• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    末次冰消期以来白令海古环境及古生产力演化

    邹建军 石学法 白亚之 朱爱美 陈志华 黄元辉

    邹建军, 石学法, 白亚之, 朱爱美, 陈志华, 黄元辉, 2012. 末次冰消期以来白令海古环境及古生产力演化. 地球科学, 37(S1): 1-10. doi: 10.3799/dqkx.2012.S1.001
    引用本文: 邹建军, 石学法, 白亚之, 朱爱美, 陈志华, 黄元辉, 2012. 末次冰消期以来白令海古环境及古生产力演化. 地球科学, 37(S1): 1-10. doi: 10.3799/dqkx.2012.S1.001
    ZOU Jian-jun, SHI Xue-fa, BAI Ya-zhi, ZHU Ai-mei, CHEN Zhi-hua, HUANG Yuan-hui, 2012. Paleoenvironment and Paleoproductivity Variations in the Bering Sea Since the Last Deglacial. Earth Science, 37(S1): 1-10. doi: 10.3799/dqkx.2012.S1.001
    Citation: ZOU Jian-jun, SHI Xue-fa, BAI Ya-zhi, ZHU Ai-mei, CHEN Zhi-hua, HUANG Yuan-hui, 2012. Paleoenvironment and Paleoproductivity Variations in the Bering Sea Since the Last Deglacial. Earth Science, 37(S1): 1-10. doi: 10.3799/dqkx.2012.S1.001

    末次冰消期以来白令海古环境及古生产力演化

    doi: 10.3799/dqkx.2012.S1.001
    基金项目: 

    国家自然科学基金 40431002

    国家自然科学基金 41106166

    2012年度北极海域海洋地质考察 CHINARE2012-03-02

    详细信息
      作者简介:

      邹建军(1979-),男,助理研究员,主要研究方向为海洋地球化学.E-mail: zoujianjun@fio.org.cn

      通讯作者:

      石学法,E-mail: xfshi@fio.org.cn

    • 中图分类号: P736.4

    Paleoenvironment and Paleoproductivity Variations in the Bering Sea Since the Last Deglacial

    • 摘要: 对白令海B5-4岩心沉积物中有机碳、CaCO3及17种地球化学元素进行分析,结合AMS 14C年龄数据,恢复了白令海13.7 ka以来古环境和古生产力的演化历史.结果显示,B5-4孔沉积速率高达34.2 cm/ka,新仙女木(YD)、Bolling-Allerod(BA)及冰川融水信号在B5-4孔都有记录.白令海陆源沉积物的输入受源区气候、海平面变化和生源物质稀释等多种因素的控制.末次冰消期白令海以高生产力和底层水体缺氧为显著特征.冰川融水及太平洋暖水团输入是导致末次冰消期白令海高生产力的2个主要因素.末次冰消期底层水体缺氧与表层高生产力和次表层水体层化有显著的关系.但是,太平洋中层水通风能力及太平洋底层环流减弱也是导致底层水体出现缺氧现象的潜在因素.全新世,阿拉斯加环流成为白令海古生产力和古环境变化的主要控制因素,生产力及古环境在全新世没有发生显著的变化.

       

    • 图  1  白令海采样站位示意图

      虚线代表120 m水深线;ANSC.阿留申北部陆坡环流;BSC.指白令海陆坡环流;ACC.指阿拉斯加沿岸流

      Fig.  1.  Sketch map of sample station in the Bering Sea

      图  2  主微量元素、总有机碳、总氮及CaCO3剖面

      Fig.  2.  Profiles of major and minor elements, total organic carbon, total organic nitrogen and CaCO3

      图  3  TOC及主微量元素相关分析散点

      Fig.  3.  Scatter plots between TOC and major and minor elements

      图  4  U, Ba, Cd, P及Mo自生组份剖面

      Fig.  4.  Profiles of authigenic components for uranium, barium, cadmium, phosphorus and molybdenum

      图  5  陆源碎屑、古生产力与冰芯及太阳辐射变化比较(h引自文献Dansgaard et al., 1993;i引自文献Berger and Loutre, 1991)

      Fig.  5.  Comparison between terrigenous debris and paleoproductivity and ice core and solar insolation

