
      SHY-76 112°57.89′E39°28.04′N 8.02 16.7 1.6 393 0.25 61.37 11.91 21.58 4.17 91.09 434.90 0.87 0.02
      下载: 导出CSV

      表  2  大同盆地高砷地下水稀土元素含量特征(单位:μg/L)

      Table  2.   Concentration of REEs (μg/L) in high arsenic groundwater from the Datong basin

      样号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE Ce/Ce* Eu/Eu* (La/Yb)N
      SHY-29 0.017 6 0.080 1 0.003 5 0.022 1 0.010 5 0.015 1 0.005 5 0.001 6 0.005 9 0.001 9 0.006 9 0.001 0 0.004 5 0.000 8 0.177 0 0.37 0.95 0.29
      SHY-33 0.027 0 0.073 7 0.005 7 0.035 1 0.017 7 0.011 1 0.006 3 0.001 6 0.007 3 0.002 3 0.006 0 0.001 5 0.007 6 0.001 5 0.204 5 0.13 0.65 0.26
      SHY-34 0.023 5 0.070 0 0.006 7 0.026 0 0.012 4 0.019 1 0.007 5 0.000 9 0.004 6 0.002 2 0.006 9 0.000 9 0.003 0 0.001 1 0.184 8 0.10 0.96 0.58
      SHY-35 0.018 8 0.063 7 0.004 9 0.021 4 0.014 5 0.006 2 0.003 5 0.000 7 0.005 0 0.001 5 0.008 6 0.001 0 0.004 2 0.001 1 0.155 2 0.18 0.54 0.33
      SHY-37 0.028 8 0.120 8 0.007 7 0.035 9 0.015 1 0.013 2 0.007 3 0.002 7 0.010 9 0.003 3 0.015 6 0.002 1 0.007 9 0.000 9 0.272 2 0.27 0.76 0.27
      SHY-45 0.025 8 0.077 5 0.006 5 0.020 7 0.008 4 0.006 5 0.004 7 0.001 4 0.005 5 0.001 1 0.008 8 0.001 1 0.005 5 0.000 5 0.173 9 0.14 0.68 0.34
      SHY-46 0.027 2 0.196 7 0.007 1 0.024 3 0.005 9 0.009 7 0.009 4 0.001 1 0.005 0 0.001 3 0.018 9 0.000 9 0.007 2 0.001 2 0.315 9 0.51 0.76 0.28
      SHY-47 0.015 6 0.046 8 0.004 3 0.013 2 0.005 6 0.004 8 0.006 5 0.000 9 0.004 0 0.001 2 0.005 1 0.000 8 0.003 4 0.001 4 0.113 7 0.11 0.56 0.34
      SHY-55 0.018 2 0.045 5 0.004 1 0.021 7 0.010 6 0.009 9 0.010 7 0.000 8 0.003 3 0.001 0 0.007 1 0.001 1 0.002 5 0.000 4 0.136 7 0.08 0.64 0.54
      SHY-57 0.018 2 0.054 5 0.003 9 0.013 7 0.008 7 0.012 1 0.008 7 0.000 8 0.007 7 0.000 6 0.005 7 0.000 9 0.004 6 0.000 7 0.140 8 0.17 0.82 0.29
      SHY-58 0.032 2 0.087 7 0.008 9 0.023 6 0.014 8 0.014 9 0.007 8 0.001 0 0.007 1 0.001 7 0.010 6 0.001 2 0.003 6 0.001 0 0.216 1 0.07 0.80 0.66
      SHY-59 0.020 3 0.058 3 0.006 0 0.023 6 0.011 8 0.010 0 0.010 7 0.001 5 0.012 7 0.005 4 0.007 8 0.002 2 0.009 4 0.002 2 0.1819 0.08 0.62 0.16
      SHY-60 0.037 0 0.150 2 0.010 2 0.034 8 0.016 7 0.012 6 0.016 7 0.002 4 0.010 1 0.002 1 0.032 2 0.001 2 0.006 4 0.001 1 0.333 7 0.25 0.55 0.42
      SHY-61 0.040 8 0.118 4 0.009 8 0.045 3 0.014 8 0.010 4 0.008 8 0.002 0 0.006 6 0.002 3 0.017 8 0.000 5 0.008 9 0.001 1 0.287 5 0.13 0.62 0.34
      SHY-63 0.028 3 0.096 8 0.008 4 0.027 5 0.008 4 0.020 7 0.010 4 0.001 9 0.012 0 0.005 1 0.014 2 0.001 6 0.008 2 0.001 4 0.245 0 0.15 1.01 0.25
      SHY-70 0.026 6 0.067 4 0.005 5 0.023 9 0.006 5 0.010 1 0.005 6 0.002 0 0.004 9 0.001 1 0.007 4 0.000 9 0.003 6 0.000 4 0.165 8 0.10 0.90 0.54
      SHY-71 0.040 3 0.081 0 0.008 4 0.035 3 0.016 4 0.009 3 0.014 8 0.000 9 0.006 4 0.001 7 0.009 5 0.001 5 0.007 0 0.001 9 0.234 4 0.00 0.45 0.42
      SHY-72 0.032 1 0.073 7 0.008 7 0.028 7 0.009 8 0.009 9 0.014 9 0.000 9 0.010 3 0.001 8 0.008 7 0.001 2 0.003 3 0.001 5 0.205 3 0.00 0.57 0.72
      SHY-73 0.032 9 0.080 2 0.005 6 0.038 6 0.015 5 0.011 5 0.016 8 0.002 1 0.011 1 0.002 3 0.012 5 0.000 7 0.010 0.001 1 0.241 1 0.12 0.52 0.24
