• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    中国东部表层土壤磁化率特征及其指示意义

    邱世藩 欧阳婷萍 朱照宇 黄宁生 李明坤 田成静 卞勇

    邱世藩, 欧阳婷萍, 朱照宇, 黄宁生, 李明坤, 田成静, 卞勇, 2014. 中国东部表层土壤磁化率特征及其指示意义. 地球科学, 39(10): 1454-1464. doi: 10.3799/dqkx.2014.138
    引用本文: 邱世藩, 欧阳婷萍, 朱照宇, 黄宁生, 李明坤, 田成静, 卞勇, 2014. 中国东部表层土壤磁化率特征及其指示意义. 地球科学, 39(10): 1454-1464. doi: 10.3799/dqkx.2014.138
    Qiu Shifan, Ouyang Tingping, Zhu Zhaoyu, Huang Ningsheng, Li Mingkun, Tian Chengjing, Bian Yong, 2014. Magnetic Susceptibility Characteristics of Weathering-Pedogenic Topsoil along East Part of China and Its Significance. Earth Science, 39(10): 1454-1464. doi: 10.3799/dqkx.2014.138
    Citation: Qiu Shifan, Ouyang Tingping, Zhu Zhaoyu, Huang Ningsheng, Li Mingkun, Tian Chengjing, Bian Yong, 2014. Magnetic Susceptibility Characteristics of Weathering-Pedogenic Topsoil along East Part of China and Its Significance. Earth Science, 39(10): 1454-1464. doi: 10.3799/dqkx.2014.138

    中国东部表层土壤磁化率特征及其指示意义

    doi: 10.3799/dqkx.2014.138
    基金项目: 

    国家自然科学基金委员会广东联合基金项目 U1201131

    国家自然科学基金项目 40930106

    广东省产学研项目 2012B090400045

    详细信息
      作者简介:

      邱世藩(1975-), 男, 博士研究生, 主要从事区域环境与第四纪地质学研究.E-mail: oyangtp@gig.ac.cn

    • 中图分类号: P66

    Magnetic Susceptibility Characteristics of Weathering-Pedogenic Topsoil along East Part of China and Its Significance

    • 摘要: 磁化率是环境磁学研究中较常用、较易获得的指标之一,但其解释和意义又最为复杂.对采自中国东部从北到南涵盖中国主要气候带的风化-成壤成因的79个表层土壤样品进行高、低频磁化率和非磁滞剩磁测试并分析其与降水量、年均温等气候参数的关系.结果表明:(1)发育于不同类型母岩的风化-成壤成因表层土壤磁学性质之间存在显著差异,各磁化率参数与气候条件参数之间的关系大不一样,在大空间尺度进行磁学与气候条件的关系研究时,必须充分考虑地质背景与母岩类型的差异.(2)发育于花岗岩的表层土壤非磁滞剩磁磁化率与年降水量和年均温间呈显著负相关关系;而发育于玄武岩的表层土壤非磁滞剩磁磁化率与年降水量呈显著正相关关系.被广泛认可的黄土-古土壤序列磁化率与成壤的关系不一定适用于大空间尺度的其他气候区域.(3)在风化-成壤过程中,磁性颗粒有变细的趋势,但降水强度增大时,一些超细颗粒较易被搬运离开原地,单一磁学参数结果难以反映气候条件及环境变化.(4)风化-成壤成因表层土壤非磁滞剩磁磁化率能较好地反映风化成因土壤的风化程度,但风化-成壤表层土壤磁学性质变化的机制特别是对相应土壤剖面的磁性矿物迁移转化有待深入研究.

