Petrogenesis of Olivine-Bearing Clinopyroxenite Xenolith in Early Cretaceous Adakitic Rocks from Xuhuai Area in Eastern China and Its Petrologic Implication
-
摘要: 报道了徐淮地区早白垩世埃达克质岩中首次发现的含橄榄石单斜辉石岩捕虏体的岩相学与矿物化学资料, 该类捕虏体显示堆积结构、块状构造, 主要由单斜辉石(~80%)、斜方辉石(~5%)、橄榄石(~5%)和普通角闪石(~10%)组成.橄榄石外侧发育有斜方辉石反应边, 角闪石沿辉石粒间分布, 呈嵌晶结构.矿物化学分析结果表明: 橄榄石的镁橄榄石分子值(Fo)=77.7~79.3, Ni=623×10-6~773×10-6; 斜方辉石的Mg#=75.6~80.2, Cr=161×10-6~684×10-6, Ni=79×10-6~708×10-6; 单斜辉石的Mg#=84.5~86.4, CaO=21.59%~23.13%, Al2O3=1.72%~2.44%.上述矿物与中、新生代玄武岩中橄榄石、斜方辉石和单斜辉石斑晶以及堆积成因辉石岩中的斜方辉石和单斜辉石成分类似.此外, 单斜辉石的稀土配分型式以相对富含中稀土元素的上凸型为特征, 稀土元素含量较低(∑REE=10.14×10-6~12.71×10-6), 无明显的铕异常(δEu=0.90~1.16), 类似于新生代玄武岩中单斜辉石斑晶.捕虏体中的普通角闪石的Mg#=74.0~80.4、SiO2=43.2%~44.5%、Na2O=2.04%~2.29%, 稀土元素分馏不明显, 显示亏损高场强元素(HFSEs, 如Nb、Ta、Zr、Hf), 富集Sr、Rb、Ba的特征, 与新生代玄武岩中角闪石捕虏晶成分不同.结合其嵌晶结构, 普通角闪石应是寄主岩浆贯入结晶的产物.综合上述特征, 可以看出含橄榄石单斜辉石捕虏体为镁铁质岩浆高压堆晶成因.结合华北克拉通东部早白垩世双峰式火山岩组合的出现, 推断含橄榄石单斜辉石岩捕虏体可能是早白垩世基性岩浆底侵的产物.Abstract: The petrography and mineral chemical data of olivine-bearing clinopyroxenite xenolith entrained by the Early Cretaceous adakitic rocks in Xuhuai area, eastern China are reported in this paper. Olivine-bearing clinopyroxenite consists of clinopyroxene (~80%), orthopyroxene (~5%), olivine (~5%), and hornblende (~10%) and displays cumulate texture and massive structure. The orthopyroxene reaction rim can be found around olivine. The hornblendes occur among pyroxenes, and display poikilitic texture. The mineral chemical data indicate that olivines have forsterite (Fo)=77.7-79.3 and Ni=623×10-6-773×10-6, that orthopyroxenes have Mg#=75.6-80.2, Cr=161×10-6-684 ×10-6, and Ni=79×10-6-708×10-6, and that clinopyroxenes have Mg#=84.5-86.4, CaO=21.59%-23.13%, Al2O3=1.72%-2.44%. Chemically, these minerals are similar to the olivine, orthopyroxene, and clinopyroxene phenocrysts from the Mesozoic and Cenozoic basalts and those from the pyroxenites with cumulate origin. Additionally, the clinopyroxenes from the xenolith are characterized by convex upward rare earth element (REE) distribution patterns, low REE contents (∑REE=10.14×10-6-12.71×10-6), and no Eu anomalies (δEu=0.90-1.16), similar to the clinopyroxene phenocrysts in the Cenozoic basalts. Hornblendes in this xenolith have Mg#=74.0-80.4, SiO2=43.2%-44.5%, Na2O=2.04%-2.29%, and display flat REE patterns and depletion in high field strength elements (HFSEs, Nb, Ta, Zr and Hf) and Th as well as enrichment in Sr, Rb and Ba, different from those hornblende xenocrysts from Cenozoic basalts. Combined with its poikilitic texture, it is suggested that these hornblendes could be formed by injection of the host magma. Taken together, we conclude that the olivine-bearing clinopyroxenite xenolith could be formed by the high-pressure accumulation of basaltic melt. Combined with Early Cretaceous bimodal magmatism in eastern China, it is suggested that the olivine-bearing clinopyroxenite could be generated by the underplating of mantle-derived basaltic magma.
-
Key words:
- Early Cretaceous /
- adakitic rock /
- olivine-bearing clinopyroxenite xenolith /
- petrogenesis /
- petrology /
- Xuhuai area
-
0. 引言
碱性玄武岩中出现辉石岩类捕虏体在世界范围内为普遍现象(Frey and Prinz, 1978; Irving and Frey, 1984; Chen et al., 2001; Bondi et al., 2002; Xu, 2002;Zhou et al., 2002; Liu et al., 2005; 余晓露和郑建平, 2007; Zoltán et al., 2007;Zheng et al., 2009; Xu et al., 2013).我国东部中、新生代火成岩广泛分布, 其中含有丰富的辉石岩类捕虏体,中生代火成岩如:山东鲁西地区(陈立辉,2001; 王冬艳等,2004; Xu et al., 2004a; Zhang et al., 2004)、辽西阜新(许文良等, 1999);新生代火成岩如:河北汉诺坝(Xu, 2002;Zhou et al., 2002; Liu et al., 2005; Zheng et al., 2009)、阳原(刘讲锋和徐义刚, 2006)、和昌乐(余晓露和郑建平, 2007)以及吉林蛟河(Yu et al., 2010)等地.目前, 依据辉石岩类捕虏体的矿物化学成分、形成的温压条件和同位素组成, 将其划分成以下主要成因类型:(1)岩浆高压堆晶作用成因(Frey and Prinz, 1978; Irving and Price, 1981; Suen and Frey, 1987; Chen et al., 2001; Bondi et al., 2002);(2)熔体-橄榄岩反应成因(Zinngrebe and Foley, 1995; Garrido and Bodinier, 1999; Liu et al., 2005; Xu et al., 2013);(3)再循环洋壳变质成因(Allegre and Turcotte, 1986; Suen and Frey, 1987; Pearson et al., 1993; Becker, 1996; Yu et al., 2010).研究还发现辉石岩及其母岩浆不仅可以成为地幔交代作用的重要介质(Garrido and Bodinier, 1999), 而且辉石岩的存在还是岩石圈地幔具有富集组分的直接证据.因此, 对辉石岩进行系统的岩相学、矿物化学和岩石地球化学研究不仅有助于了解其岩石成因,而且对探讨岩石圈地幔性质及其深部作用过程具有重要意义.
徐淮早白垩世夹沟二长闪长斑岩中含有大量的榴辉岩类、角闪石榴辉石岩类、石榴角闪岩类、辉石岩类以及片麻岩类捕虏体(Xu et al., 2002), 通过对这些捕虏体和寄主岩的详细的年代学、矿物化学以及岩石地球化学研究表明,部分榴辉岩捕虏体具有部分熔融的残留成因,而多数为岩浆上升过程中捕获的深部陆壳或围岩捕虏体(王清海等, 2003, 2004, 2009, 2011; Xu et al., 2004a, 2004b, 2006a, 2006b, 2009).上述研究为揭示陆内埃达克质岩石的成因——拆沉的加厚陆壳部分熔融以及相继出现的与地幔橄榄岩反应——提供了典型范例(Xu et al., 2006a, 2006b).然而, 对埃达克质岩石的成因目前还有不同看法,Chen et al.(2013)认为高镁埃达克质岩石具有岩浆混合成因.对徐淮夹沟二长闪长斑岩中最新发现的含橄榄石单斜辉石岩捕虏体的岩相学、矿物化学进行研究, 这不仅对了解辉石岩捕虏体的成因, 而且对揭示该区埃达克质岩石成因也具有一定的指示意义.
1. 地质背景
徐淮地区位于华北克拉通东南部, 郯庐断裂带以西约100 km,大别造山带以北约300 km处(图 1).区内存在的新元古代(震旦纪)和古生代地层均遭受了变形,构成了徐州-宿州弧形构造带(徐树桐等, 1993; 王桂梁等, 1998),该构造带夹于北部丰沛-兰陵隆起与南部西阳集隆起之间.区内存在许多中生代侵入杂岩体,它们侵位于徐淮弧形构造带中的张性断裂里,岩体侵入的最新地层为已经褶皱变形的二叠系,岩体没有遭受变形的改造,表明这些侵入杂岩体位于弧形构造带形成之后的伸展环境(林景仟等, 2000).
图 1 徐淮地区中生代侵入杂岩体分布(据Xu et al., 2006a)Fig. 1. Distribution map of the Mesozoic intrusions in Xuhuai area夹沟岩体位于徐州市西南约22 km处,岩体出露面积约为1.8 km2,呈岩株状侵位于已经褶皱变形的寒武纪和奥陶纪的地层中,岩体受NW走向的张性断裂所控制.岩体的岩性较为单一,由二长闪长斑岩组成.Xu et al.(2004a)对夹沟岩体二长闪长岩斑岩中的锆石进行SHRIMP U-Pb定年结果显示为早白垩世(132±4 Ma).夹沟二长闪长斑岩中含有种类丰富的岩石捕虏体, 除单斜辉石岩,石榴辉石岩,榴辉岩,角闪岩类和片麻岩类捕虏体,而含橄榄石单斜辉石岩捕虏体为研究区首次发现.
2. 含橄榄石单斜辉石岩捕虏体的岩相学
含橄榄石单斜辉石岩捕虏体呈浑圆状产出于二长闪长斑岩中,其大小约为3×4×2 cm3.含橄榄石单斜辉石岩为堆积结构,块状构造,主要由单斜辉石(~80%),普通角闪石(~10%),橄榄石(~5 %)和斜方辉石(~5%)组成.单斜辉石为自形-半自形,多呈粒状镶嵌(图 2a),斜方辉石呈半自形-他形,部分呈单独颗粒产出(图 2b),多数为橄榄石的反应边(图 2a),橄榄石主要为半自形,沿裂隙蚀变强, 普通角闪石呈他形充填在其他矿物粒间,构成嵌晶结构(图 2a和2b).
