• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    海南石碌地区早三叠世闪长玢岩脉U-Pb年代学及构造意义

    李艳军 魏俊浩 伍刚 谭俊 石文杰 赵少卿 王永辉

    李艳军, 魏俊浩, 伍刚, 谭俊, 石文杰, 赵少卿, 王永辉, 2013. 海南石碌地区早三叠世闪长玢岩脉U-Pb年代学及构造意义. 地球科学, 38(2): 241-252. doi: 10.3799/dqkx.2013.025
    引用本文: 李艳军, 魏俊浩, 伍刚, 谭俊, 石文杰, 赵少卿, 王永辉, 2013. 海南石碌地区早三叠世闪长玢岩脉U-Pb年代学及构造意义. 地球科学, 38(2): 241-252. doi: 10.3799/dqkx.2013.025
    LI Yan-jun, WEI Jun-hao, WU Gang, TAN Jun, SHI Wen-jie, ZHAO Shao-qing, WANG Yong-hui, 2013. Early Triassic Diorite-Porphyrite Dikes from the Shilu Area, Hainan Island: Zircon U-Pb Age and Tectonic Implication. Earth Science, 38(2): 241-252. doi: 10.3799/dqkx.2013.025
    Citation: LI Yan-jun, WEI Jun-hao, WU Gang, TAN Jun, SHI Wen-jie, ZHAO Shao-qing, WANG Yong-hui, 2013. Early Triassic Diorite-Porphyrite Dikes from the Shilu Area, Hainan Island: Zircon U-Pb Age and Tectonic Implication. Earth Science, 38(2): 241-252. doi: 10.3799/dqkx.2013.025

    海南石碌地区早三叠世闪长玢岩脉U-Pb年代学及构造意义

    doi: 10.3799/dqkx.2013.025
    基金项目: 

    全国危机矿山“桂东粤西地区铅锌金等矿床成矿规律总结研究”项目 20089946

    中国地质大学(武汉)中央高校基本科研业务费专项基金 CUG110832

    中国地质大学(武汉)中央高校基本科研业务费专项基金 CUG120702

    国家自然科学基金项目 41202054

    详细信息
      作者简介:

      李艳军(1982-),男,博士,讲师,主要从事矿床地球化学、成矿规律与成矿预测教学和研究工作.E-mail: liyanjun21023@163.com

    • 中图分类号: P597

    Early Triassic Diorite-Porphyrite Dikes from the Shilu Area, Hainan Island: Zircon U-Pb Age and Tectonic Implication

    • 摘要: 石碌铁矿床位于海南岛五指山褶皱带西段.矿区内外发育以闪长玢岩脉为主的中基性脉岩.LA-ICP-MS锆石U-Pb定年厘定闪长玢岩脉年龄为248±1 Ma(MSWD=0.4),为早三叠世岩浆活动的产物,与同时代的富碱侵入岩体构成“双峰式”侵入岩.闪长玢岩脉为钾玄质系列,低SiO2(49.18%~55.25%)、高Al2O3(14.36%~16.75%)、FeOt(5.98%~10.07%)和MgO(3.80%~5.43%),富集LILE和LREE,亏损HFSE.Nb/Ta、Zr/Hf和La/Nb比值分别为15.33~17.80、36.00~45.23和2.59~8.62;Pb同位素组成(206Pb/204Pb)t=18.087~18.483,(207Pb/204Pb)t=15.473~15.587,(208Pb/204Pb)t=38.272~38.817.LREE/HFSE和LILE/HFSE比值及Pb同位素组成显示为富集地幔来源,但混染有少量的地壳物质.HFSE判别图解指示闪长玢岩脉形成于大陆边缘弧伸展背景,与晚二叠世印支板块NE向向华南地块俯冲造成的大陆边缘弧局部伸展有关.

       

    • 图  1  海南岛地质略图(a,据许德如等, 2009修改)、石碌铁矿床地质简图(b,据许德如等, 2008修改)和钻孔Ck714柱状图(c,据海南省地勘局, 2009.海南省石碌铁矿床E19勘探线剖面图修改)

      1.中新生代盖层;2.新生代玄武岩;3.白垩系砾岩层;4.早古生代火山碎屑岩;5.晚古生代火山-沉积岩;6.新元古代石碌群;7.古中元古代抱板群和片麻状花岗岩;8.新太古代杂岩;9.新元古界石碌群;10.新元古界石灰顶组;11.上、下石炭统;12.上、下二叠统;13.变基性岩;14.130~90 Ma花岗岩;15.270~180 Ma花岗岩;16.二叠纪花岗闪长岩;17.侏罗纪花岗闪长岩;18.闪长玢岩脉;19.花岗斑岩脉;20.辉绿玢岩脉;21.铁矿体;22.铜矿体;23.钴矿体;24.向斜;25.背斜;26.实测及推测断裂;27.地质界线;28.钻孔;29.取样点;W-E向断裂:①戈枕断裂,②白沙断裂;NE-SW向断裂:A=王五-文教断裂,B=昌江-琼海断裂,C=尖峰-吊罗断裂,D=就锁-陵水断裂

