• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    伊通盆地鹿乡断陷低渗储层敏感性机理分析及分布预测

    单华生 周锋德

    单华生, 周锋德, 2012. 伊通盆地鹿乡断陷低渗储层敏感性机理分析及分布预测. 地球科学, 37(4): 719-727. doi: 10.3799/dqkx.2012.080
    引用本文: 单华生, 周锋德, 2012. 伊通盆地鹿乡断陷低渗储层敏感性机理分析及分布预测. 地球科学, 37(4): 719-727. doi: 10.3799/dqkx.2012.080
    SHAN Hua-sheng, ZHOU Feng-de, 2012. Analysis of the Sensitivity Mechanism and Distribution in Low Permeability Reservoir in Luxiang Depression, Yitong Basin. Earth Science, 37(4): 719-727. doi: 10.3799/dqkx.2012.080
    Citation: SHAN Hua-sheng, ZHOU Feng-de, 2012. Analysis of the Sensitivity Mechanism and Distribution in Low Permeability Reservoir in Luxiang Depression, Yitong Basin. Earth Science, 37(4): 719-727. doi: 10.3799/dqkx.2012.080

    伊通盆地鹿乡断陷低渗储层敏感性机理分析及分布预测

    doi: 10.3799/dqkx.2012.080
    基金项目: 

    中国石油天然气股份有限公司吉林油田分公司重大项目“伊通盆地构造、沉积及油气成藏评价” 2006026157

    详细信息
      作者简介:

      单华生(1978-),男,讲师,博士在读,研究方向为油气储层地质及开发.E-mail: shanhuasheng@163.com

    • 中图分类号: TE348

    Analysis of the Sensitivity Mechanism and Distribution in Low Permeability Reservoir in Luxiang Depression, Yitong Basin

    • 摘要: 为了准确认识和预测伊通盆地鹿乡断陷储层敏感性的分布,从实验分析入手,测量不同样品的敏感性、物性和粘土矿物等参数,结合铸体薄片、压汞、扫描电镜等实验方法,从宏观和微观2个角度分析了储层敏感性与孔隙度、渗透率与各类粘土矿物相对含量之间的关系,分析了储层敏感性与储层的孔喉类型和粘土矿物产状之间的关系,建立了不同微相控制下的孔隙度、渗透率、粘土矿物含量、石英和长石含量的解释模型.最后,选取孔隙度、渗透率、石英含量、长石含量、伊利石含量、高岭石含量、绿泥石含量、伊/蒙混层含量8个参数,采用Elman神经网络方法分别建立了速敏、水敏、酸敏和碱敏的预测模型.结果表明:采用神经网络方法预测的储层敏感性指数与实验结果吻合;五星构造带具有强的速敏、酸敏、碱敏和盐敏,鹿乡断陷中部和西北部具有强的水敏性.

       

    • 图  1  伊通盆地构造划分及研究区位置

      1.梁家构造带;2.新安堡凹陷;3.万昌构造带;4.波太凹陷;5.孤店斜坡带;6.靠山凹陷;7.尖山隆起带;8.马鞍山断阶;9.大南凹陷;10.五星构造带

      Fig.  1.  Schematic diagram of the study area and structural zones in Yitong basin

      图  2  不同敏感性类型指数纵向分布关系

      Fig.  2.  Variations of experimental sensitivity index with depth

      图  3  鹿乡断陷不同粘土矿物类型分布形式

      a.片状高岭石集合体(昌10井,1 883.76 m);b.绒球状伊利石(昌10井,1 883.96 m);c.片状绿泥石集合体(星2井,2 157.31 m);d.蜂窝状伊/蒙混层(刘2井,2 666.00 m);e.伊/蒙混层充填孔隙(刘2井);f.书页状自生高岭石充填孔隙(星2井);g.绒球状伊利石充填孔隙(昌10井);h.片状高岭石分散式充填孔隙(昌10井);i.高岭石片状分散在颗粒表面(昌10井);j.弯曲状伊利石、蜂窝状伊/蒙混层分散在颗粒表面(星2井);k、l.扫描电镜下观察到的伊利石搭桥状分布孔隙间(昌10井)

      Fig.  3.  Illustration of clay minerals by scanning electron microscope (SEM) pictures (samples from Luxiang depression)

      图  4  各样品的物性和粘土矿物相对含量随深度的变化

      Fig.  4.  Variations of samples' porosity, permeability and clay content with depth

      图  5  不同敏感性模型预测的敏感性指数与实验结果对比

      Fig.  5.  Relationship of the sensitivity index between the prediction by Elman neural network and the experimental test

