• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    包气带增厚区土壤水力参数及其对入渗补给的影响

    林丹 靳孟贵 马斌 汪丙国

    林丹, 靳孟贵, 马斌, 汪丙国, 2014. 包气带增厚区土壤水力参数及其对入渗补给的影响. 地球科学, 39(6): 760-768. doi: 10.3799/dqkx.2014.071
    引用本文: 林丹, 靳孟贵, 马斌, 汪丙国, 2014. 包气带增厚区土壤水力参数及其对入渗补给的影响. 地球科学, 39(6): 760-768. doi: 10.3799/dqkx.2014.071
    Lin Dan, Jin Menggui, Ma Bin, Wang Bingguo, 2014. Characteristics of Infiltration Recharge at Thickening Vadose Zone Using Soil Hydraulic Parameters. Earth Science, 39(6): 760-768. doi: 10.3799/dqkx.2014.071
    Citation: Lin Dan, Jin Menggui, Ma Bin, Wang Bingguo, 2014. Characteristics of Infiltration Recharge at Thickening Vadose Zone Using Soil Hydraulic Parameters. Earth Science, 39(6): 760-768. doi: 10.3799/dqkx.2014.071

    包气带增厚区土壤水力参数及其对入渗补给的影响

    doi: 10.3799/dqkx.2014.071
    基金项目: 

    国家重点基础研究发展计划“973”项目 2010CB428802

    详细信息
      作者简介:

      林丹(1987-),女,博士生,主要从事包气带水文学和地下水补给研究.E-mail: diana0305lindan@163.com

      通讯作者:

      靳孟贵,E-mail: mgjin@cug.edu.cn

    • 中图分类号: P641

    Characteristics of Infiltration Recharge at Thickening Vadose Zone Using Soil Hydraulic Parameters

    • 摘要: 为探讨包气带深部增厚区土壤水力参数变化对入渗补给过程的影响,采用压力膜仪对河北正定深部包气带(8.0~21.0 m)10个原状土样进行水分特征曲线测试,利用RETC软件中Mualem-van Genuchten导水率模型对其拟合,获取含水率与非饱和导水率的关系曲线,并根据达西法对其进行分析讨论.结果表明:场地包气带深埋区的非饱和导水率为25~240 mm/a.当某一埋深历史水位下降速度越快,该埋深处相同含水率情况下土壤非饱和导水率越大,说明对应土层的入渗补给强度越大;因包气带厚度增大使原来位于饱水带的层状非均质土层转变为包气带,潜水位波动下降过程中深部包气带土层因排水压密作用,使得土壤水力特性发生变化,进而影响垂向入渗补给过程.

       

    • 图  1  包气带厚度足够大时土壤基质势随深度分布曲线(Nimmo et al., 1994)

      a.均质剖面;b.层状剖面

      Fig.  1.  Hypothetical profile of matric pressure as a function of depth in an unsaturated zone deep enough that its lower portion has a constant downward flux of water in profiles

      图  2  地表至潜水位岩性柱状图

      岩性为野外描述,由中国地质科学院水文地质环境地质研究所提供

      Fig.  2.  The lithology profile from surface to water table

      图  3  压力膜仪安装

      Fig.  3.  Pressure Plate Extractor installation

      图  4  压力膜仪测试的土样水分特征曲线

      Fig.  4.  Soil water retention curves

      图  5  石家庄水位下降曲线(张光辉等,2008)

      Fig.  5.  Downwards water curves at Shijiazhuang

      图  6  非饱和导水率与含水率RETC拟合关系曲线

      a.砂壤土;b.粉砂粘壤土;c.壤土;d.粉砂壤土

      Fig.  6.  RETC fitting curves of unsaturated hydraulic conductivity and soil content

      图  7  砂壤土非饱和导水率与含水率RETC拟合关系曲线(含水率为0.28~0.36)

      Fig.  7.  Silt loam RETC fitting curves of unsaturated hydraulic conductivity and soil content