      Fig.  1.  Tectonic map of Hainan island (a), geological map of the Shilu iron deposit (b) and drill bore column of Ck714 (c)

      图  2  石碌地区闪长玢岩脉(ZrSL-2)中锆石形态和阴极发光(CL)图像

      圆圈及其中数字分别表示分析点位和测点编号; 圈外年龄示206Pb/238U表面年龄

      Fig.  2.  Typical zircon morphology and CL images of diorite-porphyrite sample (ZrSL-2) from Shilu area

      图  3  闪长玢岩脉(ZrSL-2)锆石LA-ICPMS U-Pb年龄谐和图

      加权平均年龄为去掉ZrSL-2-6和ZrSL-2-12外18个岩浆锆石测点的加权结果

      Fig.  3.  Concordia plots for zircons of diorite-porphyrite sample (ZrSL-2) from Shilu area

      图  4  闪长玢岩脉(ZrSL-2)锆石球粒陨石标准化稀土配分图解

      球粒陨石值据Sun and McDonough(1989)

      Fig.  4.  Chondrite normalized REE patterns of diorite-porphyrite sample (ZrSL-2)

      图  5  闪长玢岩脉原始地幔标准化微量元素蛛网图(a)及球粒陨石标准化稀土配分曲线(b)

      琼中中-早三叠世正长岩体数据周佐民等(2011).原始地幔和球粒陨石标准据Sun and McDonough (1989)

      Fig.  5.  Primitive mantle normalized trace element distributions (a) and chondrite normalized REE patterns (b) of diorite-porphyrite dikes from Shilu area

      图  6  闪长玢岩脉Nb/Y-Zr/TiO2(a) (据Winchester and Floyd, 1976)和Ta/Yb-Th/Yb(b) (据Pearce, 1983)判别图解

      WPB.板内玄武岩;MORB.洋中脊玄武岩;琼中中-早三叠世正长岩体数据周佐民等(2011)

      Fig.  6.  Nb/Y-Zr/TiO2 (a) and Ta/Yb-Th/Yb (b) diagrams of diorite-porphyrite dikes

      图  7  闪长玢岩脉Hf/3-Th-Ta(a) (据Wood et al., 1979) 及Zr-Zr/Y(b) (据Pearce and Norry, 1979)构造判别图解

      数据来源同图 6.N-MORB.洋中脊玄武岩;E-MORB+WPB.洋中脊玄武岩和板内拉斑玄武岩;WPB.板内碱性玄武岩;CAB.岛弧钙碱性玄武岩;IAT.岛弧拉斑玄武岩

      Fig.  7.  Hf/3-Th-Ta (a) and Zr-Zr/Y (b) diagrams to describe tectonic location of diorite-porphyrite dikes

      表  1  石碌地区闪长玢岩脉(ZrSL-2)锆石U-Pb定年分析结果

      Table  1.   LA-ICP-MS zircon U-Pb dating data of diorite-porphyrite sample (ZrSL-2) from Shilu area