3. 分析方法
含橄榄石单斜辉石岩捕虏体中矿物的主量元素分析以及矿物的背散射图像(BSE)采集均在北京大学地球和空间科学学院电子探针实验室的JXA-8100型波长色散电子探针仪上完成.分析条件:加速电压15 kV;束流1×10-8 A;束斑1 μm;修正方法PRZ;标准样品美国SPI公司53种矿物, 分析精度和准确度优于±5%.具体校正方法参见文献(Pouchou and Pichoir, 1984).
矿物的部分主量元素和全部痕量元素分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)完成,采用矿物微区原位LA-ICP-MS分析,实验仪器为Agilent 7500a ICP-MS.激光束斑的直径为60 μm.美国地质调查局(USGS)的参考玻璃(BCR-2G、BIR-1G和BHVO-2G)作为校正标准,采用多外标、无内标法(Liu et al., 2008)对元素含量进行定量计算.对分析数据的离线处理采用软件ICPMSDataCal完成,详细的样品分析测试过程见文献(Liu et al., 2008, 2010).
4. 矿物化学
含橄榄石单斜辉石岩捕虏体中橄榄石、斜方辉石、单斜辉石和普通角闪石的电子探针和矿物微区原位LA-ICP-MS分析结果分别见表 1~3.
表 1 含橄榄石单斜辉石岩捕虏体中橄榄石的主量元素(%)和痕量元素(10-6)分析结果Table Supplementary Table Major (%) and trace element contents (10-6) of olivines from olivine-bearing clinopyroxenite xenolith样品编号 SiO2 Cr2O3 FeO MnO MgO CaO NiO Total Fo Sc V Cr Co Ni JG12-1 37.9 0.04 20.1 0.32 41.3 0.02 0.03 99.6 78.6 JG12-2 38.2 0.00 20.1 0.30 40.9 0.15 0.05 99.8 78.5 JG12-4 38.8 0.06 20.9 0.24 40.6 0.08 0.09 100.8 77.7 JG12-5 37.9 0.00 20.0 0.28 41.8 0.03 0.09 100.2 78.8 JG12-6 37.3 0.05 19.4 0.30 41.3 0.09 0.12 98.6 79.2 JG12-8 38.1 19.8 0.30 41.0 0.02 0.03 99.2 78.7 JG12-9 37.7 20.1 0.27 40.7 0.01 0.13 99.0 78.3 JG12-10 38.0 19.4 0.29 41.6 0.02 0.17 99.5 79.3 JG12-11 37.9 19.8 0.31 41.4 0.01 0.08 99.5 78.9 JG12-1* 37.9 20.8 0.29 40.8 0.02 77.8 3.87 1.36 28.9 202 645 JG12-2* 37.2 20.8 0.29 41.5 0.07 78.1 3.94 2.61 36.9 213 694 JG12-3* 37.5 20.5 0.30 41.4 0.03 78.3 2.18 0.55 2.53 242 773 注:*为LA-ICP-MS分析,其他为电子探针分析. 表 2 含橄榄石单斜辉石岩捕虏体中斜方辉石, 单斜辉石和角闪石的主量元素(%)分析结果Table Supplementary Table Major (%) element contents of orthopyroxenes, clinopyroxenes and hornblendes from olivine-bearing clinopyroxenite xenolith样品编号 SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O NiO Total Mg# Cr Ni Wo En Fs 斜方辉石 JG12-1 53.4 0.11 2.37 0.03 12.9 0.25 28.4 0.97 0.040 0.09 98.6 79.8 1.91 77.9 20.2 JG12-2 53.9 0.07 2.36 0.10 13.5 0.32 28.9 0.57 0.010 0.00 99.6 79.3 1.11 78.0 20.9 JG12-3 54.1 0.13 2.50 0.07 12.8 0.25 29.0 0.94 0.000 0.05 99.7 80.2 1.83 78.4 19.7 JG12-4 53.8 0.14 2.54 0.05 13.1 0.30 29.2 0.97 0.050 0.05 100.1 79.9 1.86 78.1 20.1 JG12-5 54.4 0.15 2.28 0.04 13.7 0.31 29.0 0.95 0.060 0.04 100.9 79.1 1.82 77.2 21.0 JG12-6 54.3 0.08 2.28 0.05 13.7 0.31 28.7 0.82 0.090 0.01 0.01 100.3 78.9 1.59 77.2 21.2 JG12-1* 52.5 0.11 2.84 15.7 0.31 27.3 1.14 0.034 0.00 99.9 75.6 202 211 2.21 73.6 24.2 JG12-2* 53.4 0.08 1.54 15.3 0.31 28.2 1.08 0.031 0.00 99.9 76.8 161 194 2.06 74.7 23.2 JG12-3* 53.0 0.10 2.57 14.9 0.31 28.0 0.97 0.030 0.01 99.8 77.0 341 209 1.87 75.2 22.9 JG12-4* 53.5 0.09 2.28 14.0 0.30 28.8 0.93 0.025 0.00 99.9 78.7 304 202 1.78 76.8 21.4 JG12-5* 53.5 0.08 1.92 14.5 0.31 28.5 0.99 0.026 0.00 99.9 77.8 205 197 1.90 76.0 22.1 单斜辉石 JG12-1 52.4 0.19 2.25 0.68 4.84 0.17 16.5 21.6 0.41 0.02 0.00 99.0 85.9 44.6 47.3 8.08 JG12-2 52.3 0.24 2.26 0.32 5.31 0.08 16.3 22.1 0.40 0.00 0.07 99.3 84.5 45.2 46.2 8.61 JG12-3 52.4 0.28 2.14 0.11 4.86 0.13 16.3 22.1 0.36 0.00 0.03 98.6 85.7 45.5 46.5 8.01 JG12-4 52.5 0.20 2.15 0.53 4.63 0.12 16.5 21.8 0.40 0.02 0.06 98.8 86.4 45.0 47.3 7.66 JG12-5 52.5 0.19 1.54 0.18 5.40 0.19 16.2 22.4 0.36 0.02 0.00 99.0 84.3 45.4 45.7 8.87 JG12-6 52.9 0.25 1.72 0.38 4.95 0.12 16.3 22.7 0.39 0.01 0.00 99.8 85.5 46.0 46.0 8.01 JG12-7 52.7 0.22 2.21 0.45 4.97 0.14 16.5 21.8 0.44 0.01 0.05 99.5 85.6 44.7 47.1 8.18 JG12-1* 50.7 0.20 2.44 5.57 0.14 17.3 22.6 0.46 0.06 99.4 84.7 3 274 49.5 44.2 47.0 8.73 JG12-2* 50.8 0.19 2.22 5.10 0.13 17.4 23.1 0.37 99.3 85.9 4 176 74.0 44.9 47.1 7.95 JG12-3* 51.4 0.19 1.99 5.34 0.14 17.2 23.1 0.36 99.7 85.2 1 738 18.8 45.1 46.6 8.34 JG12-4* 51.2 0.20 2.10 5.41 0.14 17.3 22.9 0.35 99.7 85.1 1 646 36.7 44.6 46.9 8.44 JG12-5* 50.8 0.19 2.30 5.47 0.15 17.4 22.6 0.38 99.3 85.0 4 293 94.8 44.2 47.3 8.58 JG12-6* 50.8 0.19 2.33 5.38 0.15 17.3 22.8 0.39 99.3 85.2 4 302 100 44.5 47.1 8.44 JG12-7* 50.7 0.19 2.40 5.21 0.15 17.6 22.7 0.38 99.3 85.8 4 044 96.0 44.3 47.6 8.16 JG12-8* 50.6 0.19 2.34 5.10 0.14 17.7 22.9 0.38 99.3 86.1 4 226 71.4 44.4 47.7 7.94 普通角闪石 JG12-1 43.7 0.81 11.2 0.42 7.67 0.10 17.6 11.3 2.04 1.11 0.04 96.0 80.4 JG12-2 43.2 0.75 12.1 0.21 9.19 0.13 16.1 11.0 2.27 1.14 0.03 96.2 75.8 JG12-3 43.9 0.68 11.9 0.24 8.86 0.10 16.2 11.4 2.07 1.10 0.03 96.5 76.5 JG12-4 43.8 1.06 12.0 0.19 9.22 0.11 16.0 10.7 2.10 1.38 0.02 96.5 75.6 JG12-1* 44.5 0.73 12.1 10.30 0.15 16.9 11.7 2.21 1.17 74.6 536 259 JG12-2* 44.4 0.96 12.2 10.50 0.16 16.8 11.4 2.25 1.10 74.0 991 304 JG12-3* 43.9 0.97 12.9 9.37 0.12 16.7 11.9 2.29 1.46 76.2 1413 246 JG12-4* 44.2 0.89 12.5 10.40 0.16 16.7 11.5 2.23 1.16 74.1 802 278 注:*为LA-ICP-MS分析, 其他为电子探针分析,Mg#=Mg/(Mg+Fe2+). 