      表  1  原状土样采集深度及颗粒分析数据

      Table  1.   The sampling depth and soil texture of undisturbed soil samples

      编号 采样深度(m) 颗粒组成(%) 干密度(g/cm3) 国际制定名
      粘粒 粉粒 砂粒
      1号 8.0~8.5 7.30 26.08 66.64 1.66 砂壤土
      2号 9.4~9.5 17.92 60.74 21.29 1.58 粉砂质粘壤土
      4号 10.4~10.6 20.14 59.68 20.19 1.63 粉砂质粘壤土
      5号 11.0~11.2 8.88 30.15 60.95 1.86 砂壤土
      6号 11.6~11.7 10.23 39.83 49.96 1.78 壤土
      7号 12.0~12.1 10.17 45.71 44.10 1.68 粉砂壤土
      11号 18.5~18.6 12.44 48.97 38.55 - 粉砂壤土
      12号 18.7~18.9 5.78 20.16 74.04 1.58 砂壤土
      13号 19.8~20.0 11.61 37.46 50.95 1.85 壤土
      14号 20.6~20.8 6.78 32.41 60.77 1.71 砂壤土
      注:土壤质地分类由中国地质大学生物地质与环境地质国家重点实验室激光粒度仪测定.
      下载: 导出CSV

      表  2  土壤水分曲线测试压力值设置

      Table  2.   Pressure setting values of soil water retention curve

      压强值(105 Pa) 水柱高度(cm)
      0.02 20.41
      0.05 51.02
      0.10 102.04
      0.20 204.08
      0.32 326.53
      0.54 551.02
      0.84 857.14
      1.20 1 224.49
      1.66 169.88
      2.24 2 258.71
      2.94 3 000.00
      下载: 导出CSV

      表  3  土壤水分特征参数预测和拟合结果

      Table  3.   The prediction and fitting results of soil moisture characteristic parameters

      编号 Rosetta预测 RETC拟合
      θr θs α n θr θs α n R2
      1 0.037 8 0.379 1 0.033 5 1.463 3 0 0.438 0 0.006 0 1.560 5 0.978 9
      2 0.063 2 0.396 3 0.005 5 1.647 0 0.210 6 0.438 1 0.002 3 1.882 1 0.998 1
      4 0.069 1 0.421 2 0.005 3 1.656 1 0.335 2 0.479 8 0.001 4 3.221 1 0.993 8
      5 0.035 4 0.337 7 0.036 1 1.364 3 0 0.487 1 0.003 9 1.940 2 0.999 3
      6 0.037 0 0.335 8 0.021 0 1.390 4 0.124 0 0.489 1 0.002 6 1.986 4 0.997 9
      7 0.042 8 0.372 1 0.009 9 1.532 4 0 0.447 3 0.002 2 2.576 2 0.995 5
      11 0.044 0 0.345 7 0.010 5 1.494 2 0.285 7 0.473 2 0.003 5 2.493 0 0.999 3
      12 0.039 0 0.391 5 0.039 5 1.573 1 0 0.449 9 0.003 9 1.362 0 0.988 0
      14 0.038 8 0.337 6 0.022 1 1.376 7 0 0.468 3 0.002 5 1.546 3 0.981 1
      下载: 导出CSV