      测试点号 Th
      (10-6)
      U
      (10-6)
      Th/U U-Th-Pb同位素比值 年龄(Ma)
      207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th
      ZrSL-2-1 537 1 220 0.44 0.047 9 0.002 9 0.261 4 0.014 7 0.039 2 0.000 4 0.012 5 0.000 3 100 131 236 12 248 3 252 6
      ZrSL-2-2 183 404 0.45 0.049 8 0.003 0 0.270 7 0.015 7 0.039 4 0.000 5 0.012 2 0.000 4 187 144 243 13 249 3 246 8
      ZrSL-2-3 917 1 712 0.54 0.047 2 0.002 2 0.257 5 0.011 5 0.039 2 0.000 5 0.011 4 0.000 3 57.5 107.4 233 9 248 3 229 6
      ZrSL-2-4 2 377 4 155 0.57 0.051 6 0.001 9 0.280 5 0.010 8 0.038 8 0.000 4 0.012 3 0.000 4 333 83 251 9 245 3 247 8
      ZrSL-2-5 873 932 0.94 0.049 8 0.001 8 0.268 7 0.009 8 0.038 8 0.000 4 0.011 5 0.000 3 187 116 242 8 245 3 230 6
      ZrSL-2-6 756 1 807 0.42 0.050 5 0.001 5 0.288 8 0.008 7 0.041 1 0.000 4 0.012 4 0.000 3 220 69 258 7 260 2 249 7
      ZrSL-2-7 194 505 0.38 0.049 4 0.002 2 0.269 7 0.011 5 0.039 7 0.000 6 0.011 8 0.000 5 165 138 242 9 251 4 237 10
      ZrSL-2-8 430 555 0.77 0.050 1 0.002 0 0.267 5 0.010 2 0.038 9 0.000 4 0.011 9 0.000 3 211 97 241 8 246 3 239 6
      ZrSL-2-9 159 374 0.43 0.050 7 0.002 9 0.274 0 0.014 8 0.039 3 0.000 6 0.012 3 0.000 5 228 127 246 12 249 4 247 10
      ZrSL-2-10 540 530 1.02 0.049 9 0.002 1 0.270 9 0.010 9 0.039 4 0.000 5 0.012 8 0.000 3 191 92 243 9 249 3 256 7
      ZrSL-2-11 355 1 221 0.29 0.048 1 0.001 7 0.263 8 0.009 6 0.039 5 0.000 4 0.012 2 0.000 4 106 85 238 8 250 3 244 7
      ZrSL-2-12 795 1 886 0.42 0.053 1 0.002 1 0.312 6 0.012 8 0.042 3 0.000 5 0.014 3 0.000 4 345 89 276 10 267 3 287 9
      ZrSL-2-13 1 328 4 582 0.29 0.050 8 0.001 1 0.278 2 0.006 2 0.039 5 0.000 5 0.011 9 0.000 3 232 45 249 5 250 3 240 6
      ZrSL-2-14 552 552 1.00 0.049 0 0.002 6 0.264 3 0.014 0 0.039 0 0.000 4 0.012 3 0.000 4 146 124 238 11 247 3 246 7
      ZrSL-2-15 108 380 0.28 0.051 6 0.002 1 0.279 9 0.011 5 0.039 3 0.000 5 0.013 0 0.000 5 265 97 251 9 248 3 261 11
      ZrSL-2-16 382 560 0.68 0.054 2 0.002 9 0.291 1 0.014 6 0.039 1 0.000 5 0.012 8 0.000 4 389 120 259 11 247 3 256 8
      ZrSL-2-17 56.9 169 0.34 0.054 5 0.005 6 0.297 2 0.031 9 0.038 8 0.000 7 0.011 4 0.000 8 394 233 264 25 245 5 229 16
      ZrSL-2-18 596 672 0.89 0.053 8 0.002 0 0.291 2 0.010 3 0.039 4 0.000 5 0.012 2 0.000 3 365 81 259 8 249 3 245 6
      ZrSL-2-19 368 1 266 0.29 0.054 0 0.001 6 0.295 8 0.008 5 0.039 6 0.000 4 0.012 7 0.000 3 372 65 263 7 250 2 256 6
      ZrSL-2-20 607 738 0.82 0.054 8 0.002 4 0.297 8 0.012 8 0.039 3 0.000 5 0.013 3 0.000 4 467 96 265 10 248 3 267 7
      下载: 导出CSV

      表  2  闪长玢岩脉(ZrSL-2)锆石微量元素分析结果(10-6)

      Table  2.   Trace elements data of diorite-porphyrite sample (ZrSL-2) from Shilu area