       

    • 图  1  研究区域与采样点分布

      a.中国版图,其中白色部分为第3阶梯,浅灰色部分为第2阶梯,深灰色部分为第1阶梯即青藏高原;b.本文样品的采集区域

      Fig.  1.  Study area and sampling sites distribution

      图  2  母岩岩性对表层土壤磁化率的影响

      Fig.  2.  Impact of parent rock on magnetic susceptibility of topsoil

      图  3  不同类型表层土壤低频磁化率与非磁滞剩磁磁化率和频率磁化率之间的相关关系

      Fig.  3.  Relationship between χlf and χARM, χfd for different types of topsoil

      图  4  不同类型表层土壤磁化率的纬度效应

      Fig.  4.  Latitude effect of magnetic susceptibility for different types of topsoil

      图  5  发育于沉积岩的表层土壤频率磁化率与降水量、年平均气温的对应分布及回归拟合曲线

      Fig.  5.  Corresponding distribution and fitting curve of χfd of topsoil derived from sedimentary rock and precipitation, annual average temperature

      图  6  发育于花岗岩表层土壤低频磁化率、非磁滞剩磁磁化率与降水量、年均温的对应分布及拟合曲线

      Fig.  6.  Corresponding distribution, regression equation and fitting curve of χlf and χARM of topsoil derived from granite and precipitation, annual average temperature

      图  7  发育于玄武岩的表层土壤磁学性质与降水量、年均温的对应分布及回归拟合曲线

      Fig.  7.  Corresponding distribution and fitting curve of magnetic properties of topsoil derived from balsalt and precipitation, annual average temperature

      图  8  发育于玄武岩表层土壤非磁滞剩磁磁化率与风化强度指标之间的对应分布及回归拟合曲线

      Fig.  8.  Corresponding distribution and fitting curve of χARM of topsoil derived from balsalt and weathering intensity dependent parameters

      表  1  各类型表层土壤磁化率与纬度及气候参数之间的相关系数

      Table  1.   Correlation coefficients between magnetic susceptibility and latitude and climate parameters for different type of topsoil