表 3 含橄榄石单斜辉石岩捕虏体中单斜辉石和普通角闪石的痕量元素(10-6)分析结果Table Supplementary Table Trace element contents (10-6) of clinopyroxenes and hornblendes from olivine-bearing clinopyroxenite xenolith样品编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE (La/Yb)N δEu 单斜辉石 JG12-1* 1.02 3.08 0.55 2.83 1.04 0.3 0.98 0.23 1.21 0.23 0.66 0.07 0.41 0.08 12.7 1.66 0.9 JG12-2* 0.63 2.16 0.43 2.52 0.97 0.33 0.87 0.15 1.12 0.23 0.78 0.07 0.49 0.06 10.8 0.87 1.08 JG12-3* 0.86 2.43 0.45 2.29 0.96 0.27 1.02 0.15 1.13 0.19 0.61 0.07 0.48 0.06 11.0 1.19 0.83 JG12-4* 0.67 2.28 0.42 2.49 0.65 0.26 0.89 0.18 0.96 0.20 0.60 0.07 0.41 0.06 10.2 1.09 1.06 JG12-5* 0.56 1.84 0.33 1.92 0.69 0.34 1.22 0.16 1.43 0.27 0.68 0.09 0.52 0.08 10.1 0.73 1.13 JG12-6* 0.54 1.95 0.39 2.41 0.84 0.31 0.75 0.22 1.24 0.25 0.72 0.07 0.47 0.05 10.2 0.78 1.16 JG12-7* 0.50 1.65 0.39 2.52 0.75 0.30 0.9 0.21 1.18 0.26 0.77 0.09 0.51 0.09 10.1 0.66 1.10 JG12-8* 0.58 2.13 0.40 2.19 0.96 0.34 1.26 0.16 1.40 0.27 0.71 0.08 0.55 0.07 11.1 0.72 0.94 普通角闪石 JG12-1* 3.08 10.6 1.89 8.97 2.59 1.06 3.37 0.54 3.30 0.68 2.25 0.25 1.81 0.26 40.6 JG12-2* 1.53 6.34 1.17 7.7 2.56 0.86 2.95 0.60 4.26 0.78 2.45 0.23 1.75 0.31 33.5 JG12-3* 1.90 7.57 1.45 7.32 2.59 1.07 3.26 0.53 3.80 0.70 2.31 0.23 2.04 0.22 35.0 JG12-4* 2.23 7.99 1.48 9.17 2.89 0.83 3.17 0.58 4.12 0.71 2.23 0.23 1.98 0.30 37.9 样品编号 Rb Sr Ba Nb Ta Zr Hf Th Y Ti Sc V Cr Co Ni U Ti/Eu 单斜辉石 JG12-1* 2.52 102 66.2 0.16 0.01 5.07 0.25 0.15 5.94 1 210 62.8 161 3 274 33.2 49.5 0.03 4 004 JG12-2* 0.03 75 0.23 0.00 2.13 0.15 0.01 5.34 1 154 62.4 159 4 176 31.7 74.0 0.05 3 502 JG12-3* 0.03 82 0.06 0.01 2.98 0.21 0.03 5.21 1 121 68.4 174 1 738 30.9 18.8 0.01 4 115 JG12-4* 0.02 74 0.12 2.31 0.11 0.02 5.56 1 210 66.7 176 1 646 32.2 36.7 0.01 4 572 JG12-5* 0.10 52 0.40 1.85 0.16 0.01 6.50 1 117 67.0 168 4 293 32.9 94.8 0.05 3 266 JG12-6* 0.05 57 0.12 0.01 0.01 2.30 0.11 0.01 6.04 1 140 63.9 171 4302 31.7 100.0 3 711 JG12-7* 0.05 57 0.08 1.83 0.13 0.01 6.22 1 109 66.8 165 4 044 31.6 96.0 0.15 3 731 JG12-8* 0.17 67 0.90 0.04 0.01 2.95 0.13 0.05 6.49 1141 66.7 157 4 226 31.7 71.4 0.01 3 354 普通角闪石 JG12-1* 15.3 317 318 1.36 0.10 22.9 1.16 0.05 18.8 3 921 30.8 140 536 71.8 259 0.02 JG12-2* 13.2 207 175 0.54 0.04 17.0 0.85 0.02 22.3 5 174 56.6 217 991 76.8 304 0.02 JG12-3* 10.2 244 273 1.07 0.05 16.0 0.71 0.04 20.5 5 198 45.1 267 1413 62.0 246 0.03 JG12-4* 14.4 250 226 0.68 0.06 20.1 0.96 0.04 20.1 4 758 45.3 187 802 79.4 278 0.03 注:*为LA-ICP-MS分析,(La/Yb)N=(La/0.310)/(Yb/0.209);δEu=2×(Eu/0.0735)/((Sm/0.195)+(Gd/0.259));(La/Yb)N球粒陨石标准化数据采用Boynton(1987). 4.1 橄榄石
含橄榄石单斜辉石岩捕虏体中橄榄石的Fo介于77.7~79.3之间,CaO=0.01%~0.15%,Mn=1 859×10-6~2 479×10-6,Ni=623×10-6~773×10-6.与鲁西早白垩世高镁闪长岩中地幔橄榄岩中橄榄石(王微, 2008; Xu et al., 2008, 2010)和熔体-橄榄岩反应成因的辉石岩中橄榄石的成分(Xu et al., 2013)相比, 捕虏体中的橄榄石具有较低的Fo和Ni含量(图 3a), 略高于Mn(图 3b)和CaO含量.与岩浆高压堆晶成因辉石岩中橄榄石(Zhang et al., 2010)和中生代玄武岩中橄榄石斑晶矿物化学成分相近(王微, 2008).
图 3 橄榄石的Fo值与Ni(a)、Mn(b)含量的变异图解橄榄岩中橄榄石数据引自Xu et al.(2010);含橄榄石的单斜辉石岩中橄榄石的成分引自Zhang et al.(2010);含橄榄石的二辉石岩中橄榄石的数据引自Xu et al.(2013);橄榄石斑晶数据王微(2008)Fig. 3. Plots of Fo vs. Ni(a) and Mn(b) contents for olivines from olivine clinopyroxenite xenolith4.2 斜方辉石
含橄榄石单斜辉石岩捕虏体中斜方辉石的Mg#(Mg#=100 Mg/(Mg+Fe))值介于75.6~80.2之间,端元分子硅辉石分子(Wo)=1.78~2.21,顽火辉石分子(En)=73.6~78.4,铁辉石(Fs)=19.7~24.2,为古铜辉石变种.斜方辉石中Cr=161×10-6~684×10-6、Ni=79×10-6~708×10-6.与再循环洋壳成因辉石岩中的斜方辉石(Yu et al., 2010)以及熔体-橄榄岩反应成因辉石岩中的斜方辉石(Xu et al., 2013)成分相比, 斜方辉石中的Mg#值、Cr、Ni成分含量较低, 其成分特征接近岩浆高压堆晶成因辉石岩中的斜方辉石(王冬艳等, 2004;Zhang et al., 2010),同时其Mg#值和Cr、Ni含量明显低于幔源橄榄岩中斜方辉石的相应成分(Xu et al., 2008, 2010).
4.3 单斜辉石
捕虏体中单斜辉石的Mg#值介于84.5~86.4之间,其端元分子组成为硅辉石分子(Wo)=44.2~46.0,顽火辉石分子(En)=45.7~47.7,斜方铁辉石(Fs)=7.7~8.9,属于透辉石变种.单斜辉石的CaO=21.59%~23.13%,Al2O3=1.54%~2.44%,Na2O=0.35%~0.44%,TiO2=0.19%~0.22%,Cr2O3=0.11%~0.68%.单斜辉石的Mg#值和主量元素与岩浆堆晶成因的辉石岩(简称为Ⅰ类辉石岩)中单斜辉石的Mg#值(王冬艳等, 2004; Zhang et al., 2010)及玄武岩中单斜辉石斑晶的Mg#值(Xu et al., 2003; 裴福萍等, 2004; 路思明,2012;路思明等,2012)接近;与熔体-橄榄岩反应成因辉石岩(简称Ⅱ类辉石岩)中的单斜辉石成分(Xu et al., 2013)相比, 单斜辉石具有较低的Mg#值、Na2O、Al2O3、Cr2O3、TiO2含量以及略高的CaO含量;与再循环洋壳变质成因的辉石岩(简称Ⅲ类辉石岩)中的单斜辉石成分(Yu et al., 2010)相比, 具有略低的Mg#值和Al2O3、Na2O含量.同时,它们的Mg#值及Cr、Ni含量均明显低于幔源橄榄岩中单斜辉石的相应组分(王微, 2008; Xu et al., 2008).
含橄榄石单斜辉石岩捕虏体中单斜辉石的稀土含量总量介于10.14×10-6~12.71×10-6之间,轻重稀土分馏不明显((La/Yb)N=0.66~1.66),无明显的Eu异常(δEu=0.90~1.16),其稀土元素配分形式与玄武岩中单斜辉石斑晶的配分形式近似(路思明, 2012a),而与晚白垩世阜新玄武岩中二辉橄榄岩(王微, 2008)以及早白垩世费县玄武岩中含橄榄石的二辉石岩中的单斜辉石(Xu et al., 2013)的配分形式不同(图 5a).在原始地幔标准化微量元素蛛网图中(图 5b),单斜辉石明显亏损大离子亲石元素(LILEs,如Rb、Ba)和高场强元素(HFSEs,如Nb、Ta、Zr、Hf),与玄武岩中单斜辉石斑晶的配分型式(路思明, 2012a)相似,与玄武岩中二辉橄榄岩(王微, 2008)以及费县玄武岩中含橄榄石的二辉石岩中的单斜辉石的配分型式(Xu et al., 2013)不同.
图 5 单斜辉石的球粒陨石标准化稀土元素型式(a)和原始地幔标准化微量元素蛛网图(b)球粒陨石标准化数据引自Boynton(1984);原始地幔标准化数据引自Sun and McDonough(1989);二辉橄榄岩数据王微(2008);含橄榄石的二辉石岩数据引自Xu et al.(2013);单斜辉石斑晶数据路思明(2012a)Fig. 5. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram (b) of clinopyroxenes from the olivine clinopyroxenite xenolith4.4 普通角闪石
普通角闪石中的MgO=16.70% ~17.58%,Na2O=2.04%~2.29%,Al2O3=1.23%~12.90%,TiO2=0.68%~1.06%,K2O=1.10%~1.46%,FeO=7.67% ~10.50%,其Mg#值介于74.1~80.4之间.根据Leake(1978)分类,属于钙质角闪石系列中的韭闪石质普通角闪石.与晚白垩世阜新橄榄岩捕虏体中的原生角闪石成分(许文良等, 2009)相比, 捕虏体中普通角闪石具有略低的Mg#值、Na2O、Al2O3、TiO2含量, 以及较高的K2O,FeO含量;与寄主岩浆中角闪石斑晶相比(王清海, 2003),具有较高的FeO,略低的MgO含量.
捕虏体中普通角闪石的稀土含量介于33.51×10-6~40.62×10-6之间,其配分形式与该捕虏体中单斜辉石的配分形式相似(图 5a),与来自瓦房店新生代玄武岩中普通角闪石捕虏晶的稀土配分形式(未发表数据)不同(图 6a),其轻重稀土分馏不明显.在原始地幔标准化微量元素蛛网图中(图 6b),普通角闪石具有明显亏损HFSEs,如Nb、Ta、Zr、Hf,富集Sr和Rb、Ba的特征,与瓦房店新生代玄武岩中普通角闪石捕虏晶的微量元素特征(未发表数据)不同.