      SHY-74 0.020 6 0.077 2 0.004 9 0.022 2 0.010 5 0.013 7 0.009 8 0.001 3 0.006 5 0.002 9 0.012 4 0.001 1 0.007 6 0.000 7 0.191 3 0.24 0.80 0.20
      SHY-76 0.011 3 0.017 0 0.001 9 0.011 1 0.002 8 0.007 3 0.004 9 0.000 7 0.005 3 0.001 1 0.004 1 0.000 6 0.003 5 0.000 9 0.072 4 -0.08 0.94 0.23
      注:下标N表示上地壳标准化值;(La/Yb)N=(LaN/YbN);Ce/Ce*=log[CeN/(LaN+PrN)];Eu/Eu*=log[EuN/(SmN+GdN)].
      下载: 导出CSV
    • Appelo, C.A.J., Weiden, M.J.J.V.D., Tournassat, C., et al., 2002. Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of Arsenic. Environmental Science & Technology, 36(14): 3096-3103. doi: 10.1021/es010130n
      Banks, D., Hall, G., Reimann, C., et al., 1999. Distribution of rare earth elements in crystalline bedrock groundwaters: oslo and Bergen regions, Norway. Applied Geochemistry, 14(1): 27-39. doi: 10.1016/S0883-2927(98)00037-7
      Bau, M., 1999. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochimica et Cosmochimica Acta, 63(1): 67-77. doi: 10.1016/S0016-7037(99)00014-9
      Bau, M., Usui, A., Pracejus, B., et al., 1998. Geochemistry of low-temperature water-rock interaaction: evidence from natural waters, andesite, and iron-oxyhydroxide precipitates at Nishiki-numa iron-spring, Hokkaido, Japan. Chemical Geology, 151(1-4): 293-307. doi: 10.1016/S0009-2541(98)00086-2
      Braun, J.J., Viers, J., Dupré, B., et al., 1998. Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: the implication for the present dynamics of the soil covers of the humid tropical regions. Geochimica et Cosmochimica Acta, 62(1): 273-299. doi: 10.1016/S0016-7037(97)00344X
      Dia, A., Gruau, G., Olivié-Lauquet, G., et al., 2000. The distribution of rare earth elements in groundwaters: assessing the role of source-rock composition, redox changes and colloidal particles. Geochimica et Cosmochimica Acta, 64(24): 4131-4151. doi: 10.1016/S0016-7037(00)004944-1
      Dulski, P., 1994. Interferences of oxide, hydroxide and chloride analyte species in the determination of rare earth elements in geological samples by inductively coupled plasma-mass spectrometry. Fresenius' Journal of Analytical Chemistry, 350(4-5): 194-203. doi: 10.1007/BF00322470
      Gorby, Y.A., Lovley, D.R., 1992. Enzymatic uranium precipitation. Environmental Science & Technology, 26(1): 205-207. doi: 10.1021/es00025a026
      Gui, H.R., Sun, L.H., 2011. Rare earth element geochemical characteristics of the deep underground water from Renlou coal mine, northern Anhui Province. Journal of China Coal Society, 36(2): 210-216 (in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2011/00000036/00000002/art00006
      Guo, H.M., Yang, S.Z., Tang, X.H., et al., 2008. Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao basin, Inner Mongolia. Science of the Total Environment, 393(1): 131-144. doi: 10.1016/j.scitotenv.2007.12.025
      Guo, H.M., Zhang, B., Li, Y., et al., 2010. Concentrations and patterns of rare earth elements in high arsenic groundwaters from the Hetao plain, Inner Mongolia. Earth Science Frontiers, 17(6): 59-66 (in Chinese with English abstract). http://www.ingentaconnect.com/content/el/18725791/2010/00000017/00000006/art00008