      点号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Ti Eu/Eu* Ce/Ce* TZr(℃)±
      ZrSL-2-1 28.98 98.06 12.54 66.02 21.09 0.78 47.67 14.27 166.58 62.75 288.64 61.05 564.52 109.19 1.52 0.07 1.26 - -
      ZrSL-2-2 0.01 6.97 0.09 2.11 3.93 0.34 20.07 6.87 82.56 31.91 142.76 29.15 269.71 52.76 2.42 0.09 23.58 1216 22
      ZrSL-2-3 0.38 49.00 0.65 5.15 9.38 0.67 42.85 15.55 177.64 68.41 295.01 61.52 547.14 104.95 5.02 0.09 19.05 835 14
      ZrSL-2-4 1.32 93.80 2.88 21.36 30.43 1.67 117.07 36.53 398.69 140.49 590.64 116.67 1 010.10 187.97 57.42 0.08 8.55 660 11
      ZrSL-2-5 0.19 28.98 0.28 4.89 11.03 0.73 50.47 14.17 143.57 48.87 200.44 39.11 339.81 62.71 11.86 0.08 25.20 727 12
      ZrSL-2-6 4.30 25.33 2.28 13.62 16.97 0.18 94.21 32.01 388.46 146.36 623.24 119.94 1 027.31 187.25 4.27 0.01 1.96 875 15
      ZrSL-2-7 0.05 10.51 0.07 2.03 4.05 0.17 22.74 7.66 94.60 36.76 164.14 32.83 301.82 58.01 3.55 0.04 34.62 938 16
      ZrSL-2-8 1.17 23.49 0.94 6.52 6.93 0.33 27.95 9.25 113.06 41.93 190.10 38.71 346.60 64.88 5.95 0.06 5.18 803 13
      ZrSL-2-9 0.00 6.67 0.11 1.74 4.04 0.47 21.13 6.89 85.17 32.11 150.02 30.93 299.90 57.81 3.98 0.12 897 15
      ZrSL-2-10 0.38 22.02 0.34 4.10 6.27 0.46 34.90 11.16 127.42 46.08 200.03 39.47 344.76 64.74 7.56 0.08 13.94 770 13
      ZrSL-2-11 2.17 13.27 0.90 4.14 3.70 0.14 16.27 6.95 88.14 37.13 179.49 41.34 406.70 81.03 1.14 0.05 2.33 - -
      ZrSL-2-12 0.05 22.99 0.32 2.86 9.64 0.16 60.14 23.57 286.76 107.26 454.55 89.32 790.61 140.82 5.59 0.02 21.08 814 13
      ZrSL-2-13 0.20 12.23 0.49 3.07 6.72 0.26 48.06 19.69 260.35 105.65 479.84 99.65 898.06 171.74 4.79 0.03 6.64 846 14
      ZrSL-2-14 3.54 22.43 1.43 10.82 13.18 0.63 59.69 18.87 211.74 79.13 332.72 65.37 568.85 103.75 7.90 0.06 2.44 764 12
      ZrSL-2-15 - 6.09 0.04 0.99 2.33 0.24 19.77 6.54 80.38 32.48 154.61 34.07 332.21 67.67 4.21 0.07 879 15
      ZrSL-2-16 - 18.15 0.12 1.05 3.78 0.16 25.04 8.77 104.33 40.72 183.23 37.64 335.05 62.20 4.74 0.04 848 14
      ZrSL-2-17 - 3.97 0.11 1.01 2.40 0.51 13.18 4.28 52.51 21.25 101.39 22.10 229.58 45.53 7.98 0.22 763 12
      ZrSL-2-18 0.04 24.20 0.27 3.56 9.27 0.65 36.60 10.65 108.44 36.82 149.64 29.54 258.28 48.13 10.40 0.09 26.39 737 12
      ZrSL-2-19 0.72 10.96 0.49 3.57 4.11 0.28 20.48 7.58 98.38 39.36 192.55 44.32 436.77 84.44 1.57 0.08 4.39 - -
      ZrSL-2-20 1.10 31.94 0.96 9.51 10.32 0.66 41.05 10.92 110.03 37.58 155.78 31.08 281.34 50.64 73.97 0.09 7.07 655 11
      †: TZr(℃)为据Watson et al.(2006)Ti温度计log(Tizircon)=(6.01±0.03)-(5 080±30)/T(K)计算的锆石饱和温度.
      下载: 导出CSV

      表  3  闪长玢岩脉主量元素(%)、微量及稀土元素(10-6)分析结果

      Table  3.   Major (%) and trace elements (10-6) compositions of diorite-porphyrite dikes from Shilu area