图 6 普通角闪石的球粒陨石标准化稀土元素型式(a)和原始地幔标准化微量元素蛛网图(b)球粒陨石标准化数据引自Boynton(1984);原始地幔标准化数据引自Sun and McDonough(1989);普通角闪石捕掳晶数据未发表Fig. 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram (b) of hornblendes from the olivine clinopyroxenite xenolith5. 讨论
5.1 含橄榄石单斜辉石岩捕虏体的成因
正如前述,目前对自然界产出的辉石岩的成因主要有以下认识:(1)岩浆高压堆晶成因(Irving and Price, 1981; Suen and Frey, 1987; Zajacz et al., 2007; Zhang et al., 2010);(2)熔体-橄榄岩反应成因(Garrido and Bodinier, 1999; Liu et al., 2005; Xu et al., 2013);(3)再循环洋壳变质成因(Suen and Frey, 1987; Pearson et al., 1993; Becker 1996; Yu et al., 2010).那么,徐淮地区早白垩世埃达克质岩石中发现的含橄榄石单斜辉石岩属于哪种成因类型?
首先,与再循环洋壳变质成因的辉石岩相比,再循环洋壳变质成因的辉石岩形成过程中经历了强烈的变形变质作用,常见变晶结构、次变边结构以及褶皱和香肠构造,多出现辉石+石榴石(尖晶石)+蓝晶石矿物组合,而含橄榄石的单斜辉石岩具有典型的岩浆堆积结构,无变质矿物组合;在矿物化学方面,与再循环洋壳成因的辉石岩相比(Yu et al., 2010),含橄榄石单斜辉石捕虏体中斜方辉石和单斜辉石具有较低的Mg#值和Cr、Ni含量,而其矿物成分与中新生代玄武岩中辉石斑晶矿物成分类似(图 4).因此,可以排除含橄榄石单斜辉石岩为再循环洋壳变质成因的可能性.
图 4 单斜辉石的Mg#与TiO2(a)、Al2O3(b)、Na2O(c)、CaO(d)变异图解橄榄岩数据王微(2008),Xu et al.(2008);单斜辉石斑晶数据引自Xu et al.(2003),裴福萍等(2004);路思明(2012a);辉石岩(Ⅰ)数据王冬艳等(2004);Zhang et al.(2010);辉石岩(Ⅱ)数据引自Xu et al.(2013);辉石岩(Ⅲ)数据引自Yu et al.(2010)Fig. 4. Plots of Mg# vs. TiO2(a), Al2O3(b), CaO(c), and Na2O (d) for clinopyroxenes from olivine-bearing clinopyroxenite xenolith其次,熔体-橄榄岩反应成因的辉石岩是熔体与地幔橄榄岩反应的产物,不同于岩浆堆晶成因的辉石岩的典型堆积结构,其多具嵌晶结构或反应结构;在熔-岩反应过程中, 橄榄石被富硅熔体改造转变为斜方辉石和(或)单斜辉石,反应残留的橄榄石因受富硅熔体交代作用影响,其Fo和Ni含量较典型地幔来源的橄榄石中相应成分略低(Thompson and Gibson, 2000; Liu et al., 2005; Xu et al., 2013),交代后生成的斜方辉石和(或)单斜辉石在矿物成分上继承了幔源橄榄石中高Mg#值、和高的Cr、Ni含量,与之相比,含橄榄石单斜辉石岩捕虏体中橄榄石和斜方辉石中Mg#值和Cr、Ni含量明显偏低,而与中、新生代玄武岩中相应矿物斑晶成分相近;此外,与熔体-橄榄岩反应成因辉石岩中单斜辉石的矿物成分相比,单斜辉石中的Mg#值、Na2O、Al2O3含量较低,CaO含量略高(图 4),稀土配分型式也与之不同(图 5).综合上述特征,可以排除含橄榄石单斜辉石岩捕虏体为熔体-橄榄岩反应成因的可能性.
因此,基于含橄榄石单斜辉石岩捕虏体的堆积结构和矿物成分特征——即与中、新生代玄武岩中斑晶矿物(王微, 2008; 路思明等, 2012a, 2012b)和岩浆堆晶成因辉石岩中的矿物成分(Xu et al., 2002; 王冬艳等, 2004; Zhang et al., 2010)相近,而明显不同于典型幔源橄榄岩中相应的矿物成分(Thompson and Gibson, 2000),可以判定,徐淮地区早白垩世埃达克质岩石中含橄榄石单斜辉石岩捕虏体应为玄武质岩浆高压堆晶作用所形成.此外,捕虏体中单斜辉石的微量元素具有HFSEs亏损特点,这可能与岩浆源区早期受到陆壳物质的改造或岩浆源区有金红石等矿物的残留以及岩浆演化早期存在钛铁矿等类矿物的分离结晶作用有关.
5.2 与含橄榄石单斜辉石岩平衡的熔体成分
含橄榄石单斜辉石岩的母岩浆成分可以通过橄榄石的主要氧化物和单斜辉石中的痕量元素在岩石中的分配系数进行近似估算(Zhang et al., 2010).Roeder and Emslie(1970)通过实验模拟得到的橄榄石与熔体间的Fe-Mg分配系数[Kd=(XFeOl/XFeM)/(XMgOl/XMgM)],认为当Kd=0.30±0.03时,橄榄石与熔体达到元素分配平衡.含橄榄石单斜辉石岩捕虏体中橄榄石的Fo=77.7~79.3,计算得到与橄榄石达到平衡的熔体Mg#值应介于51~57之间,比幔源原始岩浆的Mg#(Mg#=68~72;Frey et al., 1978)略低,这可能与堆积形成的含橄榄石单斜辉石岩的玄武质岩浆已经经历了更早期的演化有关(如更早期可能存在橄榄石的分离结晶作用).另外,根据单斜辉石与熔体的分配系数(Lemarchand et al., 1987)和含橄榄石单斜辉石岩捕虏体中单斜辉石REE组成计算得到与之平衡熔体的稀土配分形式(图 7),平衡熔体具有较高的REE含量,较高的轻重稀土比值.该平衡熔体的稀土元素配分型式与寄主岩浆二长闪长斑岩(Xu et al., 2006b)具有相似性,但丰度明显低于寄主岩,同时也低于起源于受陆壳物质改造的岩石圈地幔成因的方城、费县玄武岩的稀土元素丰度(Zhang et al., 2002; 裴福萍等, 2004).综合上述特征,可以判定,与含橄榄石单斜辉石岩相平衡的熔体应是已经发生演化了的玄武质熔体.
图 7 与含橄榄石单斜辉石岩中单斜辉石平衡的熔体的球粒陨石标准化稀土元素形式球粒陨石标准化数据引自Boynton(1984);分配系数引自Lemarchand et al.(1987);二长闪长斑岩数据来自王清海(2003);玄武岩数据来自Zhang et al.(2002)和裴福萍等(2004)Fig. 7. Chondrite-normalized REE patterns of melts in equilibrium with the clinopyroxenes in the olivine clinopyroxenite5.3 含橄榄石单斜辉石岩捕虏体的岩石学意义
目前对埃达克质岩石的成因主要由以下几种认识:(1)俯冲板片发生部分熔融形成的熔体与地幔楔橄榄岩发生反应(Defant and Drummond, 1990; Martin et al., 2005);(2)含水地幔楔橄榄岩部分熔融(Grove et al., 2002);(3)加厚的下地壳发生拆沉后部分熔融所形成(Gao et al., 2004);(4)岩浆混合作用(Chen et al., 2013).徐淮地区早白垩世埃达克岩具有较高的87Sr/86Sr同位素和较低的εNd(t),表明其经历了源于陆壳物质,而非洋壳物质的改造(王清海等, 2004);同时, 其较高的87Sr/86Sr同位素组成和较低的εNd(t)也与含水地幔楔橄榄岩部分熔融成因的埃达克质岩石特征不同(Grove et al., 2002).因此,徐淮地区的埃达克岩并非以上两种成因.对于徐淮地区早白垩世埃达克质岩石的成因,Xu et al.(2006a, 2006b)用拆沉模式对徐淮地区早白垩世埃达克质岩石的成因进行解释,即埃达克质岩石为拆沉的加厚陆壳部分熔融熔体与地幔橄榄岩反应的产物.这一成因模式很好地解释了陆内埃达克质岩石的成因和埃达克质岩浆中高Mg#、Cr和Ni的特点.然而,本文发现的含橄榄石单斜辉石岩所代表的玄武质岩浆作用的存在是否意味着该区埃达克质岩石也具有岩浆混合成因?这可从徐淮地区所发现的不同类型捕虏体的成因对比得到回答.首先,在徐淮地区早白垩世埃达克质岩石中先前发现的包体中,除榴辉岩类、石榴辉石岩类包体外,还有单斜辉石岩类包体,岩相学和矿物化学分析结果表明,这些单斜辉石岩普遍发育出溶结构——即单斜辉石出溶石榴石、黝帘石和普通角闪石,同时部分样品中可以观察到尖晶石转变成石榴石和石榴石+单斜辉石+刚玉的矿物组合,这些出溶矿物和矿物转变现象均揭示它们与榴辉岩类包体一样经历了高压或超高压变质作用的改造(王清海, 2003; Xu et al., 2004b, 2009).与前者相比,本文研究的含橄榄石单斜辉石岩捕虏体具有不同的岩石结构特征和矿物组合——即岩浆堆晶结构,出现橄榄石而未出现高压矿物,这表明含橄榄石的单斜辉石岩捕虏体的形成时代与榴辉岩相变质的时间不同(中晚三叠世;Xu et al., 2006a; 索书田等, 2012)或者该捕虏体位于岩石圈的浅部没有遭受到高压或超高压变质作用的改造,而被后期的(早白垩世)埃达克质岩浆所捕获.含橄榄石单斜辉石岩捕虏体应代表了与该区继榴辉岩相变质事件时间不同的又一次基性岩浆底侵事件;其次,由于该捕虏体的个体较小,目前很难对其完成定年工作,其形成时代可通过区域构造演化历史得到制约,在华北克拉通东部中晚三叠世之后和早白垩世之前的岩浆作用只有晚侏罗世和早白垩世两期,前者以花岗质岩浆作用为代表(罗振宽等, 2002; Xu et al., 2005; Yang et al., 2010),而后者以双峰式岩浆作用为代表(许文良等, 2004),由此判断含橄榄石的单斜辉石岩应是早白垩世岩浆作用的产物,但其形成时代略早于其寄主岩的形成时代;此外,从中国东部晚中生代的构造演化来看,早白垩世时期是大型沉积盆地和变质核杂岩的形成时期(李思田等, 1997; 朱光等, 2008),与区域伸展的构造背景相吻合.因此,我们判断含橄榄石单斜辉石岩应是早白垩世早期玄武质岩浆底侵后,被略晚期埃达克质岩浆捕获的结果.从包体与寄主岩之间存在的反应边结构,初步判定寄主岩的形成与含橄榄石的单斜辉石岩所代表的基性岩浆作用之间应无成因联系,寄主岩的埃达克质地球化学属性应是榴辉岩类岩石部分熔融以及相继发生的与幔源橄榄岩反应的结果(Xu et al., 2006a, 2006b),而不是岩浆混合作用的结果.