      所有样品79个 纬度(°) 年均降水量(mm) 年均气温(℃) χlf(10-8 m3/kg) χARM(10-6 m3/kg) χfd(%)
      χlf(10-8 m3/kg) -0.042 -0.086 0.063 1
      χARM(10-8 m3/kg) -0.233* 0.089 0.236* 0.806* 1
      χfd(%) -0.236* 0.414* 0.181 -0.391* -0.190 1
      沉积岩、花岗岩和玄武岩
      χlf(10-8 m3/kg) -0.011 -0.111 0.031 1
      χARM(10-8 m3/kg) -0.233 0.084 0.235* 0.796* 1
      χfd(%) -0.281* 0.451* 0.225 -0.383* -0.180 1
      沉积岩和花岗岩
      χlf(10-8 m3/kg) 0.323 -0.309 -0.276 1 0.866 -0.244
      χARM(10-8 m3/kg) 0.294 -0.275 -0.282 0.866* 1 -0.040
      χfd(%) -0.236 0.522* 0.123 -0.244 -0.040 1
      沉积岩
      χlf(10-8 m3/kg) 0.468 -0.414 -0.447 1
      χARM(10-8 m3/kg) 0.113 -0.155 -0.105 0.857* 1
      χfd(%) -0.771* 0.946* 0.631* -0.485 -0.287 1
      花岗岩
      χlf(10-8 m3/kg) 0.713* -0.680* -0.744* 1
      χARM(10-8 m3/kg) 0.831* -0.784* -0.829* 0.907* 1
      χfd(%) 0.300 -0.035 -0.309 0.336 0.359 1
      玄武岩
      χlf(10-8 m3/kg) -0.273 0.246 0.275 1
      χARM(10-8 m3/kg) -0.594* 0.561* 0.577* 0.697* 1
      χfd(%) -0.221 0.266 0.191 -0.149 0.116 1
      *注:表示相关性显著性水平大于95%.
      下载: 导出CSV
    • An, Z.S., Kukla, G.J., Porter, S.C., et al., 1991. Magnetic Susceptibility Evidence of Monsoon Variation on the Loess Plateau of Central China during the Last 1 300 000 Years. Quaternary Research, 36(1): 29-36. doi: 10.1016/0033-5894(91)90015-W
      Balsam, W.L., Ellwood, B.B., Ji, J.F., et al., 2011. Magnetic Susceptibility as a Proxy for Rainfall: Worldwide Data from Tropical and Temperate Climate. Quaternary Science Reviews, 30(19-20): 2732-2744. doi: 10.1016/j.quascirev.2011.06.002
      Balsam, W.L., Ji, J.F., Chen, J., 2004. Climatic Interpretation of the Luochuan and Lingtai Loess Sections, China, Based on Changing Iron Oxide Mineralogy and Magnetic Susceptibility. Earth and Planetary Science Letters, 223: 335-348. doi: 10.1016/j.epsl.2004.04.023
      Begét, J.E., Stone, D.B., Hawkins, D.B., 1990. Paleoclimatic Forcing of Magnetic Susceptibility Variations in Alaskan Loess during the Late Quaternary. Geology, 18(1): 40-43. doi: 10.1130/0091-7613(1990)018<0040:PFOMSV>2.3.CO;2
      Blaha, U., Basavaiah, N., Deenadayalan, K., et al., 2011. Onset of Industrial Pollution Recorded in Mumbai Mudflat Sediments, Using Integrated Magnetic, Chemical, 210Pb Dating, and Microscopic Methods. Environmental Science & Technology, 45(2): 686-692. doi: 10.1021/es1025905
      Borges, J.F.M., Hneda, M.L., Brinatti, A.M., et al., 2011. Mössbauer Analysis of High-Energy Mechanical-Milled Sand Fraction of a Magnetic Soil Developing on Basalt. Hyperfine Interact, 203: 9-15. doi: 10.1007/s10751-011-0364-y
      Chlachula, J.M., Evans, M.E., Rutter, N.W., 1998. A Magnetic Investigation of a Late Quaternary Loess/Palaeosol Record in Siberia. Geophysical Journal International, 132(1): 128-132. doi: 10.1046/j.1365-246x.1998.00399.x
      Deng, C.L., Liu, Q.S., Pan, Y.X., et al., 2007. Environmental Magnetism of Chinese Loess-Paleosol Sequences. Quaternary Sciences, 27(2): 193-209 (in Chinese with English abstract). http://www.dsjyj.com.cn/EN/Y2007/V27/I2/193
      Deng, S.F., Yang, T.B., Qin, H.Y., et al., 2011. Magnetic Susceptibility and Its Influencing Factors from Loess-Paleosol in Tacheng, Xinjiang, China. Journal of Desert Research, 31(4): 848-854 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZGSS201104008.htm
      Derbyshire, E., Meng, X.M., Kemp, R.A., 1998. Provenance, Transport and Characteristics of Modern Aeolian Dust in Western Gansu Province, China, and Interpretation of the Quaternary Loess Record. Journal of Arid Environments, 39(2): 497-516. doi: 10.1006/jare.1997.0369
      Evans, M.E., Heller, F., 2003. Environmental Magnetism: Principles and Application of Environmagnetics. Academic Press, San Diego.