      Guo, H.M., Zhang, B., Wang, G.C., et al., 2010. Geochemical controls on arsenic and rare earth elements approximately along a groundwater flow path in the shallow aquifer of the Hetao basin, Inner Mongolia. Chemical Geology, 270(1-4): 117-125. doi: 10.1016/j.chemgeo.2009.11.010
      Hsi, C.K.D., Langmuir, D., 1985. Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation sitebinding model. Geochimica et Cosmochimica Acta, 49(9): 1931-1941. doi: 10.1016/0016-7037(85)90088-2
      Jiang, S.Y., Zhao, H.X., Chen, Y.Q., et al., 2007. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chemical Geology, 244(3-4): 584-604. doi: 10.1016/j.chemgeo.2007.07.010
      Johannesson, K.H., Stetzenbach, K.J., Hodge, V.F., 1997. Rare earth elements as geochemical tracers of regional groundwater mixing. Geochimica et Cosmochimica Acta, 61(1): 3605-3618. doi: 10.1016/S0016-7037(97)00177-4
      Johannesson, K.H., Zhou, X.P., Guo, C.X., et al., 2000. Origin of rare earth element signatures in groundwaters of circumneutral pH from southern Nevada and eastern California, USA. Chemical Geology, 164(3-4): 239-257. doi: 10.1016/S0009-2541(99)00152-7
      Lee, S.G., Lee, D.H., Kim, Y., et al., 2003. Rare earth elements as indicators of groundwater environment changes in a fractured rock system: evidence from fracture-filling calcite. Applied Geochemistry, 18(1): 135-143. doi: 10.1016/S0883.2927(02)00071-9
      Lowers, H.A., Breit, G.N., Foster, A.L., et al., 2007. Arsenic incorporation into authigenic pyrite, Bengal basin sediment, Bangladesh. Geochimica et Cosmochimica Acta, 71(11): 2699-2717. doi: 10.1016/j.gca.2007.03.022
      Luo, Y.L., Jiang, P.A., Yu, Y.H., et al., 2006. Investigation and assessment on arsenic pollution of soil and groungwater in Kuitun No. 123 State Farm. Arid Land Geography, 29(5): 705-709 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-GHDL200605017.htm
      Nath, B., Jean, J.S., Lee, M.K., et al., 2008. Geochemistry of high arsenic groundwater in Chia-Nan plain, southwestern Taiwan: possible sources and reactive transport of arsenic. Journal of Contaminant Hydrology, 99(1-4): 85-96. doi: 10.1016/j.jconhyd.2008.04.005
      Nickson, R.T., McArthur, J.M., Ravenscroft, P., et al., 2000. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4): 403-413. doi: 10.1016/S0883-2927(99)00086-4
      Nordstrom, D.K., 2002. Worldwide occurrences of arsenic in ground water. Science, 296(5576): 2143-2145. doi: 10.1126/science.1072375
      Ohta, A., Kawabe, I., 2001. REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce (III) oxidation by δ-MnO2. Geochimica et Cosmochimica Acta, 65(5): 695-703. doi: 10.1016/S0016-7037(00)00578-0
      Oremland, R.S., Stolz, J.F., 2005. Arsenic, microbes and contaminated aquifers. Trends in Microbiology, 13(2): 45-49. doi: 10.1016/j.tim.2004.12.002
      Polya, D.A., Gault, A.G., Diebe, N., et al., 2005. Arsenic hazard in shallow Cambodian groundwaters. Mineralogical Magazine, 69(5): 807-823. doi: 10.1180/0026461056950290