6. 结论
徐淮地区夹沟早白垩世埃达克质岩中的含橄榄石单斜辉石岩捕虏体为岩浆高压堆晶产物,其形成可能与华北克拉通东部早白垩世广泛分布的基性岩浆作用有关,为早白垩世镁铁质岩浆底侵的产物;含橄榄石单斜辉石岩捕虏体被埃达克质岩石的包裹与反应关系,暗示其形成与埃达克质岩浆的成因无关.
致谢: 衷心感谢北京大学地球和空间科学学院电子探针实验室在样品图像采集和矿物成分分析过程中给予的帮助,同时感谢中国地质大学(武汉)地质过程与矿产资源国家重点实验室在LA-ICP-MS矿物原位分析中给予的支持与帮助. -
图 1 徐淮地区中生代侵入杂岩体分布(据Xu et al., 2006a)
Fig. 1. Distribution map of the Mesozoic intrusions in Xuhuai area
图 3 橄榄石的Fo值与Ni(a)、Mn(b)含量的变异图解
橄榄岩中橄榄石数据引自Xu et al.(2010);含橄榄石的单斜辉石岩中橄榄石的成分引自Zhang et al.(2010);含橄榄石的二辉石岩中橄榄石的数据引自Xu et al.(2013);橄榄石斑晶数据王微(2008)
Fig. 3. Plots of Fo vs. Ni(a) and Mn(b) contents for olivines from olivine clinopyroxenite xenolith
图 5 单斜辉石的球粒陨石标准化稀土元素型式(a)和原始地幔标准化微量元素蛛网图(b)
球粒陨石标准化数据引自Boynton(1984);原始地幔标准化数据引自Sun and McDonough(1989);二辉橄榄岩数据王微(2008);含橄榄石的二辉石岩数据引自Xu et al.(2013);单斜辉石斑晶数据路思明(2012a)
Fig. 5. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram (b) of clinopyroxenes from the olivine clinopyroxenite xenolith
图 6 普通角闪石的球粒陨石标准化稀土元素型式(a)和原始地幔标准化微量元素蛛网图(b)
球粒陨石标准化数据引自Boynton(1984);原始地幔标准化数据引自Sun and McDonough(1989);普通角闪石捕掳晶数据未发表
Fig. 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagram (b) of hornblendes from the olivine clinopyroxenite xenolith
图 4 单斜辉石的Mg#与TiO2(a)、Al2O3(b)、Na2O(c)、CaO(d)变异图解
橄榄岩数据王微(2008),Xu et al.(2008);单斜辉石斑晶数据引自Xu et al.(2003),裴福萍等(2004);路思明(2012a);辉石岩(Ⅰ)数据王冬艳等(2004);Zhang et al.(2010);辉石岩(Ⅱ)数据引自Xu et al.(2013);辉石岩(Ⅲ)数据引自Yu et al.(2010)
Fig. 4. Plots of Mg# vs. TiO2(a), Al2O3(b), CaO(c), and Na2O (d) for clinopyroxenes from olivine-bearing clinopyroxenite xenolith
图 7 与含橄榄石单斜辉石岩中单斜辉石平衡的熔体的球粒陨石标准化稀土元素形式
球粒陨石标准化数据引自Boynton(1984);分配系数引自Lemarchand et al.(1987);二长闪长斑岩数据来自王清海(2003);玄武岩数据来自Zhang et al.(2002)和裴福萍等(2004)
Fig. 7. Chondrite-normalized REE patterns of melts in equilibrium with the clinopyroxenes in the olivine clinopyroxenite
表 1 含橄榄石单斜辉石岩捕虏体中橄榄石的主量元素(%)和痕量元素(10-6)分析结果
Table 1. Major (%) and trace element contents (10-6) of olivines from olivine-bearing clinopyroxenite xenolith
样品编号 SiO2 Cr2O3 FeO MnO MgO CaO NiO Total Fo Sc V Cr Co Ni JG12-1 37.9 0.04 20.1 0.32 41.3 0.02 0.03 99.6 78.6 JG12-2 38.2 0.00 20.1 0.30 40.9 0.15 0.05 99.8 78.5 JG12-4 38.8 0.06 20.9 0.24 40.6 0.08 0.09 100.8 77.7 JG12-5 37.9 0.00 20.0 0.28 41.8 0.03 0.09 100.2 78.8 JG12-6 37.3 0.05 19.4 0.30 41.3 0.09 0.12 98.6 79.2 JG12-8 38.1 19.8 0.30 41.0 0.02 0.03 99.2 78.7 JG12-9 37.7 20.1 0.27 40.7 0.01 0.13 99.0 78.3 JG12-10 38.0 19.4 0.29 41.6 0.02 0.17 99.5 79.3 JG12-11 37.9 19.8 0.31 41.4 0.01 0.08 99.5 78.9 JG12-1* 37.9 20.8 0.29 40.8 0.02 77.8 3.87 1.36 28.9 202 645 JG12-2* 37.2 20.8 0.29 41.5 0.07 78.1 3.94 2.61 36.9 213 694 JG12-3* 37.5 20.5 0.30 41.4 0.03 78.3 2.18 0.55 2.53 242 773 注:*为LA-ICP-MS分析,其他为电子探针分析. 表 2 含橄榄石单斜辉石岩捕虏体中斜方辉石, 单斜辉石和角闪石的主量元素(%)分析结果
Table 2. Major (%) element contents of orthopyroxenes, clinopyroxenes and hornblendes from olivine-bearing clinopyroxenite xenolith
样品编号 SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO Na2O K2O NiO Total Mg# Cr Ni Wo En Fs 斜方辉石 JG12-1 53.4 0.11 2.37 0.03 12.9 0.25 28.4 0.97 0.040 0.09 98.6 79.8 1.91 77.9 20.2 JG12-2 53.9 0.07 2.36 0.10 13.5 0.32 28.9 0.57 0.010 0.00 99.6 79.3 1.11 78.0 20.9 JG12-3 54.1 0.13 2.50 0.07 12.8 0.25 29.0 0.94 0.000 0.05 99.7 80.2 1.83 78.4 19.7 JG12-4 53.8 0.14 2.54 0.05 13.1 0.30 29.2 0.97 0.050 0.05 100.1 79.9 1.86 78.1 20.1 JG12-5 54.4 0.15 2.28 0.04 13.7 0.31 29.0 0.95 0.060 0.04 100.9 79.1 1.82 77.2 21.0 JG12-6 54.3 0.08 2.28 0.05 13.7 0.31 28.7 0.82 0.090 0.01 0.01 100.3 78.9 1.59 77.2 21.2 JG12-1* 52.5 0.11 2.84 15.7 0.31 27.3 1.14 0.034 0.00 99.9 75.6 202 211 2.21 73.6 24.2 JG12-2* 53.4 0.08 1.54 15.3 0.31 28.2 1.08 0.031 0.00 99.9 76.8 161 194 2.06 74.7 23.2 JG12-3* 53.0 0.10 2.57 14.9 0.31 28.0 0.97 0.030 0.01 99.8 77.0 341 209 1.87 75.2 22.9 JG12-4* 53.5 0.09 2.28 14.0 0.30 28.8 0.93 0.025 0.00 99.9 78.7 304 202 1.78 76.8 21.4 JG12-5* 53.5 0.08 1.92 14.5 0.31 28.5 0.99 0.026 0.00 99.9 77.8 205 197 1.90 76.0 22.1 单斜辉石 JG12-1 52.4 0.19 2.25 0.68 4.84 0.17 16.5 21.6 0.41 0.02 0.00 99.0 85.9 44.6 47.3 8.08 JG12-2 52.3 0.24 2.26 0.32 5.31 0.08 16.3 22.1 0.40 0.00 0.07 99.3 84.5 45.2 46.2 8.61 JG12-3 52.4 0.28 2.14 0.11 4.86 0.13 16.3 22.1 0.36 0.00 0.03 98.6 85.7 45.5 46.5 8.01 JG12-4 52.5 0.20 2.15 0.53 4.63 0.12 16.5 21.8 0.40 0.02 0.06 98.8 86.4 45.0 47.3 7.66 JG12-5 52.5 0.19 1.54 0.18 5.40 0.19 16.2 22.4 0.36 0.02 0.00 99.0 84.3 45.4 45.7 8.87 JG12-6 52.9 0.25 1.72 0.38 4.95 0.12 16.3 22.7 0.39 0.01 0.00 99.8 85.5 46.0 46.0 8.01 JG12-7 52.7 0.22 2.21 0.45 4.97 0.14 16.5 21.8 0.44 0.01 0.05 99.5 85.6 44.7 47.1 8.18 JG12-1* 50.7 0.20 2.44 5.57 0.14 17.3 22.6 0.46 0.06 99.4 84.7 3 274 49.5 44.2 47.0 8.73 JG12-2* 50.8 0.19 2.22 5.10 0.13 17.4 23.1 0.37 99.3 85.9 4 176 74.0 44.9 47.1 7.95 JG12-3* 51.4 0.19 1.99 5.34 0.14 17.2 23.1 0.36 99.7 85.2 1 738 18.8 45.1 46.6 8.34 JG12-4* 51.2 0.20 2.10 5.41 0.14 17.3 22.9 0.35 99.7 85.1 1 646 36.7 44.6 46.9 8.44 JG12-5* 50.8 0.19 2.30 5.47 0.15 17.4 22.6 0.38 99.3 85.0 4 293 94.8 44.2 47.3 8.58 JG12-6* 50.8 0.19 2.33 5.38 0.15 17.3 22.8 0.39 99.3 85.2 4 302 100 44.5 47.1 8.44 JG12-7* 50.7 0.19 2.40 5.21 0.15 17.6 22.7 0.38 99.3 85.8 4 044 96.0 44.3 47.6 8.16 JG12-8* 50.6 0.19 2.34 5.10 0.14 17.7 22.9 0.38 99.3 86.1 4 226 71.4 44.4 47.7 7.94 普通角闪石 JG12-1 43.7 0.81 11.2 0.42 7.67 0.10 17.6 11.3 2.04 1.11 0.04 96.0 80.4 JG12-2 43.2 0.75 12.1 0.21 9.19 0.13 16.1 11.0 2.27 1.14 0.03 96.2 75.8 JG12-3 43.9 0.68 11.9 0.24 8.86 0.10 16.2 11.4 2.07 1.10 0.03 96.5 76.5 JG12-4 43.8 1.06 12.0 0.19 9.22 0.11 16.0 10.7 2.10 1.38 0.02 96.5 75.6 JG12-1* 44.5 0.73 12.1 10.30 0.15 16.9 11.7 2.21 1.17 74.6 536 259 JG12-2* 44.4 0.96 12.2 10.50 0.16 16.8 11.4 2.25 1.10 74.0 991 304 JG12-3* 43.9 0.97 12.9 9.37 0.12 16.7 11.9 2.29 1.46 76.2 1413 246 JG12-4* 44.2 0.89 12.5 10.40 0.16 16.7 11.5 2.23 1.16 74.1 802 278 注:*为LA-ICP-MS分析, 其他为电子探针分析,Mg#=Mg/(Mg+Fe2+). 表 3 含橄榄石单斜辉石岩捕虏体中单斜辉石和普通角闪石的痕量元素(10-6)分析结果
Table 3. Trace element contents (10-6) of clinopyroxenes and hornblendes from olivine-bearing clinopyroxenite xenolith
样品编号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ∑REE (La/Yb)N δEu 单斜辉石 JG12-1* 1.02 3.08 0.55 2.83 1.04 0.3 0.98 0.23 1.21 0.23 0.66 0.07 0.41 0.08 12.7 1.66 0.9 JG12-2* 0.63 2.16 0.43 2.52 0.97 0.33 0.87 0.15 1.12 0.23 0.78 0.07 0.49 0.06 10.8 0.87 1.08 JG12-3* 0.86 2.43 0.45 2.29 0.96 0.27 1.02 0.15 1.13 0.19 0.61 0.07 0.48 0.06 11.0 1.19 0.83 JG12-4* 0.67 2.28 0.42 2.49 0.65 0.26 0.89 0.18 0.96 0.20 0.60 0.07 0.41 0.06 10.2 1.09 1.06 JG12-5* 0.56 1.84 0.33 1.92 0.69 0.34 1.22 0.16 1.43 0.27 0.68 0.09 0.52 0.08 10.1 0.73 1.13 JG12-6* 0.54 1.95 0.39 2.41 0.84 0.31 0.75 0.22 1.24 0.25 0.72 0.07 0.47 0.05 10.2 0.78 1.16 JG12-7* 0.50 1.65 0.39 2.52 0.75 0.30 0.9 0.21 1.18 0.26 0.77 0.09 0.51 0.09 10.1 0.66 1.10 JG12-8* 0.58 2.13 0.40 2.19 0.96 0.34 1.26 0.16 1.40 0.27 0.71 0.08 0.55 0.07 11.1 0.72 0.94 普通角闪石 JG12-1* 3.08 10.6 1.89 8.97 2.59 1.06 3.37 0.54 3.30 0.68 2.25 0.25 1.81 0.26 40.6 JG12-2* 1.53 6.34 1.17 7.7 2.56 0.86 2.95 0.60 4.26 0.78 2.45 0.23 1.75 0.31 33.5 JG12-3* 1.90 7.57 1.45 7.32 2.59 1.07 3.26 0.53 3.80 0.70 2.31 0.23 2.04 0.22 35.0 JG12-4* 