      样号 SLN-8 SL-26 SL-27 ZM-5
      SiO2 52.00 46.00 49.18 55.25
      Al2O3 15.88 12.13 16.75 14.36
      FeOt 10.07 8.24 8.52 5.98
      CaO 6.68 7.04 9.68 6.17
      MgO 4.03 12.50 5.43 3.80
      Na2O 2.79 1.27 3.53 3.67
      K2O 2.94 0.49 2.17 2.10
      TiO2 1.86 0.66 1.54 1.23
      MnO 0.15 0.12 0.23 0.10
      P2O5 0.73 0.16 1.11 0.59
      LOI 2.69 10.90 1.24 6.28
      Total 100.15 99.98 99.62 99.80
      Mg# 47.1 77.1 58.6 58.5
      Na2O+K2O 5.73 1.76 5.70 5.77
      K2O/Na2O 1.1 0.4 0.6 0.6
      Cr 50 1 470 40 90
      Co 26.3 47.8 23.8 24.4
      Ga 20.3 13.9 20.5 17.8
      Rb 135.0 24.8 112.5 74.3
      Sr 571 249 1 120 429
      Y 35 15.1 29.1 19.4
      Zr 234 72 294 209
      Nb 13.9 4.6 8.9 18.7
      Ba 1 995 1 985 773 1 690
      Hf 5.9 2.0 6.50 5.0
      Ta 0.8 0.3 0.50 1.1
      Pb 14 14 11 422
      Th 18.40 3.54 14.65 10.15
      U 2.45 1.09 2.69 1.52
      La 65.70 12.90 76.70 48.40
      Ce 140.00 28.10 149.50 99.20
      Pr 18.05 3.66 18.15 12.00
      Nd 66.60 14.20 63.50 43.50
      Sm 11.80 3.08 11.40 7.56
      Eu 3.06 0.89 2.77 1.75
      Gd 10.55 3.21 9.94 6.38
      Tb 1.35 0.50 1.20 0.80
      Dy 6.88 2.99 5.90 3.71
      Ho 1.38 0.63 1.12 0.73
      Er 3.75 1.82 3.11 1.92
      Tm 0.52 0.23 0.40 0.24
      Yb 3.08 1.69 2.47 1.52
      Lu 0.47 0.24 0.37 0.24
      ∑REE 333.19 74.14 346.53 227.95
      (La/Yb)N 15.3 5.5 22.3 22.8
      Eu/Eu* 0.82 0.86 0.78 0.75
      Nb/Ta 17.38 15.33 17.80 17.00
      Zr/Hf 39.66 36.00 45.23 41.80
      Hf/Sm 0.50 0.65 0.57 0.66
      La/Ta 82.13 43.00 153.40 44.00
      Ba/Nb 143.53 431.52 86.85 90.37
      Rb/Zr 0.58 0.34 0.38 0.36
      La/Nb 4.73 2.80 8.62 2.59
      Mg#=100×Mg2+/(Mg2++0.9×FeOt/80).
      下载: 导出CSV