      Postma, D., Larsen, F., Minh Hue, N.T., et al., 2007. Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochimica et Cosmochimica Acta, 71(21): 5054-5071. doi: 10.1016/j.gca.2007.08.020
      Romero, L., Alonso, H., Campano, P., et al., 2003. Arsenic enrichment in waters and sediments of the Rio Loa (Second Region, Chile). Applied Geochemistry, 18(9): 1399-1416. doi: 10.1016/S0883-2927(03)00059-3
      Sholkovitz, E.R., Landing, W.M., Lewis, B.L., 1994. Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochimica et Cosmochimica Acta, 58(6): 1567-1579. doi: 10.1016/0016-7037(94)90559-2
      Smedley, P.L., Kinniburgh, D.G., 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5
      Smedley, P.L., Nicolli, H.B., Macdonald, D.M.J., et al., 2002. Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Applied Geochemistry, 17(3): 259-284. doi: 10.1016/S0883-2927(01)00082-8
      Tang, J., Johannesson, K.H., 2006. Controls on the geochemistry of rare earth elements along a groundwater flow path in the Carrizo Sand aquifer, Texas, USA. Chemical Geology, 225(1-2): 156-171. doi: 10.1016/j.chemgeo.2005.09.007
      Tossell, J.A., 2005. Calculating the partitioning of the isotopes of Mo between oxidic and sulfidic species in aqueous solution. Geochimica et Cosmochimica Acta, 69(12): 2981-2993. doi: 10.1016/j.gca.2005.01.016
      Tweed, S.O., Weaver, T.R., Cartwright, I., et al., 2006. Behavior of rare earth elements in groundwater during flow and mixing in fractured rock aquifers: an example from the Dandenong Ranges, Southeast Australia. Chemical Geology, 234(3-4): 291-307. doi: 10.1016/j.chemgeo.2006.05.006
      Verplanck, P.L., Mueller, S.H., Goldfarb, R.J., et al., 2008. Geochemical controls of elevated arsenic concentrations in groundwater, Ester Dome, Fairbanks district, Alaska. Chemical Geology, 255(1-2): 160-172. doi: 10.1016/j.chemgeo.2008.06.020
      Wang, Y.X., Shvartsev, S.L., Su, C.L., 2009. Genesis of arsenic/fluoride-enriched soda water: a case study at Datong, northern China. Applied Geochemistry, 24(4): 641-649. doi: 10.1016/j.apgeochem.2008.12.015
      Wood, S.A., 1990. The aqueous geochemistry of the rare-earth elements and yttrium: 1. review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chemical Geology, 82: 159-186. doi: 10.1016/0009-2541(90)90080-Q
      Xie, X.J., Wang, Y.X., Su, C.L., et al., 2008. Arsenic mobilization in shallow aquifers of Datong basin: hydrochemical and mineralogical evidences. Journal of Geochemical Exploration, 98(3): 107-115. doi: 10.1016/j.gexplo.2008.01.002
      桂和荣, 孙林华, 2011. 皖北任楼煤矿深层地下水稀土元素地球化学特征. 煤炭学报, 36(2): 210-216. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201102009.htm
      郭华明, 张波, 李媛, 等, 2010. 内蒙古河套平原高砷地下水中稀土元素含量及分异特征. 地学前缘, 17(6): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006007.htm
      罗艳丽, 蒋平安, 余艳华, 等, 2006. 土壤及地下水砷污染现状调查与评价——以新疆奎屯123团为例. 干旱区地理, 29(5): 705-709. doi: 10.3321/j.issn:1000-6060.2006.05.015
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  3601
    • HTML全文浏览量:  618
    • PDF下载量:  100
    • 被引次数: 0
    出版历程
    • 收稿日期:  2010-08-12
    • 刊出日期:  2012-03-15

    目录

      /

      返回文章
      返回