    • Bahk, J.J., Chough, S.K., Jeong, K.S., et al., 2001. Sedimentary records of paleoenvironmental changes during the last deglaciation in the Ulleung Interplain Gap, East Sea (sea of Japan). Global and Planetary Change, 28(1-4): 241-253. doi: 10.1016/S0921-8181(00)00076-X
      Barron, J.A., Bukry, D., Dean, W.E., et al., 2009. Paleoceanography of the Gulf of Alaska during the past 15 000 years: results from diatoms, silicoflagellates, and geochemistry. Marine Micropaleontology, 72(3-4): 176-195. doi: 10.1016/j.marmicro.2009.04.006
      Berger, A., Loutre, M.F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10(4): 297-317. doi: 10.1016/0277-3791(91)90033-Q
      Caissie, B.E., Brigham-Grette, J., Lawrence, K.T., et al., 2010. Last glacial maximum to Holocene Sea surface conditions at Umnak plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records. Paleoceanography, 25: PA1206. doi: 10.1029/2008pa001671
      Calvert, S.E., Nielsen, B., Fontugne, M.R., 1992. Evidence from nitrogen isotope ratios for enhanced productivity during formation of eastern Mediterranean sapropels. Nature, 359(7302): 223-225. doi: 10.1038/359223a0
      Chekhovskaya, M.P., Basov, I.A., Matul, A.G., et al., 2008. Planktonic foraminifers in the southern Bering Sea: changes in composition and productivity during the Late Pleistocene-Holocene. Stratigraphy and Geological Correlation, 16(3): 328-342. doi: 10.1134/s0869593808030076
      Cook, M.S., Keigwin, L.D., Sancetta, C.A., 2005. The deglacial history of surface and intermediate water of the Bering Sea. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 52(16-18): 2163-2173. doi: 10.1016/j.dsr2.2005.07.004
      Crusius, J., Pedersen, T.F., Kienast, S., et al., 2004. Influence of Northwest Pacific productivity on North Pacific intermediate water oxygen concentrations during the Bølling-Ållerød interval (14.7-12.9 ka). Geology, 32(7): 633-636. doi: 10.1130/G20508.1
      Dansgaard, W., Johnsen, S.J., Clausen, H.B., et al., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364(6434): 218-220. doi: 10.1038/364218a0
      Dean, W.E., 2007. Sediment geochemical records of productivity and oxygen depletion along the margin of western North America during the past 60 000 years: teleconnections with Greenland ice and the Cariaco basin. Quaternary Science Reviews, 26(1-2): 98-114. doi: 10.1016/j.quascirev.2006.08.006
      Dean, W.E., Piper, D.Z., Peterson, L.C., 1999. Molybdenum accumulation in Cariaco basin sediment over the past 24 k. y. : a record of water-column anoxia and climate. Geology, 27(6): 507-510. doi: 10.1130/0091-7613(1999)027<0507:MAICBS>2.3.CO;2
      Dymond, J., Suess, E., Lyle, M., 1992. Barium in deep-sea sediment: a geochemical proxy for paleoproductivity. Paleoceanography, 7(2): 163-181. doi: 10.1029/92PA00181
      Feely, R.A., Sabine, C.L., Lee, K., et al., 2002. In situ calcium carbonate dissolution in the Pacific Ocean. Global Biogeochemical Cycles, 16(4): 1144. doi: 10.1029/2002GB001866
      Gebhardt, H., Sarnthein, M., Grootes, P.M., et al., 2008. Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V. Paleoceanography, 23(4): PA4212. doi: 10.1029/2007pa001513
      Gorbarenko, S.A., Basov, I.A., Chekhovskaya, M.P., et al., 2005. Orbital and millennium scale environmental changes in the southern Bering Sea during the last glacial-Holocene: geochemical and paleontological evidence. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 52(16-18): 2174-2185. doi: 10.1016/j.dsr2.2005.08.005
      Gorbarenko, S.A., Wang, P., Wang, R., et al., 2010. Orbital and suborbital environmental changes in the southern Bering Sea during the last 50 kyr. Palaeogeography Palaeoclimatology Palaeoecology, 286(1-2): 97-106. doi: 10.1016/j.palaeo.2009.12.014