2.23 7.99 1.48 9.17 2.89 0.83 3.17 0.58 4.12 0.71 2.23 0.23 1.98 0.30 37.9 样品编号 Rb Sr Ba Nb Ta Zr Hf Th Y Ti Sc V Cr Co Ni U Ti/Eu 单斜辉石 JG12-1* 2.52 102 66.2 0.16 0.01 5.07 0.25 0.15 5.94 1 210 62.8 161 3 274 33.2 49.5 0.03 4 004 JG12-2* 0.03 75 0.23 0.00 2.13 0.15 0.01 5.34 1 154 62.4 159 4 176 31.7 74.0 0.05 3 502 JG12-3* 0.03 82 0.06 0.01 2.98 0.21 0.03 5.21 1 121 68.4 174 1 738 30.9 18.8 0.01 4 115 JG12-4* 0.02 74 0.12 2.31 0.11 0.02 5.56 1 210 66.7 176 1 646 32.2 36.7 0.01 4 572 JG12-5* 0.10 52 0.40 1.85 0.16 0.01 6.50 1 117 67.0 168 4 293 32.9 94.8 0.05 3 266 JG12-6* 0.05 57 0.12 0.01 0.01 2.30 0.11 0.01 6.04 1 140 63.9 171 4302 31.7 100.0 3 711 JG12-7* 0.05 57 0.08 1.83 0.13 0.01 6.22 1 109 66.8 165 4 044 31.6 96.0 0.15 3 731 JG12-8* 0.17 67 0.90 0.04 0.01 2.95 0.13 0.05 6.49 1141 66.7 157 4 226 31.7 71.4 0.01 3 354 普通角闪石 JG12-1* 15.3 317 318 1.36 0.10 22.9 1.16 0.05 18.8 3 921 30.8 140 536 71.8 259 0.02 JG12-2* 13.2 207 175 0.54 0.04 17.0 0.85 0.02 22.3 5 174 56.6 217 991 76.8 304 0.02 JG12-3* 10.2 244 273 1.07 0.05 16.0 0.71 0.04 20.5 5 198 45.1 267 1413 62.0 246 0.03 JG12-4* 14.4 250 226 0.68 0.06 20.1 0.96 0.04 20.1 4 758 45.3 187 802 79.4 278 0.03 注:*为LA-ICP-MS分析,(La/Yb)N=(La/0.310)/(Yb/0.209);δEu=2×(Eu/0.0735)/((Sm/0.195)+(Gd/0.259));(La/Yb)N球粒陨石标准化数据采用Boynton(1987). -
Allegre, C., Turcotte, D.L., 1986. Implications of a Two Component Marble-Cake Mantle. Nature, 323: 123-127. doi: 10.1038/323123a0 Becker, H., 1996. Geochemistry of Garnet Peridotite Massifs from Lower Austria and the Composition of Deep Lithosphere beneath a Paleozoic Convergent Plate Margin. Chemical Geology, 134(1-3): 49-65. doi: 10.1016/S0009-2541(96)00089-7 Bondi, M., Morten, L., Nimis, P., et al., 2002. Megacrysts and Mafic-Ultramafic Xenolith-Bearing Ignimbrites from Sirwa Volcano, Morocco: Phase Petrology and Thermobarometry. Mineralogy and Petrology, 75(3-4): 203-221. doi: 10.1007/s007100200024 Boynton, W.V., 1984. Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. Chen, B., Jahn, B.M., Suzuki, K., 2013. Petrological and Nd-Sr-Os Isotopic Constraints on the Origin of High-Mg Adakitic Rocks from the North China Craton: Tectonic Implications. Geology, 41(1): 91-94. doi: 10.1130/G33472.1 Chen, L.H., 2001. Genesis of High-Mg Intrusions and Their Ultramafic Xenoliths, Laiwu, Shandong Province, Eastern China(Dissertation). Chinese Academy of Sciences, Beijing (in Chinese with English abstract). Chen, S.H., O'Reilly, S.Y., Zhou, X.H., et al., 2001. Thermal and Petrological Structure of the Lithosphere beneath Hannuoba, Sino-Korean Craton, China: Evidence from Xenoliths. Lithos, 56(4): 267-301. doi:S0024-4937(00)00065-7 Defant, M.J., Drummond, M.S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347: 662-665. doi: 10.1038/347662a0 Downes, H., 2007. Origin and Significance of Spinel and Garnet Pyroxenites in the Shallow Lithospheric Mantle: Ultramafic Massifs in Orogenic Belts in Western Europe and NW Africa. Lithos, 99: 1-24. doi: 10.1016/j.lithos.2007.05.006 Frey, F.A., Green, D.H., Roy, S.D., 1978. Integrated Models of Basalt Petrogenesis: A Study of Quartz Tholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical and Experimental Petrological Data. Journal of Petrology, 19(3): 463-513. doi: 10.1093/petrology/19.3.463 Frey, F.A., Prinz, M., 1978. Ultramafic Inclusions from San Carlos, Arizona—Petrologic and Geochemical Data Bearing on Their Petrogenesis. Earth and Planetary Science Letters, 38(1): 29-176. doi: 10.1016/0012-821X(78)90130-9 Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897. doi: 10.1038/nature03162 Garrido, C.J., Bodinier, J.L., 1999. Diversity of Mafic Rocks in the Ronda Peridotite: Evidence for Pervasive Melt-Rock Reaction during Heating of Subcontinental Lithosphere by Upwelling Asthenosphere. Journal of Petrology, 40(5): 729-754. doi: 10.1093/petroj/40.5.729 Grove, T.L., Parman, S.W., Bowring, S.A., et al., 2002. The Role of H2O-Rich Fluid Component in the Generation of Primitive Basaltic Andesites and Andesites from the Mt. Shasta Region, N California. Contrib. Mineral. and Petrol. , 142: 375-396. doi: 10.1007/s004100100299 Irving, A.J., Frey, F.A., 1984. Trace-Element Abundances in Megacrysts and Their Host Basalts—Constraints on Partition Coefficients and Megacryst Genesis. Geochimica et Cosmochimica Acta, 48(6): 1201-1221. doi: 10.1016/0016-7037(84)90056-5 Irving, A.J., Price, R.C., 1981. Geochemistry and Evolution of Highpressure Phonolitic Lavas from Nigeria, Australia, Eastern Germany, and New Zealand. Geochimica et Cosmochimica Acta, 45: 1309-1320. doi: 10.1016/0016-7037(81)90224-6 Leake, B.E., 1978. Nomenclature of Amphiboles. The Canadian Mineralogist, 16: 501-520. Lemarchand, F., Viliemant, B., Calas, G., 1987. Trace Element Distribution Coefficients in Alkaline Series. Geochimica et Cosmochimica Acta, 51(5): 1071-1081. doi: 10.1016/0016-7037(87)90201-8 Li, S.T., Lu, F.X., Lin, C.S., et al., 1997. Evolution of Mesozoic and Cenozoic Basins in Eastern China and Their Geodynamic Background. China University of Geosciences Press, Wuhan (in Chinese). Lin, J.Q., Tan, D.J., Li, J.H., et al., 2000. Early Jurassic Banjing Intrusive Complex of Southern Marginal Zone of North China Block, Xuzhou. Journal of Changchun University of Science and Technology, 30(3): 209-214 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200003000.htm Liu, J.F., Xu, Y.G., 2006. Mineral Chemistry and Geochemistry of the Two Suites of Pyroxenite Xenoliths in Cenozoic Basalts from Yangyuan, Hebei. Geotectonica et Metallogenia, 30(1): 52-62 (in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DGYK200601006&dbcode=CJFD&year=2006&dflag=pdfdown Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082 Liu, Y.S., Gao, S., Lee, C.T., et al., 2005. Melt-Peridotite Interactions: Links between Garnet Pyroxenite and High-Mg# Signature of Continental Crust. Earth and Planetary Science Letters, 234(1-2): 39-57. doi: 10.1016/j.epsl.2005.02.034 Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004 Lu, S.M., 2012. Origin of the Late Mesozoic Alkaline Basalts and the Nature of the Lithospheric Mantle in the Liaoyuan Area, Jilin Province(Dissertation). Jilin University, Changchun (in Chinese with English abstract). Lu, S.M., Pei, F.P., Zhou, Q.J., et al., 2012. Origin of Late Mesozoic Alkaline Basalts and Nature of Lithospheric Mantle in Liaoyuan Area, Jilin Province. Earth Science—Journal of China University of Geosciences, 7(3): 475-488 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201203011.htm Luo, Z.K., Miao, L.C., 2002. Granites and Gold Deposits in Zhaoyuan-Laizhou Area, Eastern Shandong Province. Metallurgical Industry Press, Beijing (in Chinese). Martin, H., Smithies, R.H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79: 1-24. doi: 10.1016/j.lithos.2004.04.048 Pearson, D.G., Davies, G.R., Nixon, P.H., 1993. Geochemical Constraints on the Petrogenesis of Diamond Facies Pyroxenites from the Beni Bousera Peridotite Massif, North Morocco. Journal of Petrology, 