      Florindo, F., Zhu, R., Guo, B., 1999. Low-Field Susceptibility and Palaeorainfall Estimates, New Dat along a N-S Transect of the Chinese Loess Plateau. Phys. Chem. Earth(A), 24(9): 817-821. doi: 10.1016/S1464-1895(99)00120-9
      Han, J.M., Jiang, W.Y., Chu, J., 1997. Grain Size Distribution of Magnetic Minerals in Loess and Paleosol. Quaternary Sciences, 3: 281-287 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ199703010.htm
      Hao, Q.Z., Oldfield, F., Bloemendal, J., et al., 2008. The Magnetic Properties of Loess and Paleosol Samples from the Chinese Loess Plateau Spanning the Last 22 Million Years. Palaeogeography, Palaeoclimatology, Palaeoecology, 260(3-4): 389-404. doi: 10.1016/j.palaeo.2007.11.010
      Heller, F., Liu, T.S., 1984. Magnetism of Chinese Loess Deposits. Geophysical Journal Royal Astronomical Society, 77(1): 125-141. doi: 10.1111/j.1365-246X.1984.tb01928.x
      Heller, F., Shen, C.D., Beer, J., et al., 1993. Quantitative Estimates of Pedogenic Ferromagnetic Mineral Formation in Chinese Loess and Paleoclimatic Implications. Earth and Planetary Science Letters, 114(2-3): 385-390. doi: 10.1016/0012-821X(93)90038-B
      Huang, C.M., Gong, Z.T., 2002. Study on Genesis of Soils Derived from Basalt in Northern Hainan Island Ⅲ. Element Geochemistry. Acta Pedologica Sinica, 39(5): 643-652 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRXB200205004.htm
      Huang, X.G., Sun, J.M., 2005. Study of the Magnetic Fabrics in Chinese Loess-Paleosols since the Last Interglacial: Implication of the Paleowind Direction. Quaternary Sciences, 25(4): 516-522 (in Chinese with English abstract). http://www.researchgate.net/publication/285494392_Study_of_the_magnetic_fabrics_in_Chinese_loess-paleosols_since_the_last_interglacial_implication_of_the_paleowind_direction_in_Chinese_with_English_abstract
      Jia, J., Xia, D.S., Wang, B., et al., 2012. Magnetic Investigation of Late Quaternary Loess Deposition, Ili Area, China. Quaternary International, 250: 84-92. doi: 10.1016/j.quaint.2011.06.018
      Koch, C.B., Morup, S., Madsen, M.B., et al., 1995. Iron-Containing Weathering Products of Basalt in a Cold, Dry Climate. Chememical Geology, 122(1-4): 109-119. doi: 10.1016/0009-2541(95)00002-4
      Kukla, G., 1987. Loess Stratigraphy in Central China. Quaternary Science Reviews, 6(3-4): 191-207, doi: 10.1016/0277-3791(87)90004-7
      Kukla, G., Heller, F., Liu, X.M., 1988. Pleistocene Climates in China Dated by Magnetic Susceptibility. Geology, 16(9): 811-814. doi: 10.1130/0091-7613(1988)016<0811:PCICDB>2.3.CO;2
      Liu, D.Y., Li, W.R., Qiao, Y.S., et al., 2010. The Periodicity of the Southwest Monsoon Revealed by the Magnetic Susceptibility of the Garzê a Loess-Paleosol Sequence Using EMD Method. Earth Science—Journal of China University of Geosciences, 35(4): 533-541 (in Chinese with English abstract). doi: 10.3799/dqkx.2010.069
      Liu, J.F., Guo, Z.T., Hao, Q.Z., et al., 2005. Magnetostratigraphy of the Miziwan Miocene Eolian Deposits in Qin'an County (Gansu Province). Quaternary Sciences, 25(4): 503-509 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DSJJ200504014.htm
      Liu, X.M., Liu, Z., Lü, B., et al., 2013. The Magnetic Properties of Serbian Loess and Its Environmental Significance. Chinese Science Bulletin, 58(3): 353-363. doi: 10.1007/s11434-012-5383-9
      Liu, X.M., Rolph, T., Bloemendal, J., 1995. Quantitative Estimates of Paleoprecipitation at Xifeng, in the Loess Plateau of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 113(2-4): 243-248. doi: 10.1016/0031-0182(95)00053-O
      Liu, X.M., Xia, D.S., Liu, T.S., et al., 2007. Discussion on Two Models of Paleoclimatic Records of Magnetic Susceptibility of Alaskan and Chinese Loess. Quaternary Sciences, 27(2): 210-220 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200702005.htm