      图  6  鹿乡断陷双二段敏感性预测结果平面分布

      Fig.  6.  Sensitivity distribution by Elman neural network in second section of Shuangyang Formation, Luxiang depression

      表  1  储层敏感性实验分析结果

      Table  1.   Experimental results of sensitivity

      样号 速敏指数 盐敏指数 水敏指数 酸敏指数 碱敏指数
      X2S2-1 0.00 0.48 0.59 0.16 0.29
      L2S2-2 0.00 / 0.80 0.00 0.16
      X14S1-3 / / / 0.55 0.43
      X14S2-4 0.00 0.35 0.79 0.16 0.52
      X8S2-5 0.00 0.69 / / /
      X8S2-6 0.00 0.27 0.49 / 0.74
      X8S2-7 0.00 0.43 0.84 / /
      注:“/”表示样品未作敏感性试验;敏感性指数的公式为Di=(Kmax-Kmin)/Kmin,式中:Di为敏感性指数,KmaxKmin分别为实验测试过程中渗透率的最大值和最小值.
      下载: 导出CSV

      表  2  敏感性实验样品物性和粘土矿物参数

      Table  2.   Porosity, permeability and clay mineral content of the samples

      样号 深度(m) 物性 粘土矿物相对含量(%)
      孔隙度(%) 气测渗透率(10-3 μm2) 蒙皂石 伊利石 高岭石 绿泥石 伊/蒙混层
      X2S2-1 2 157.31 11.6 1.8 0 13.46 74.73 8.79 3.02
      L2S2-2 2 666.00 12.7 3.7 0 6.00 83.00 0.00 11.00
      X14S1-3 2 522.20 2.1 1.2 0 18.60 11.50 57.10 12.80
      X14S2-4 2 218.35 8.8 1.5 0 25.70 65.70 5.80 8.80
      X8S2-5 2 310.50 8.9 0.5 0 2.00 74.00 8.00 16.00
      X8S2-6 2 294.70 12.7 0.5 0 6.00 42.50 11.00 40.50
      X8S2-7 2 284.44 13.2 1.8 0 10.00 11.00 14.00 65.00
      下载: 导出CSV

      表  3  鹿乡断陷不同沉积微相间粘土矿物预测

      Table  3.   Predicting equations of clay mineral contents within different sedimentary facies

      沉积微相 伊利石 高岭石 绿泥石 伊/蒙混层
      重力流 I=0.000 6D+0.042 2 K=-0.006 0D+19.853 0 C= 0.001 7D-0.763 6 IS=0.003 0D-3.655 7
      席状砂 I=0.000 6D+0.042 2 K=-0.006 0D+19.853 0 C=0.001 7 D-0.763 6 IS=0.003 0D-3.655 7
      滩坝 I=0.000 6 D+ 0.042 2 K=-0.006 0D+19.853 0 C=0.001 7D-0.763 6 IS=0.003 0D-3.655 7
      水下分流河道 I=0.000 2D+0.971 5 K=-0.002 2D+9.138 7 C= 0.000 7D-0.388 1 IS=0.001 5D-1.194 8
      辫状分流河道 I=0.000 3D+1.492 2 K=-0.002 1D+10.170 0 C=0.001 4D-1.331 0 IS=0.002 1D-2.017 7
      河口坝 I=0.008 2D-3.591 8 K=-0.003 1D+9.335 8 C=0.000 8D-0.675 3 IS=0.000 1D+0.375 9
      注:D为深度,单位m;I为伊利石的含量(%);K为高岭石的含量(%);C为绿泥石的含量(%);IS为伊/蒙混层的含量(%).
      下载: 导出CSV

      表  4  鹿乡断陷不同沉积微相间岩矿含量预测

      Table  4.   Predicting equations of quart and feldspar contents within different sedimentary facies