34: 1-48. doi: 10.1093/petrology/34.1.125 Pei, F.P., Xu, W.L., Wang, Q.H., et al., 2004. Mesozoic Basalt and Mineral Chemistry of the Mantle-Derived Xenocrysts in Feixian, Western Shandong, China: Constraints on Nature of Mesozoic Lithospheric Mantle. Geological Journal of China Universities, 10(1): 88-97 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200401007.htm Pouchou, J.L., Pichoir, F., 1984. A New Model for Quantitative X-Ray Microanalysis. Part 1: Application to the Analysis of Homogeneous Samples. Rech. Aerosp. , 3: 167-192. http://www.researchgate.net/publication/313098386_A_new_model_for_quantitative_x-ray_microanalysis_Part_I_application_to_the_analysis_of_homogeneous_samples Roeder, P.L., Emslie, R.F., 1970. Olivine-Liquid Equilibrium. Contributions to Mineralogy and Petrology, 29(4): 275-289. doi: 10.1007/BF00371276 Suen, C.J., Frey, F.A., 1987. Origins of the Mafic and Ultramafic Rocks in the Ronda Peridotite. Earth and Planetary Science Letters, 85(1-3): 183-202. doi: 10.1016/0012-821X(87)90031-8 Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins. Geological Society Special Publications, Colorado, 2: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19 Suo, S.T., Zhong, Z.Q., Zhou, H.W., et al., 2012. Muti-Stage Tectonic Exhumation Processes of Ultrahigh-Pressure(UHP) Metamorphic Rocks in the Dabie-Sulu Area, East-Central China. Earth Science—Journal of China University of Geosciences, 37(1): 1-17 (in Chinese with English abstract). http://www.researchgate.net/publication/286168766_Multi-stage_tectonic_exhumation_processes_of_ultrahigh-pressure_UHP_metamorphic_rocks_in_the_Dabie-Sulu_area_east-central_China Thompson, R.N., Gibson, S.A., 2000. Transient High Temperatures in Mantle Plume Heads Inferred from Magnesian Olivines in Phanerozoic Picrites. Nature, 407: 502-506. doi: 10.1038/35035058 Wang, D.Y., Xu, W.L., Lan, X., et al., 2004. Petrogenesis of Pyroxenite Xenoliths in Mesozoic Gabbro-Diorite from Western Shandong Province, China. Journal of Jilin University (Earth Science Edition), 34(2): 167-173 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200402002.htm Wang, G.L., Jiang, B., Cao, D.Y., et al., 1998. On the Xuzhou-Suzhou Arcuate Duplex-Imbricate Fan Thrust System. Acta Geologica Sinica, 72(3): 228-236 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE199803003.htm Wang, Q.H., 2003. Petrology and Geochemistry in Xu-Huai Region, China: Constraints on Evolution of Mesozoic Lithospere in Eastern Part of the North China Block (Dissertation). Jilin University, Changchun (in Chinese with English abstract). Wang, Q.H., Xu, W.L., Pei, F.P., et al., 2009. Zr-in-Rutile Thermometry and Geochemical Characteristics of Trace Element in Rutile from Eclogite Inclusions of Mesozoic Intrusive Complexes in Xuzhou-Huainian Area, China. Acta Petrologica Sinica, 25(9): 2132-2140 (in Chinese with English abstract). http://www.scholarmate.com/scmwebsns/publication/view?des3Id=ARan82pt1aKqQi%252FwjA%252FcAw%253D%253D Wang, Q.H., Xu, W.L., Wang, D.Y., et al., 2004. Determination of the Magma Depth of Mesozoic Adakitic Rocks in Xuzhou-Suzhou Area: Evidence from P-T Estimation of Deep-Seated Xenoliths. Geological Review, 50(4): 351-359 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200404002.htm Wang, Q.H., Xu, W.L., Yang, D.B., et al., 2011. Geochemical Characteristics for Trace Element of Mineral in Eclogite Inclusions Separated out of Mesozoic Intrusive Complex from Southeastern Margin of North China Block and Its Significances. Acta Petrologica Sinica, 27(4): 1131-1150 (in Chinese with English abstract). http://www.oalib.com/paper/1476605 Wang, W., 2008. The Evolution of Mesozoic and Cenozoic Lithospheric Mantle in Eastern North China Craton—Evidence from Igneous Rocks and Their Deep-Seated Xenoliths and Xenocrysts (Dissertation). Jilin University, Changchun (in Chinese). Xu, S.T., Chen, G.B., Tao, Z., 1993. Tectonic Framework and Setting of Xu-Huai District, Eastern China. Geological Publishing House, Beijing (in Chinese). Xu, W.L., Gao, S., Wang, Q.H., et al., 2006a. Mesozoic Crustal Thicking of the Eastern North China Craton: Evidence from Eclogite Xenoliths and Petrologic Implications. Geology, 34(9): 721-724, doi: 10.1130/G22551.1 Xu, W.L., Wang, Q.H., Wang, D.Y., et al., 2006b. Mesozoic Adakitic Rocks in the Xuzhou-Suzhou Area, Eastern China: Evidence for Partial Melting of Delaminated Lower Continental Crust. Journal of Asian Earth Sciences, 27(4): 454-464. doi: 10.1016/j.jseaes.2005.03.010 Xu, W.L., Gao, S., Yang, D.B., et al., 2009. Geochemistry of Eclogite Xenoliths in Mesozoic Adakitic Rocks from Xuzhou-Suzhou Area in Central China and Their Tectonic Implications. Lithos, 107: 269-280. doi: 10.1016/j.lithos.2008.11.004 Xu, W.L., Hergt, J.M., Gao, S., et al., 2008. Interaction of Adakitic Melt-Peridotite: Implications for the High-Mg# Signature of Mesozoic Adakitic Rocks in the Eastern North China Craton. Earth and Planetary Science Letters, 265: 123-137. doi: 10.1016/j.epsl.2007.09.041 Xu, W.L., Wang, Q.H., Liu, X.C., et al., 2002. Discovery of Eclogite Inclusions and Its Geological Significance in Early Jurassic Intrusive Complex in Xuzhou-Northern Anhui, Eastern China. Chinese Science Bulletin, 47(14): 1212-1216. doi: 10.1007/BF02907612 Xu, W.L., Wang, Q.H., Liu, X.C., et al., 2004a. Chronology and Sources of Mesozoic Intrusive Complex in Xu-Huai Region, Central China: Constraints from SHRIMP Zircon U-Pb Dating. Acta Geologica Sinica, 78(1): 96-106. doi: 10.1111/j.1755-6724.2004.tb00679.x Xu, W.L., Wang, Q.H., Wang, D.Y., et al., 2004b. Processes and Mechanism of Mesozoic Lithospheric Thinning in Eastern North China Craton: Evidence from Mesozoic Igneous Rocks and Deep-Seated Xenoliths. Earth Science Frontiers, 11(3): 309-317(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200403040.htm Xu, W.L., Wang, Q.H., Liu, X.C., et al., 2005. SHRIMP Zircon U-Pb Dating in Jingshan "Migmatitic Granite", Bengbu and Its Geological Significance. Science in China (Series D), 48(2): 185-191. doi: 10.1360/03yd0045 Xu, W.L., Yang, D.B., Gao, S., et al., 2010. Geochemistry of Peridotite Xenoliths in Early Cretaceous High-Mg# Diorites from the Central Orogenic Block of the North China Craton: The Nature of Mesozoic Lithospheric Mantle and Constraints on Lithospheric Thinning. Chemical Geology, 270(1-4): 257-273. doi: 10.1016/j.chemgeo.2009.12.006 Xu, W.L., Yang, D.B., Pei, F.P., et al., 2009. Mesozoic Lithospheric Mantle Modified by Delaminated Lower Continental Crust in the North China Craton: Constraints from Compositions of Amphiboles from Peridotite Xenoliths. Journal of Jilin University (Earth Science Edition), 39(4): 606-617(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200904003.htm Xu, W.L., Wang, D.Y., Zheng, C.Q., et al., 1999. The Discovery of Mantle- and Lower Crust-Derived Xenoliths in Mesozoic Trachybasalts from Western Liaoning, and Their Geological Implication. Geological Review, 45(Suppl. ): 444-449(in Chinese