      表  4  野外实地非饱和导水率及入渗补给速率

      Table  4.   Unsaturated hydraulic conductivity and recharge rate at the field

      编号 取样深度(m) 岩性定名 深度区间(m) 原位体积含水率 拟合Ku
      国际制 (cm/d) (mm/a)
      1 8.3~8.5 砂壤土 8.3~9.4 0.284 1 0.007 811 28.51
      2 9.4~9.5 粉砂质粘壤土 9.4~11.0 0.364 9 0.030 786 112.37
      5 11.0~11.2 砂壤土 11.0~11.6 0.287 1 0.016 712 61.00
      6 11.6~11.7 壤土 11.6~12.0 0.328 9 0.014 499 52.92
      7 12.0~12.1 粉砂壤土 12.0~13.7 0.293 6 0.065 834 240.29
      11 18.5~18.6 粉砂壤土 13.7~19.5 - - -
      12 18.7~18.9 砂壤土 - 0.358 1 0.011 119 40.58
      14 20.6~20.8 砂壤土 19.5~21.6 0.301 6 0.006 891 25.15
      下载: 导出CSV
    • Ahuja, L.R., El-Swaify, S.A., 1979. Determining Soil Hydrologic Characteristics on a Remote Forest Watershed by Continuous Monitoring of Soil-Water Pressures, Rainfall and Runoff. Journal of Hydrology, 44(1-2): 135-147. doi: http://dx.doi.org/ 10.1016/0022-1694(79)90151-3
      Burdine, N.T., 1953. Relative Permeability Calculations from Pore Size Distribution Data. Journal of Petroleum Technology, 5(3): 71-78. doi: http://dx.doi.org/ 10.2118/225-G
      Chong, S.K., Green, R.E., Ahuja, L.R., 1981. Simple In-Situ Determination of Hydraulic Conductivity by Power Function Descriptions of Drainage. Water Resources Research, 17(4): 1109-1114. doi: 10.1029/WR017i004p01109
      Enfield, C.G., Hsieh, J.J.C., Warrick, A.W., 1973. Evaluation of Water Flux above a Deep Water Table Using Thermocouple Psychrometers. Soil Science Society of America Journal, 37(6): 968-970. doi: 10.2136/sssaj1973.03615995003700060048x
      Kengni, L., Vachaud, G., Thony, J.L., et al., 1994. Field Measurements of Water and Nitrogen Losses under Irrigated Maize. Journal of Hydrology, 162(1-2): 23-46. doi: http://dx.doi.org/ 10.1016/0022-1694(94)90003-5
      Lei, Z.D., Yang, S.X., Xie, S.C., 1988. Soil Water Dynamic. Tsinghua University Press, Beijing, 30 (in Chinese).
      Liu, J., Chen, Z.Y., Zhang, Z.J., et al., 2009. Estimation of Natural Groundwater Recharge in the Hutuo River Alluvial-Proluvial Fan Using Environmental Tracers. Geological Science and Technology Information, 28(6): 114-118 (in Chinese with English abstract).
      Liu, Y.L., Liang, X., Lin, D., et al., 2013. Soil Hydraulic Parameters in Deep Vadose Zone Based on Stable Evaporation—A Case Study in Xinji Area. China Rural Water and Hydropower, 10: 27-32 (in Chinese with English abstract).
      Miao, J.J., Chen, G., Pan, J.Y., et al., 2009. An Experimental Study for the Consolidation of the Typical Clayey Soil in the North China Plain. Geological Science and Technology Information, 28(5): 109-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ200905015.htm
      Mualem, Y., 1976. A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media. Water Resources Research, 12(3): 513-522. doi: 10.1029/WR012i003p00513
      Nimmo, J.R., Stonestrom, D.A., Akstin, K.C., 1994. The Feasibility of Recharge Rate Determinations Using the Steady-State Centrifuge Method. Soil Science Society of America Journal, 58(1): 49-56. doi: 10.2136/sssaj1994.03615995005800010007x
      Normand, B., Recous, S., Vachaud, G., et al., 1997. Nitrogen-15 Tracers Combined with Tensio-Neutronic Method to Estimate the Nitrogen Balance of Irrigated Maize. Soil Science Society of America Journal, 61(5): 1508-1518. doi: 10.2136/sssaj1997.03615995006100050031x
      Rushton, K., 1997. Recharge from Permanent Water Bodies. In: Simmers, I., ed., Recharge of Phreatic Aquifers in (Semi) Arid Areas. A A Balkema Publishers, Rotterdam, 215-255.
      Sammis, T.W., Evans, D.D., Warrick, A.W., 1982. Comparison of Methods to Estimate Deep Percolation Rates. Journal of the American Water Resources Association, 18(3): 465-470. doi: 10.1111/j.1752-1688.1982.tb00013.x