      Lu, S.G., Xue, Q.F., Zhu, L., et al., 2008. Mineral Magnetic Properties of a Weathering Sequence of Soils Derived from Basalt in Eastern China. Catena, 73(1): 23-33. doi: 10.1016/j.catena.2007.08.004
      Lü, H.Y., Han, J.M., Wu, N.Q., et al., 1994. Magnetic Susceptibility Analysis of Modern Soils in China and Its Paleoclimatic Significance. Science in China(Series B), 24(12): 1290-1297 (in Chinese). http://www.researchgate.net/publication/285766624_Magnetic_susceptibility_of_the_modern_soils_in_China_and_paleoclimatic_significance
      Lü, H.Y., Liu, D.S., 2001. The Effect of C3 and C4 Plants for the Magnetic Susceptibility Signal in Soils. Science in China (Series D), 31(1): 43-53 (in Chinese). doi: 10.1007/BF02907102
      Lyons, R., Oldfield, F., Williams, E., 2012. The Possible Role of Magnetic Measurements in the Discrimination of Sahara/Sahel Dust Sources. Earth Surface Processes and Landforms, 37(6): 594-606. doi: 10.1002/esp.2268
      Maher, B.A., 1998. Magnetic Properties of Modern Soils and Quaternary Loessic Paleosols: Paleoclimatic Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 137: 25-54. doi: 10.1016/s0031-0182(97)00103-x
      Maher, B.A., 2011. The Magnetic Properties of Quaternary Aeolian Dusts and Sediments, and Their Palaeoclimatic Significance. Aeolian Research, 3(2): 87-144. doi: 10.1016/j.aeolia.2011.01.005
      Maher, B.A., Thompson, R., 1995. Paleorainfall Reconstructions from Pedogenic Magnetic Susceptibility Variations in the Chinese Loess and Paleosols. Quaternary Research, 44(3): 383-391. doi: 10.1006/qres.1995.1083
      Porter, S.C., Hallet, B., Wu, X.H., et al., 2001. Dependence of Near-Surface Magnetic Susceptibility on Dust Accumulation Rate and Precipitation on the Chinese Loess Plateau. Quaternary Research, 55(3): 271-283. doi: 10.1006/qres.2001.2224
      Qiao, Y.S., Zhao, Z.Z., Wang, Y., et al., 2006. Magnetostratigraphy and Its Paleoclimatic Significance of a Loess-Soil Sequence from Ganzi Area, West Sichuan Plateau. Quaternary Sciences, 26(2): 250-256 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dsjyj200602013
      Rao, Z.G., Zhu, Z.Y., Wu, Y., et al., 2007. Magnetic Susceptibility Characteristics of Topsoil Developed from Different Parent Rocks and Its Significance, South China. Quaternary Sciences, 27(4): 651-652 (in Chinese).
      Shi, P.H., Yang, T.B., Xu, S.Y., et al., 2010. Magnetic Susceptibility Variations and Influence Factors at Jingyuan Loess Section, Northwestern China. Marine Geology & Quaternary Geology, 30(4): 193-200 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201004032.htm
      Soubrand-Colin, M., Horen, H., Courtin-Nomade, A., 2009. Mineralogical and Magnetic Characterization of Iron Titanium Oxides in Soils Developed on Two Various Basaltic Rocks under Temperate Climate. Geoderma, 149(1-2): 27-32. doi: 10.1016/j.geoderma.2008.11.018
      Sun, D.H., Bloemendal, J., Yi, Z.Y., et al., 2011. Palaeomagnetic and Palaeoenvironmental Study of Two Parallel Sections of Late Cenozoic Strata in the Central Taklimakan Desert: Implications for the Desertification of the Tarim Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 300(1-4): 1-10. doi: 10.1016/j.palaeo.2010.11.015
      Sun, D.H., Su, R.X., Chen, F.H., et al., 2001. Composition, Susceptibility and Input Flux of Present Aeolian Dust over Loess Plateau of China. Acta Geographica Sinica, 56(2): 171-180 (in Chinese with English abstract). http://www.researchgate.net/publication/294657430_Composition_susceptibility_and_input_flux_of_present_aeolian_dust_over_loess_plateau_of_China
      Sun, Y.B., An, Z.S., Clemens, S.C., et al., 2010. Seven Million Years of Wind and Precipitation Variability on the Chinese Loess Plateau. Earth and Planetary Science Letters, 297(3-4): 525-535. doi: 10.1016/j.epsl.2010.07.004