      表  4  闪长玢岩脉Pb同位素分析结果

      Table  4.   Pb isotopic compositions of diorite-porphyrite dikes from Shilu area

      编号 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb (206Pb/204Pb)t (207Pb/204Pb)t (208Pb/204Pb)t
      SLN-8 18.679±0.006 15.596±0.003 39.290±0.008 18.483 15.587 38.817
      SL-27 18.091±0.003 15.473±0.003 38.281±0.007 18.087 15.473 38.272
      海南中-早三叠世正长岩 18.487~18.714 15.580~15.657 38.503~38.682
          注:校正年龄为t=248 Ma;海南中-早三叠世正长岩Pb同位素测试对象为长石,由7件样品组成,谢才富等(2005, 2006)和周佐民等(2011).
      下载: 导出CSV
    • Cai, J.X., Zhang, K.J., 2009. A New Model for the Indochina and South China Collision during the Late Permian to the Middle Triassic. Tectonophysics, 467: 35-43. doi: 10.1016/j.tecto.2008.12.003
      Carter, A., Roques, D., Bristow, C.S., et al., 2001. Understanding Mesozoic Accretion in Southeast Asia: Significance of Triassic Thermotectonism (Indosinian orogeny) in Vietnam. Geology, 29: 211-214. doi: 10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2.
      Chen, D.L., Sun, Y., Liu, L., et al., 2007. In Situ LA-ICP-MS Zircon U-Pb Age of Ultrahigh-Pressure Eclogites in the Yukahe Area, Northern Qaidam Basin. Science in China (Series D), 50(Suppl. ): 322-330. doi: 10.1007/s11430-007-6001-6
      Fan, W.M., Wang, Y.J., Guo, F., et al., 2003. Mesozoic Mafic Magmatism in Hunan-Jiangxi Provinces and the Lithospheric Extension. Earth Science Frontiers, 10(3): 159-169 (in Chinese with English abstract). http://www.researchgate.net/publication/284053740_Mesozoic_mafic_magmatism_in_Hunan-Jiangxi_provinces_and_the_lithospheric_extension
      Fitton, J.G., James, D., Kempton, P.D., et al. 1988. The Role of Lithosphere Mantle in the Generation of Late Cenozoic Basic Magmas in the Western United States. In: Cox, K.G., Menzies, M.A., eds., Oceanic and Continental Lithosphere: Similarities and Differences. Journal of Petrology, Special Volume(1): 331-349. doi: 10.1093/petrology/Special_Volume.1.331
      Fowler, M.B., Henney, P.J., 1996. Mixed Caledonian Appinite Magmas: Implications for Lamprophyre Fraction and High Ba-Sr Granite Genesis. Contributions to Mineralogy and Petrology, 126: 99-215. doi: 10.1007/s004100050244
      Green, T.H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120(3-4), 347-359. doi: 10.1016/0009-2541(94)00145-X
      Griffin, W.L., Belousova, E.A., Shee, S., et al., 2004. Archean Crustal Evolution in the Northern Yilgarn Craton: U-Pb and Hf-Isotope Evidence from Detrital Zircons. Precambrian Research, 131(3-4): 231-282. doi: 10.1016/j.precamres.2003.12.011
      Hofmann, A.W., 1988. Chemical Differentiation of the Earth: the Relationship between Large Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297-314. doi: 10.1016/0012-821X(88)90132-X
      Hoskin, P.W.O., Black, L.P., 2000. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 8: 423-439. doi: 10.1046/j.1525-1314.2000.00266.X
      Hou, W., Chen, H.F., Peng, G.L., 1996. Geotectonics and Gold Metallogeny in Hainan Island. Science Press, Beijing (in Chinese).
      Hsu, K.J., Li, J.L., Chen, H.H., et al., 1990. Tectonics of South China: Key to Understanding West Pacific Geology. Tectonophysics, 183: 9-39. doi: 10.1016/0040-1951(90)90186-C
      Lepvrier, C., Maluski, H., Nguyen, V.V., et al., 1997. Indosinian NW-Trending Shear Zones within the Truong Son Belt (Vietnam) 40Ar/39Ar Triassic Ages and Cretaceous to Cenozoic Overprints. Tectonophysics, 283: 105-127. doi: 10.1016/S0040-1951(97)00151-0
      Li, X.H., Hu, R.Z., Rao, B., 1997. Geochronology and Geochemistry of Cretaceous Mafic Dikes from Northern Guangdong, SE China. Geochimica, 26(2): 14-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX702.003.htm
      Li, X.H., Zhou, H.W., Ding, S.J., et al., 2000. Metamorphosed Mafic Rocks with N-Type MORB Geochemical Features in Hainan Island-Remnants of the Paleo-Tethys Oceanic Crust? Chinese Science Bulletin, 45: 956-960. doi: 10.1007/BF02886208.
      Li, X.H., Zhou, H.W., Chung, S.L., et al., 2002. Geochemical and Sm-Nd Isotopic Characteristics of Metabasaltic from Central Hainan Island, South China and Their Tectonic Significance. The Island Arc, 11: 193-205. doi: 10.1046/j.1440-1738.2002.00365.x
      Li, X.H., Chung, S.L., Zhou, H.W., et al., 2004. Jurassic Intraplate Magmatism in Southern Hunan-Eastern Guangxi: 40Ar/39Ar Dating, Geochemistry, Sr-Nd Isotopes and Implications for the Tectonic Evolution of SE China. Geological Society, London, Special Publications, 226: 193-215. doi: 10.1144/GSL.SP.2004.226.01.11