with English abstract). http://www.researchgate.net/publication/312985276_The_discovery_of_mantle-and_lower_crust-derived_xenoliths_in_mesozoic_trachybasalts_from_western_liaoning_and_their_geological_implications Xu, W.L., Zhou, Q.J., Pei, F.P., et al., 2013. Destruction of the North China Craton: Delamination or Thermal/Chemical Erosion? Mineral Chemistry and Oxygen Isotope Insights from Websterite Xenoliths. Gondwana Research, 23(1): 119-129. doi: 10.1016/j.gr.2012.02.008 Xu, W., Liu, X., Wang, Q., et al., 2004b. Garnet Exsolution in Garnet Clinopyroxenite and Clinopyroxenite Xenoliths in Early Cretaceous Intrusions from the Xuzhou Region, Eastern China. Mineralogical Magazine, 68(3): 455-465. doi: 10.1180/0026461046830198 Xu, Y.G., 2002. Evidence for the Crustal Components in the Mantle and Constraint on the Crustal Recycling Mechanism: Pyroxenite Xenoliths from Hannuoba, North China. Chemical Geology, 182: 301-322. doi: 10.1016/S0009-2541(01)00300-X Xu, Y.G., Huang, X.L., Menzies, M.A., et al., 2003. Highly Magnesian Olivines and Green-Core Clinopyroxenes in Ultrapotassic Lavas from Western Yunnan, China: Evidence for a Complex Hybrid Origin. European Journal of Mineralogy, 5: 965-975. doi: 10.1127/0935-1221/2003/0015-0965 Yang, D.B., Xu, W.L., Wang, Q.H., et al., 2010. Chronology and Geochemistry of Mesozoic Granitoids in the Bengbu Area, Central China: Constraints on the Tectonic Evolution of the Eastern North China Craton. Lithos, 114(1-2), 200-216. doi: 10.1016/j.lithos.2009.08.009 Yu, S.Y., Xu, Y.G., Ma, J.L., et al., 2010. Remnants of Oceanic Lower Crust in the Subcontinental Lithospheric Mantle: Trace Element and Sr-Nd-O Isotope Evidence from Aluminous Garnet Pyroxenite Xenoliths from Jiaohe, Northeast China. Earth and Planetary Science Letters, 297: 413-422. doi: 10.1016/j.epsl.2010.06.043 Yu, X.L., Zheng, J.P., 2007. Complex Pyroxenite Xenoliths in the Changle Cenozoic Basalts and Significance for the Lithospheric Evolution beneath the North China Craton. Geoscience, 21(2): 318-326 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200702018.htm Zajacz, Z., Kovács, I., Szabo, C., et al., 2007. Evolution of Mafic Alkaline Melts Crystallized in the Uppermost Lithospheric Mantle: A Melt Inclusion Study of Olivine-Clinopyroxenite Xenoliths, Northern Hungary. Journal of Petrology, 48(5): 853-883. doi: 10.1093/petrology/egm004 Zhang, H.F., Nakamura, E., Kobayashi, K., et al., 2010. Recycled Crustal Melt Injection into Lithospheric Mantle: Implication from Cumulative Composite and Pyroxenite Xenoliths. International Journal of Earth Sciences, 99: 1167-1186. doi: 10.1007/s00531-009-0467-8 Zhang, H.F., Sun, M., Zhou, X.H., et al., 2002. Mesozoic Lithosphere Destruction beneath the North China Craton: Evidence from Major-, Trace-element and Sr-Nd-Pb Isotopie Studies of Fangcheng Basalts. Contributions to Mineralogy and Petrology, 144: 241-253. doi: 10.1007/500410-002-0395-0 Zhang, H.F., Ying, J.F., Xu P, et al., 2004. Mantle Olivine Xenocrysts Entrained in Mesozoic Basalts from the North China Craton: Implication for Replacement Process of Lithospheric Mantle. Chi. Sci. Bull. , 49(9): 961-966. doi: 10.1007/BF03184019 Zheng, J.P., Griffin, W.L., Qi, L., et al., 2009. Age and Composition of Granulite and Pyroxenite Xenoliths in Hannuoba Basalts Reflect Paleogene Underplating beneath the North China Craton. Chemical Geology, 264: 266-280. doi: 10.1016/j.chemgeo.2009.03.011 Zhou, X.H., Sun, M., Zhang, G.H., et al., 2002. Continental Crust and Lithospheric Mantle Interaction beneath North China: Isotopic Evidence from Granulite Xenoliths in Hannuoba, Sino-Korean Craton. Lithos, 62: 111-124. doi: 10.1016/S0024-4937(02)00110-X Zhu, G., Hu, Z.Q., Chen, Y., et al., 2008. Evolution of Early Cretaceous Extensional Basins in the Eastern North China Craton and Its Implication for the Craton Destruction. Geological Bulletin of China, 27(10): 1594-1604(in Chinese with English abstract). Zinngrebe, E., Foley, S.F., 1995. Metasomatism in Mantle Xenoliths from Gees, West Eifel, Germany: Evidence for the Genesis of Calcalkaline Glasses and Metasomatism Ca-Enrichment. Contributions to Mineralogy and Petrology, 122(1-2): 79-96. doi: 10.1007/s004100050114 Zajacz, Z., Kovács, I., Szabó, C., et al., 2007. Evolution of Mafic Alkaline Melts Crystallized in the Uppermost Lithospheric Mantle: A Melt Inclusion Study of Olivine-clinopyroxenite Xenoliths, Northern Hungary. Journal of Petrology, 48(5): 853-883. doi: 10.1093/petrology/egm004 陈立辉, 2001. 山东莱芜中生代高镁侵入岩及其超镁铁质岩捕虏体的成因研究(博士学位论文). 北京: 中国科学院. 李思田, 路凤香, 林畅松, 等, 1997. 中国东部及邻区中、新生代盆地演化及地球动力学背景. 武汉: 中国地质大学出版社. 林景仟, 谭东娟, 厉建华, 等, 2000. 华北陆块南缘带早侏罗世徐州班井侵入杂岩体. 长春科技大学学报, 30(3): 209-214. doi: 10.3969/j.issn.1671-5888.2000.03.001 刘讲锋, 徐义刚, 2006. 河北阳原新生代玄武岩中两类辉石岩包体的矿物学和地球化学特征. 大地构造与成矿学, 30(1): 52-62. doi: 10.3969/j.issn.1001-1552.2006.01.007 路思明, 2012. 吉林省辽源晚中生代碱性玄武岩成因及岩石圈地幔性质(硕士学位论文). 长春: 吉林大学. 路思明, 裴福萍, 周群君, 等, 2012. 吉林省辽源晚中生代碱性玄武岩成因及岩石圈地幔性质. 地球科学——中国地质大学学报, 37(3): 475-488. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201203011.htm 罗振宽, 苗来成, 2002. 胶东招莱地区花岗岩和金矿床. 北京: 冶金工业出版社. 裴福萍, 许文良, 王清海, 等, 2004. 鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学: 对岩石圈地幔性质的制约. 高校地质学报, 10(1): 88-97. doi: 10.3969/j.issn.1006-7493.2004.01.008 索书田, 钟增球, 周汉文, 等. 2012. 大别-苏鲁区超高压(UHP)变质岩的多阶段构造折返过程. 地球科学——中国地质大学学报, 37(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201201003.htm 王冬艳, 许文良, 兰翔, 等, 2004. 鲁西中生代辉长闪长岩中辉石岩捕虏体的岩石成因. 吉林大学(地球科学版), 34(2): 167-173. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200402002.htm 王桂梁, 姜波, 曹代勇, 等, 1998. 徐淮-宿州弧形双冲-叠瓦扇逆冲断层系统. 地质学报, 72(3): 228-236. doi: 10.3321/j.issn:0001-5717.1998.03.004 王清海, 2003. 徐淮地区中生代侵入杂岩及深源捕虏体的岩石学和地球化学: 对华北地块东部中生代岩石圈演化的制约(博士学位论文). 长春: 吉林大学. 王清海, 许文良, 裴福萍, 等, 2009. 金红石中锆含量温度计及其微量元素地球化学特征-来自徐淮地区中生代侵入杂岩中榴辉岩类包体的信息. 岩石学报, 25(9): 2132-2140. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909007.htm 王清海, 许文良, 王冬艳, 等, 2004. 徐州-宿州地区中生代埃达克质岩石岩浆起源深度的限定深源捕虏体温度-压力条件证据. 地质论评, 50(4): 351-359. doi: 10.3321/j.issn:0371-5736.2004.04.003 王清海, 许文良, 杨德彬, 等, 2011. 华北地块东南缘中生代侵入杂岩中所含榴辉岩类包体矿物微量元素地球化学特征及其意义. 岩石学报, 27(4): 1131-1150. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201104022.htm 王微, 2008. 华北克拉通东部中新生代岩石圈演化——来自火成岩与深源捕虏体(晶)证据(博士学位论文). 长春: 吉林大学. 徐树桐, 陈冠宝, 陶正, 1993. 中国东部徐-淮地区地质构造格局及其形成背景. 北京: 地质出版社. 许文良, 王冬艳, 郑常青, 等, 1999. 辽西阜新中生代粗面玄武岩中地幔和下地壳捕虏体的发现及其地质意义. 地质论评, 45(增刊): 444-449. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1061.htm 许文良, 王清海, 王冬艳, 等, 2004b. 华北克拉通东部中生代岩石圈减薄的过程与机制: 中生代火成岩和深源捕虏体证据. 地学前缘, 11(3): 309-317. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403040.htm 许文良, 杨德彬, 裴福萍, 等, 2009. 华北克拉通中生代拆沉陆壳物质对岩石圈地幔的改造: 来自橄榄岩捕虏体中角闪石的成分制约. 吉林大学学报(地球科学版), 39(4): 606-617. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200904003.htm 余晓露, 郑建平, 2007. 复杂的山东昌乐新生代玄武岩辉石岩岩捕虏体及其岩石圈演化意义. 现代地质, 21(2): 318-326. doi: 10.3969/j.issn.1000-8527.2007.02.017 朱光, 胡召齐, 陈印, 等, 2008. 华北克拉通东部早白垩世伸展盆地的发育过程及其对克拉通破坏的指示. 地质通报, 27(10): 153-166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200810003.htm -