      He, Y.P., Wang, R.J., Zheng, H.B., et al., 2005. Paleoceanographic and paleoclimatic records from DSDP site 188 in the Bering Sea since marine isotopic stage 3. Marine Geology & Quaternary Geology, 26(2): 65-71 (in Chinese with English abstract).
      Hedges, J.I., Keil, R.G., 1995. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, 49(2-3): 81-115. doi: 10.1016/0304-4203(95)00008-F
      Higginson, M.J., Maxwell, J.R., Altabet, M.A., 2003. Nitrogen isotope and chlorin paleoproductivity records from the northern South China Sea: remote vs. local forcing of millennial- and orbital-scale variability. Marine Geology, 201(1-3): 223-250. doi: 10.1016/S0025-3227(03)00218-4
      Katsuki, K., Takahashi, K., 2005. Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the Late Quaternary. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 52(16-18): 2110-2130. doi: 10.1016/j.dsr2.2005.07.001
      Khusid, T.A., Basov, I.A., Gorbarenko, S.A., et al., 2006. Benthic foraminifers in Upper Quaternary sediments of the southern Bering Sea: distribution and paleoceanographic interpretations. Stratigraphy and Geological Correlation, 14(5): 538-548. doi: 10.1134/s0869593806050066
      Kienast, S.K., Calvert, S.E., Pedersen, T.F., 2002. Nitrogen isotope and productivity variations along the northeast Pacific margin over the last 120 kyr: surface and subsurface paleoceanography. Paleoceanography, 17(4): 1055. doi: 10.1029/2001PA000650
      Lehmann, M.F., Sigman, D.M., McCorkle, D.C., et al., 2005. Origin of the deep Bering Sea nitrate deficit: constraints from the nitrogen and oxygen isotopic composition of water column nitrate and benthic nitrate fluxes. Global Biogeochemical Cycles, 19(4): GB4005. doi: 10.1029/2005GB002508
      Meyers, P.A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114(3-4): 289-302. doi: 10.1016/0009-2541(94)90059-0
      Murray, R.W., Knowlton, C., Leinen, M., et al., 2000. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr. Paleoceanography, 15(6): 570-592. doi: 10.1029/1999PA000457
      Nakatsuka, T., Watanabe, K., Handa, N., et al., 1995. Glacial to interglacial surface nutrient variations of Bering deep basins recorded by δ13C and δ15N of sedimentary organic matter. Paleoceanography, 10(6): 1047-1061. doi: 10.1029/95PA02644
      Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715-717. doi: 10.1038/299715a0
      Okada, M., Takagi, M., Narita, H., et al., 2005. Chronostratigraphy of sediment cores from the Bering Sea and the subarctic Pacific based on paleomagnetic and oxygen isotopic analyses. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 52(16-18): 2092-2109. doi: 10.1016/j.dsr2.2005.08.004
      Okazaki, Y., Takahashi, K., Asahi, H., et al., 2005. Productivity changes in the Bering Sea during the Late Quaternary. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 52(16-18): 2150-2162. doi: 10.1016/j.dsr2.2005.07.003
      Reed, R.K., Gonzalez, F.I., Miller, L., 1991. On the structure and stability of the Alaskan Stream. Journal of Marine Research, 49(4): 719-726. doi: 10.1357/002224091784995684
      Sancetta, C., Heusser, L., Labeyrie, L., et al., 1984. Wisconsin-Holocene paleoenvironment of the Bering Sea: evidence from diatoms, pollen, oxygen isotopes and clay minerals. Marine Geology, 62(1-2): 55-68. doi: 10.1016/0025-3227(84)90054-9
      Sancetta, C., Robinson, S.W., 1983. Diatom evidence on Wisconsin and Holocene events in the Bering Sea. Quaternary Research, 20(2): 232-245. doi: 10.1016/0033-5894(83)90079-0