      沉积微相 石英(Q)(%) 长石(F)(%)
      辫状分流河道 Q=0.015 7D+32.389(<2 350 m) F=-0.005 4D+38.435(<2 350 m)
      Q=-0.026 3D+124.470(>2 350 m) F=0.023 5D-31.827(>2 350 m)
      辫状河道 Q=-0.002 7D+58.151 F=0.011 2D+12.431
      心滩 Q=90 F=10
      水下分流河道 Q=1.2D-1 914 F=-0.727 3D+1 218.4
      滩坝 Q=-0.016 D+88.728(>1 800 m) F=0.004D+23.558(>1 800 m)
      Q=62(<1 800 m) F=25(<1 800 m)
      席状砂 Q=35.7(<1 200 m) F=49.4(<1 200 m)
      Q=0.028 2D+1.817 6(1 200~2 220 m) F=-0.022 9D+76.929(1 200~2 220 m)
      Q=64.5(>2 220 m) F=26(>2 220 m)
      河口坝 Q=-0.003D+74.185 F=0.003 6D+17.596
      重力流 Q=-0.016D+88.728 F=0.004D+23.558
      注:D为深度,单位m;Q为石英的含量;F为长石的含量.
      下载: 导出CSV
    • Chen, Z., Zhang, S.N., Shen, M.D., 1996. Potential damages of clay minerals in oil-field protection. Journal of Chengdu Institute of Technology, 23(2): 80-87 (in Chinese with English abstract). http://www.researchgate.net/publication/294762544_Potential_damages_of_clay_minerals_in_oil-field_protection
      Civan, F., 2007. Formation damage mechanisms and their phenomenological modeling—an overview. SPE European Formation Damage Conference, Scheveningen, The Netherlands, 1-12.
      Elman, J.L., 1990. Finding structure in time. Cognitiv. Sci. , 14(2): 179-211. doi: 10.1016/0364-0213(90)90002-E
      Huang, X.T., Fang, S., Xu, H.H., 2002. Reservoir sensibility research on Shuangyang Formation in Moliqing basin of Yitong graben. World Geology, 21(4): 372-352 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ200204006.htm
      Hassan, B., Reza, R.M., Nazhat, D., et al., 2011. Evaluation of damage mechanisms and skin factor in tight gas reservoirs. SPE European Formation Damage Conference, Noordwijk, The Netherlands, 1-13.
      Jiang, T., Xie, X.N., 2005. Effects of high temperature and overpressure on reservoir quality in the Yinggehai basin, South China Sea. Earth Science—Journal of China University of Geosciences, 30(2): 215-220 (in Chinese with English abstract). http://www.researchgate.net/publication/290056087_Effects_of_high_temperature_and_overpressure_on_reservoir_quality_in_the_Yinggehai_basin_South_China_Sea
      Kang, Y.L., Luo, P.Y., 2000. Influence of clay minerals on formation damage in sandstone reservoir: a review and prospect in it. Drilling Fluid & Completion Fluid, 17(5): 36-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZJYW200005009.htm
      Li, Y.L., Yang, D.Q., Tian, N.X., et al., 2003. The sensitivity evaluation of low permeability reservoir of Jurassic in Yanqi basin. Mineral Petrol. , 23(1): 77-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS200301016.htm
      Palmer, Ⅰ., Mansoori, J., 1998. How permeability depends on stress and pore pressure in coal beds: a new model. SPE Reservoir Evaluation & Engineering, 1(6): 539-544. http://www.researchgate.net/publication/250089489_How_Permeability_Depends_on_Stress_and_Pore_Pressure_in_Coalbeds_A_New_Model
      Peng, C.Y., Yan, J.N., Li, Y.F., 1999. New ways of predicting reservoir damage of potential sensitivity. Drilling Fluid & Completion Fluid, 16(2): 1-7 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZJYW199902000.htm
      Shi, J.Q., Durucan, S., 2004. Drawdown induced changes in permeability of coal beds: a new interpretation of the reservoir response to primary recovery. Transport in Porous Media, 56(1): 1-16. doi: 10.1023/B:TIPM.00000.18398.19928.5a
      Sun, J.M., Li, Z.C., Guan, X., 1999. Reservoir sensitivity determination by well logging. ACTA, 20(4): 34-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB904.008.htm
      Wang, J., Zhao, Y.C., Liu, K., et al., 2006. Superimposing controls of acidic and alkaline dissolutions on sandstone reservoir quality of the Paleozoic Xiashihezi and Shanxi Formations in Tabamiao area, Ordos basin. Earth Science—Journal of China University of Geosciences, 31(2): 221-228 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200602012