      Li, X.H., Li, Z.X., Li, W.X., et al., 2006. Initiation of the Indosinian Orogeny in South China: Evidence for a Permian Magmatic Arc on Hainan Island. The Journal of Geology, 114: 341-353. doi: 0022-1376/2006/11403-0005
      Li, X.H., Li, Z.X., Li, W.X., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96: 186-204. doi: 10.1016/j.lithos.2006.09.018
      Li, Z.X., Li, X.H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. doi: 10.1130/G23193A.1
      Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51: 537-571. doi: 10.1093/petrology/egp082
      Mayborn, K.R., Lesher, C.E., Connelly, J.N., 2008. Geochemical Constraints on the Late-Stage Evolution of Basaltic Magma as Revealed by Composite Dikes within the Kangamiut Dike Swarm, West Greenland. Lithos, 104: 428-438. doi: 10.1016/j.lithos.2008.02.001
      Pearce, J.A., Norry, M.J., 1979. Petrogenetic Implications of Ti, Zr, Y and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69: 33-47. doi: 10.1007/BF00375192
      Pearce, J.A., 1983. Role of the Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In: Hawkesworth, C.J., Norry, M.J., eds., Continental Basalts and Mantle Xenoliths. Shiva Publishing, Nantwich, 158-185.
      Poland, M.P., Fink, J.H., Tauxe, L., 2004. Patterns of Magma Flow in Segmented Silicic Dikes at Summer Coon Volcano, Coloarado: AMS and Thin Section Analysis. Earth and Planetary Science Letters, 219: 155-169. doi: 10.1016/S0012-821X(03)00706-4
      Rapp, R.P., Watson, E.B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar: Implications for Continental Growth and Crustmantle Recycling. Journal of Petrology, 36: 891-931. doi: 10.1093/petrology/36.4.891
      Scarrow, J.H., Leat, P.T., Wareham, C.D., et al., 1998. Geochemistry of Mafic Dykes in the Antarctic Peninsula Continental-Margin Batholith: A Record of Arc Evolution. Contributions to Mineralogy and Petrology, 131: 289-305. doi: 10.1007/s004100050394
      Scientific Researching Team of Iron-Rich Deposits in South China, Chinese Academy of Sciences, 1986. Geology of Hainan Island and Geochemistry of Iron Ore Deposits in Shilu. Science Press, Beijing (in Chinese).
      Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Process. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins. Spec. Publ. Geol. Soc. Lond. , 42: 313-345.
      Sun, T., 2006. A New Map Showing the Distribution of Granites in South China and Its Explanatory Notes. Geological Bulletin of China, 25(3): 332-335(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200603002.htm
      Wang, Q., Li, J.W., Jian, P., et al., 2005. Alkaline Syenites in Earstern Cathaysia (South China) : Link to Permian-Triassic Transtension. Earth and Planetare Science Letters, 230: 339-354. doi: 10.1016/j.epsl.2004.11.023
      Wang, Y.J., Fan, W.M., Guo, F., et al. 2003. Geochemistry of Mesozoic Mafic Rocks around the Chenzhou-Linwu Fault in South China: Implication for the Lithospheric Boundary between the Yangtze and the Cathaysia Blocks. International Geology Review, 45(3) : 263-286. doi: 10.2747/0020-6814.45.3.263
      Wang, Y.J., Fan, W.M., Cawood, P.A., et al., 2008. Sr-Nd-Pb Isotopic Constraints on Multiple Mantle Domains for Mesozoic Mafic Rocks beneath the South China Block Hinterland. Lithos, 106(3-4): 297-308. doi: 10.1016/j.lithos.2008.07.019
      Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 151(4): 413-433. doi: 10.1007/s00410-006-0068-5
      Winchester, J.A., Floyd, P.A., 1976. Geochemical Magma Type Discrimination: Application to Altered and Metamorphosed Basic Igneous Rocks. Earth and Planetary Science Letters, 28: 459-469. doi: 10.1016/0012-821X(76)90207-7
      Wood, D.A., Joron, J.L., Treuil, M., 1979. A Re-Appraisal of the Use of Trace Elements to Classify and Discriminate between Magma Series Erupted in Different Tectonic Settings. Earth and Planetary Science Letters, 45: 326-336. doi: 10.1016/0012-821X(79)90133-X
      Wu, Y.B., Zheng, Y.F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. Doi: 10.1360/04wd0130
      Xie, C.F., Zhu, J.C., Zhao, Z.J., et al., 2005. Zircon SHRIMP U-Pb Age Dating of Garnet-Acmite Syenite: Constraints on the Hercynian-Indosinian Tectonic Evolution of Hainan Island. Geological Journal of China Universities, 11(1): 47-57 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200501002.htm