      Schenau, S.J., Reichart, G.J., De Lange, G.J., 2005. Phosphorus burial as a function of paleoproductivity and redox conditions in Arabian Sea sediments. Geochimica et Cosmochimica Acta, 69(4): 919-931. doi: 10.1016/j.gca.2004.05.044
      Sigman, D.M., Boyle, E.A., 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407(6806): 859-869. doi: 10.1038/35038000
      Stabeno, P.J., Reed, R.K., Napp, J.M., 2002. Transport through Unimak Pass, Alaska. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 49(26): 5919-5930. doi: 10.1016/S0967-0645(02)00326-0
      Stabeno, P., Napp, J., Mordy C., et al., 2010. Factors influencing physical structure and lower tropic levels of the eastern Bering Sea shelf in 2005: sea ice, tides and winds. Progress in Oceanography, 85: 180-196. doi: 10.1016/j.pocean.2010.02.010
      Stuiver, M., Reimer, P., 1993. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon, 35(1): 215-230. doi: 10.1017/S0033822200013904
      Tanaka, S., Takahashi, K., 2005. Late Quaternary paleoceanographic changes in the Bering Sea and the western subarctic Pacific based on radiolarian assemblages. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 52(16-18): 2131-2149. doi: 10.1016/j.dsr2.2005.07.002
      Taylor, S.R., McLennan, S.M., 1985. The continental crust: its composition and evolution. Blackwell Scientific Publisher, Palo Alto.
      Tribovillard, N., Algeo, T.J., Lyons, T., et al., 2006. Trace metals as paleoredox and paleoproductivity proxies: an update. Chemical Geology, 232(1-2): 12-32. doi: 10.1016/j.chemgeo.2006.02.012
      Wang, R.J., Li, X., Xiao, W.S., et al., 2005. Paleoceanographic records and sea ice extension history of the northern Bering Sea slope over the last 100 ka. Earth Science—Journal of China University of Geosciences, 30(5): 550-558 (in Chinese with English abstract).
      Wang, R.J., Xiao, W.S., Li, Q.Y., et al., 2006. Polycystine radiolarians in surface sediments from the Bering Sea green belt area and their ecological implication for paleoenvironmenal reconstructions. Marine Micropaleontology, 59: 135-152. doi: 10.1016/j.marmicro.2006.02.002
      Xiong, L.F., Liu, J.H., Bai, Y.Z., et al., 2012. The distributions of total organic carbon in the surface sediments from the Yellow Sea and the north of the East China Sea. Advance in Marine Science, in press (in Chinese with English abstract).
      Zou, J.J., Shi, X.F., Liu, Y.G., et al., 2010a. Geochemical records of paleoproductivity and paleoredox in the sea of Japan since 48 ka. Acta Oceanologica Sinica, 32(4): 98-109 (in Chinese with English abstract).
      Zou, J.J., Shi, X.F., Liu, Y.G., et al., 2010b. Geochemical record of terrigenous sediments from the sea of Japan since last glacial and its response for sea level and climate change. Marine Geology & Quaternary Geology, 30(2): 75-86 (in Chinese with English abstract).
      王汝建, 李霞, 肖文申, 等, 2005. 白令海北部陆坡100 ka来的古海洋学记录及海冰的扩张历史. 地球科学——中国地质大学学报, 30(5): 550-558. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200505005.htm
      何沅澎, 王汝建, 郑洪波, 等, 2006. 白令海DSDP188站氧同位素3期以来的古海洋与古气候记录. 海洋地质与第四纪地质, 26(2): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200602010.htm
      熊林芳, 刘季花, 白亚之, 等, 2012. 南黄海-东海北部表层沉积物有机碳分布特征. 海洋科学进展(待刊).
      邹建军, 石学法, 刘焱光, 等, 2010a. 48 ka以来日本海古生产力和古氧化还原环境变化的地球化学记录. 海洋学报, 32(4): 98-109. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201004010.htm
      邹建军, 石学法, 刘焱光, 等, 2010b. 末次冰期以来日本海陆源碎屑的地球化学记录及其古气候意义. 海洋地质与第四纪地质, 30(2): 75-86.
    • 加载中
    图(5)
    计量
    • 文章访问数:  483
    • HTML全文浏览量:  711
    • PDF下载量:  18
    • 被引次数: 0
    出版历程
    • 收稿日期:  2011-07-21
    • 网络出版日期:  2021-11-15
    • 刊出日期:  2012-05-01

    目录

      /

      返回文章
      返回