      Wei, Z.Y., Yao, G.Q., He, S., et al., 2008. Diagenetic evolution and mode in the Chaluhe faulted depression reservoir, Yitong graben. Earth Science—Journal of China University of Geosciences, 33(2): 227-234 (in Chinese with English abstract). doi: 10.3799/dqkx.2008.030
      Yin, X., 2005. Experimental research on sensitive it of sandstone reservoir in Daniudi Ga field in E'erduosi basin. Natural Gas Industry, 25(8): 31-34 (in Chinese with English abstract). http://www.trqgy.cn/EN/abstract/abstract10740.shtml
      Zhang, G.L., Chen, S.Y., Yan, J.H., 2006. Characteristics of clay minerals and their effects on formation sensitivity in Sha-1 member in Zhengjia-Wangzhuang area. Acta Mineralogica Sinica, 26(1): 99-106 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200601017.htm
      Zhao, D.H., Li, B.M., Zhao, H.T., 2002. Evaluating Upper Palaeozoic sand-stone reservoir sensitivity by use of log data. Natural Gas Industry, 22(6): 42-44 (in Chinese with English abstract). http://www.researchgate.net/publication/291825778_Evaluating_upper_Palaeozoic_sandstone_reservoir_sensitivity_by_use_of_log_data
      Zhao, X.Y., Luo, J.C., Yang, F., 2005. Application of clay mineral study results to hydrocarbon prospecting in Tarim basin. Xinjiang Petroleum Geology, 26(5): 570-576 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSD200505030.htm
      Zhou, F.D., Yao, G.Q., Chen, J.X., et al., 2007a. Analysis of affecting factors and predication of sensitivity for low permeability reservoir: a case study of Liangjia-xin'anpu district in Chaluhe depression. J. Mineral. Petrol. , 27(3): 101-105 (in Chinese with English abstract).
      Zhou, F.D., Yang, G.Q., Wang, G.C., et al., 2007b. Elman neural networks applied in the low permeability reservoir sensitivity prediction. Geological Science and Technology Information, 26(6): 91-94 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200706017.htm
      陈忠, 张哨楠, 沈明道, 1996. 粘土矿物在油田保护中的潜在危害. 成都理工学院学报, 23(2): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG602.012.htm
      黄湘通, 方石, 许海华, 2002. 伊通地堑莫里青盆地双阳组储层敏感性研究. 世界地质, 21(4): 347-352. doi: 10.3969/j.issn.1004-5589.2002.04.006
      姜涛, 解习农, 2005. 莺歌海盆地高温超压环境下储层物性影响因素. 地球科学——中国地质大学学报, 30(2): 215-220. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX20050200E.htm
      康毅力, 罗平亚, 2000. 粘土矿物对砂岩储层损害的影响——回顾与展望. 钻井液与完井液, 17(5): 36-40. doi: 10.3969/j.issn.1001-5620.2000.05.009
      李永林, 杨道庆, 田纳新, 等, 2003. 焉耆盆地侏罗系低渗透储层敏感性评价. 矿物岩石, 23(1): 77-80. doi: 10.3969/j.issn.1001-6872.2003.01.016
      彭春耀, 鄢捷年, 李玉凤, 1999. 预测储层潜在敏感性损害的新方法. 钻井液与完井液, 16(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJYW199902000.htm
      孙建孟, 李召成, 关雎, 1999. 用测井确定储层敏感性. 石油学报, 20(4): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB904.008.htm
      王京, 赵彦超, 刘琨, 等, 2006. 鄂尔多斯盆地塔巴庙地区上古生界砂岩储层"酸性+碱性"叠加溶蚀作用与储层质量主控因素. 地球科学——中国地质大学学报, 31(2): 221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200602011.htm
      魏忠元, 姚光庆, 何生, 等, 2008. 伊通地堑岔路河断陷储层成岩演化史与成岩模式. 地球科学——中国地质大学学报, 33(2): 227-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200802011.htm
      尹昕, 2005. 大牛地气田砂岩储层敏感性实验研究. 天然气工业, 25(8): 31-34. doi: 10.3321/j.issn:1000-0976.2005.08.010
      张关龙, 陈世悦, 鄢继华, 2006. 郑家-王庄地区沙一段粘土矿物特征及对储层敏感性影响. 矿物学报, 26(1): 99-106. doi: 10.3321/j.issn:1000-4734.2006.01.018
      赵大华, 李保民, 赵会涛, 2002. 用测井资料评价上古生界砂岩储层敏感性. 天然气工业, 22(6): 42-44. doi: 10.3321/j.issn:1000-0976.2002.06.011
      赵杏媛, 罗俊成, 杨帆, 2005. 粘土矿物研究成果在塔里木盆地油气勘探中的应用. 新疆石油地质, 26(5): 570-576. doi: 10.3969/j.issn.1001-3873.2005.05.026
      周锋德, 姚光庆, 陈金霞, 等, 2007a. 岔路河断陷梁家-新安堡地区低渗储层敏感性影响因素分析及预测. 矿物岩石, 27(3): 101-105. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200703016.htm
      周锋德, 姚光庆, 王国昌, 等, 2007b. Elman神经网络在低渗储层敏感性预测中的应用. 地质科技情报, 26(6): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200706017.htm
    • 加载中
    图(6) / 表(4)
    计量
    • 文章访问数:  520
    • HTML全文浏览量:  674
    • PDF下载量:  10
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-03-07
    • 网络出版日期:  2021-10-13
    • 刊出日期:  2012-07-15

    目录

      /

      返回文章
      返回