      Xie, C.F., Zhu, J.C., Ding, S.J., et al., 2006. Age and Petrogenesis of the Jianfengling Granite and Its Relationship to Metallogenesis of the Baolun Gold Deposit, Hainan Island. Acta Petrologica Sinica, 22(12): 2493-2508(in Chinese with English abstract). http://www.researchgate.net/publication/285729792_Age_and_petrogenesis_of_the_Jianfengling_granite_and_its_relationship_to_metallogenesis_of_the_Baolun_gold_deposit_Hainan_Island
      Xie, G.Q., Hu, R.Z., Jia, D.C., 2002. Geological and Geochemical Characteristics and Its Significance of Mafic Dikes from Northwest Jiangxi Province. Geochimica, 31(4): 329-338 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQHX200204003.htm
      Xie, G.Q., 2003. Late Mesozoic and Cenozoic Mafic Dikes (Bodies) from Southeastern China: Geological and Geochemical Characteristics and Its Geodynamics-A Case of Jiangxi Province. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences (in Chinese with English abstract).
      Xu, D.R., Xia, B., Li, P.C., et al., 2006. SHRIMP U-Pb Dating of Zircon from the Precambrian Granitoids in Northwest Hainan Island and Its Geological Implications. Geotectonica et Metallogenia, 30(4): 510-518(in Chinese with English abstract). http://www.researchgate.net/publication/291445345_SHRIMP_U-Pb_dating_on_zircon_from_the_Precambrian_granitoid_rock_in_northwest_Hainan_Island_and_its_geological_implications
      Xu, D.R., Wang, L., Xiao, Y., et al., 2008. A Preliminary Discussion on Metallogenic Model for Shilu-Type Iron Oxide-Copper-Gold-Cobalt Ore Deposit. Mineral Deposits, 27(6): 681-694(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200806003.htm
      Xu, D.R., Xiao, Y., Xiao, B., et al., 2009. Metallogenic Model and Ore Predicting of the Shilu Iron Ore Deposit in Hainan Province. Geological Publishing House, Beijing (in Chinese).
      Zhang, F.F., Wang, Y.J., Chen, X.Y., et al., 2011. Triassic High-Strain Shear Zones in Hainan Island (South China) and Their Implications on the Amalgamation of the Indochina and South China Blocks: Kinematic and 40Ar/39Ar Geochronological Constraints. Gondwana Research, 19: 910-925. doi: 10.1016/j.gr.2010.11.002
      Zhang, X.W., Xiang, H., Zhong, Z.Q., et al., 2009. U-Pb Dating and Trace Elements Composition of Hydrothermal Zircons from Jianfengling Granite, Hainan: Restriction on the Age of Hydrothermal Event and Mineralization of Baolun Gold Deposit. Earth Science —Journal of China University of Geosciences, 34(6): 921-930(in Chinese with English abstract). doi: 10.3799/dqkx.2009.105
      Zhou, Z.M., Xie, C.F., Xu, Q., et al., 2011. Geological and Geochemical Characteristics of Middle Triassic Syenite-Granite Suite in Hainan Island and Its Geotectonic Implications. Geological Review, 57(4): 515-531(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201104007.htm
      范蔚茗, 王岳军, 郭锋, 等, 2003. 湘赣地区中生代镁铁质岩浆作用与岩石圈伸展. 地学前缘, 10(3): 159-169. doi: 10.3321/j.issn:1005-2321.2003.03.015
      侯威, 陈惠芳, 彭格林, 1996. 海南岛大地构造与金成矿学. 北京: 科学出版社.
      李献华, 胡瑞忠, 饶冰, 1997. 粤北白垩纪基性岩脉的年代学和地球化学. 地球化学, 26(2): 14-28. doi: 10.3321/j.issn:0379-1726.1997.02.004
      孙涛, 2006. 新编华南花岗岩分布图及其说明. 地质通报, 25(3): 332-335. doi: 10.3969/j.issn.1671-2552.2006.03.002
      许德如, 夏斌, 李鹏春, 等, 2006. 海南岛北西部前寒武纪花岗质岩SHRIMP锆石U-Pb年龄及地质意义. 大地构造与成矿学, 30(4): 510-518. doi: 10.3969/j.issn.1001-1552.2006.04.014
      许德如, 王力, 肖勇, 等, 2008. "石碌式"铁氧化物-铜(金)-钴矿床成矿模式初探. 矿床地质, 27(6): 681-694. doi: 10.3969/j.issn.0258-7106.2008.06.002
      许德如, 肖勇, 夏斌, 等, 2009. 海南石碌铁矿床成矿模式与找矿预测. 北京: 地质出版社.
      谢桂青, 胡瑞忠, 贾大成, 2002. 赣西北基性岩脉的地质地球化学特征及其意义. 地球化学, 31(4): 329-338. doi: 10.3321/j.issn:0379-1726.2002.04.004
      谢桂青, 2003. 中国东南部晚中生代以来的基性岩脉(体)的地质地球化学特征及其地球动力学意义初探——以江西省为例. 贵阳: 中国科学院地球化学研究所.
      谢才富, 朱金初, 赵子杰, 等, 2005. 三亚石榴霓辉石正长岩的锆石SHRIMP U-Pb年龄: 对海南岛海西-印支期构造演化的制约. 高校地质学报, 11(1): 47-57. doi: 10.3969/j.issn.1006-7493.2005.01.003
      谢才富, 朱金初, 丁式江, 等, 2006. 海南尖峰岭花岗岩体的形成时代、成因及其与抱伦金矿的关系. 岩石学报, 22(12): 2493-2508. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200610009.htm
      中国科学院华南富铁科学研究队, 1986. 海南岛地质与石碌铁矿地球化学. 北京: 科学出版社.
      周佐民, 谢才富, 徐倩, 等, 2011. 海南岛中三叠世正长岩-花岗岩套的地质地球化学特征与构造意义. 地质论评, 57(4): 515-531. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201104007.htm
      张小文, 向华, 钟增球, 等, 2009. 海南尖峰岭岩体热液锆石U-Pb定年及微量元素研究: 对热液作用及抱伦金矿成矿时代的限定. 地球科学——中国地质大学学报, 34(6): 921-930. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200906007.htm
    • 加载中
    图(7) / 表(4)
    计量
    • 文章访问数:  4007
    • HTML全文浏览量:  464
    • PDF下载量:  625
    • 被引次数: 0
    出版历程
    • 收稿日期:  2012-03-18
    • 刊出日期:  2013-03-01

    目录

      /

      返回文章
      返回