      Scanlon, B.R., Healy, R.W., Cook, P.G., 2002. Choosing Appropriate Techniques for Quantifying Groundwater Recharge. Hydrogeology Journal, 10(1): 18-39. doi: 10.1007/s10040-001-0176-2
      Šimůnek, J., Šejna, M., Saito, H., et al., 2009. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. University of California Riverside, California.
      Sisson, J.B., 1987. Drainage from Layered Field Soils: Fixed Gradient Models. Water Resources Research, 23(11): 2071-2075. doi: 10.1029/WR023i011p02071
      Song, B., 2012. Effect of Vadose Zone Thickness and Formation Properties on Groundwater Recharge (Dissertation). Wuhan University, Wuhan (in Chinese with English Abstract).
      Steenhuis, T.S., Jackson, C.D., Kung, S.K., et al., 1985. Measurement of Groundwater Recharge in Eastern Long Island, New York, USA. Journal of Hydrology, 79(1-2): 145-169. doi: http://dx.doi.org/ 10.1016/0022-1694(85)90190-8
      Stephens, D.B., Knowlton, R.J., 1986. Soil Water Movement and Recharge through Sand at a Semiarid Site in New Mexico. Water Resources Research, 22(6): 881-889. doi: 10.1029/WR022i006p00881
      Tan, X.C., 2012. The Study of Groundwater Recharge in North China Plain (Dissertation). Wuhan University, Wuhan (in Chinese with English abstract).
      van Genuchten, M.T., 1980. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
      Zhang, G.H., Fei, Y.H., Shen, J.M., et al., 2007. Influence of Unsaturated Zone Thickness on Precipitation Infiltration for Recharge of Groundwater. Journal of Hydraulic Engineering, 38(5): 611-617 (in Chinese with English abstract).
      Zhang, G.H., Fei, Y.H., Zhang, X.N., et al., 2008. Abnormal Variation of Groundwater Flow Field in Plain Area of Hutuo River Basin and Analysis on Its Cause. Journal of Hydraulic Engineering, 39(6): 747-752 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXB200806016.htm
      Zhang, R.Q., Gao, Y.F., Wang, P.Y., 1985. A Preliminary Study on the Mechanism of Water Release from Saturated Layered Soils Age. Earth Sciences—Journal of Wuhan College of Geology, 10(1): 21-27 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX198501005.htm
      Zhang, R.Q., Liang, X., Jin, M.G., et al., 2011. Fundamental of Hydrogeology (6th Edition). Geological Publishing House, Beijing, 23 (in Chinese).
      Zhang, W.Z., 1996. Groundwater and Soil Water Dynamic. China Water and Power Press, Beijing, 215 (in Chinese).
      雷志栋, 杨诗秀, 谢森传, 1988. 土壤水动力学. 北京: 清华大学出版社, 30.
      刘君, 陈宗宇, 张兆吉, 等, 2009. 利用环境示踪剂估算滹沱河冲洪积扇地下水天然补给. 地质科技情报, 28(6): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200906018.htm
      刘亚磊, 梁杏, 林丹, 等, 2013. 稳定蒸发条件下的深厚包气带土壤水力参数测试及入渗补给估算——以辛集新城地区为例. 中国农村水利水电, (10): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNSD201310010.htm
      苗晋杰, 陈刚, 潘建永, 等, 2009. 华北平原典型黏性土体固结特性的试验研究. 地质科技情报, 28(5): 109-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200905015.htm
      宋博, 2012. 包气带厚度和岩性对地下水入渗补给影响(硕士学位论文). 武汉: 武汉大学.
      谭秀翠, 2012. 华北平原地下水补给研究(博士学位论文). 武汉: 武汉大学.
      张光辉, 费宇红, 申建梅, 等, 2007. 降水补给地下水过程中包气带变化对入渗的影响. 水利学报, 38(5): 611-617. doi: 10.3321/j.issn:0559-9350.2007.05.016
      张光辉, 费宇红, 张行南, 等, 2008. 滹沱河流域平原区地下水流场异常变化与原因. 水利学报, 39(6): 747-752. doi: 10.3321/j.issn:0559-9350.2008.06.017
      张人权, 高云福, 王佩仪, 1985. 层状土重力释水机制初步探讨. 地球科学——武汉地质学院学报, 10(1): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198501005.htm
      张人权, 梁杏, 靳孟贵, 等, 2011. 水文地质学基础(第六版). 北京: 地质出版社, 23.
      张蔚榛, 1996. 地下水与土壤水动力学. 北京: 中国水利水电出版社, 215.
    • 加载中
    图(7) / 表(4)
    计量
    • 文章访问数:  3983
    • HTML全文浏览量:  621
    • PDF下载量:  568
    • 被引次数: 0
    出版历程
    • 收稿日期:  2013-10-13
    • 刊出日期:  2014-06-15

    目录

      /

      返回文章
      返回