      Thompson, R., Oldfield, F., 1986. Environmental Magnetism. Allen & Imwin, London.
      Verosub, K.L., Roberts, A.P., 1995. Environmental Magnetism: Past, Present, and Future. Journal of Geophysical Research, 100(B2): 2175-2192. doi: 10.1029/94JB02713
      Wang, L.X., Wang, W.G., Li, X.Q., et al., 2005. Correlation between the Carbon Isotope of Organic Matter and Magnetic Susceptibility in Topsoil and the Annual Precipitation in Arid and Semiarid Regions in North China. Arid Land Geography, 28(3): 311-315 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHDL200503008.htm
      Warrier, A.K., Sandeep, K., Harshavardhana, B.G., et al., 2011. A Rock Magnetic Record of Pleistocene Rainfall Variations at the Paleolithic Site of Attirampakkam, Southeastern India. Journal of Archaeological Science, 38(12): 3681-3693. doi: 10.1016/j.jas.2011.08.039
      Wei, H.T., Xia, D.S., Chen, F.H., et al., 2008. Relationship between the Magnetic Susceptibility of Surface Soil and Precipitation of Loess Plateau and Adjacent Area. Journal of Glaciology and Geocryology, 30(3): 433-439 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/bcdt200803012
      Xie, S.Y., Jiao, Y., Yan, M., et al., 2012. Geochemical Vertical Transportation along Soil Profiles in Baiyinnuoer Pb-Zn Deposit Areas, Mongolia, China. Earth Science—Journal of China University of Geosciences, 37(6): 1140-1148 (in Chinese with English abstract).
      Yang, T., 2008. Geochemical Characteristics of Topsoil and Weathering Crust from East China and Its Environmental Significance (Dissertation). Guangzhou Institute of Geochemistry, Guangzhou (in Chinese with English abstract).
      Yin, Q.Z., Guo, Z.T., 2006. Mid-Pleistocene Vermiculated Red Soils in Southern China as an Indication of Unusually Strengthened East Asian Monsoon. Chinese Science Bulletin, 51(2): 213-220. doi: 10.1007/s11434-005-0490-5
      Zhang, Y.F., Li, C.A., Chen, G.J., et al., 2005. Characteristics and Paleoclimatic Significance of Magnetic Susceptibility and Stable Organic Carbon Isotopes from a Bore in Zhoulao Town, Jianghan Plain. Earth Science—Journal of China University of Geosciences, 30(1): 114-120 (in Chinese with English abstract). http://www.researchgate.net/publication/279655329_Characteristics_and_paleoclimatic_significance_of_magnetic_susceptibility_and_stable_organic_carbon_isotopes_from_a_bore_in_Zhoulao_town_Jianghan_plain
      Zhou, L.P., Oldfield, F., Wintle, A.G., et al., 1990. Partly Pedogenic Origin of Magnetic Variations in Chinese Loess. Nature, 346(6286): 737-739. doi: 10.1038/346737a0
      邓成龙, 刘青松, 潘永信, 等, 2007. 中国黄土环境磁学. 第四纪研究, 27(2): 193-209. doi: 10.3321/j.issn:1001-7410.2007.02.005
      邓少福, 杨太保, 秦宏毅, 等, 2011. 新疆塔城黄土-古土黄土-古土壤磁化率特征及其影响因素. 中国沙漠, 31(4): 848-854. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201104008.htm
      韩家懋, 姜文英, 褚骏, 1997. 黄土和古土壤中磁性矿物的粒度分布. 第四纪研究, 3: 281-827. doi: 10.3321/j.issn:1001-7410.1997.03.011
      黄成敏, 龚子同, 2002. 海南岛北部玄武岩上土壤发生研究Ⅲ. 元素地球化学特征. 土壤学报, 39(5): 643-652. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200204000.htm
      黄孝刚, 孙继敏, 2005. 末次间冰期以来黄土-古土壤序列的磁组构特征及其指示的古风向. 第四纪研究, 25(4): 516-522. doi: 10.3321/j.issn:1001-7410.2005.04.016
      刘冬雁, 李巍然, 乔彦松, 等, 2010. 基于EMD分解的甘孜黄土磁化率记录的西南季风演化周期性. 地球科学——中国地质大学学报, 35(4): 533-541. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201004007.htm
      刘进峰, 郭正堂, 郝青振, 等, 2005. 甘肃秦安糜子湾剖面中新世风尘堆积的磁性地层学研究. 第四纪研究, 25(4): 503-509. doi: 10.3321/j.issn:1001-7410.2005.04.014
      刘秀铭, 夏敦胜, 刘东生, 等, 2007. 中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨. 第四纪研究, 27(2): 210-220. doi: 10.3321/j.issn:1001-7410.2007.02.006
      吕厚远, 韩家懋, 吴乃琴, 等, 1994. 中国现代土壤磁化率分析及其古气候意义. 中国科学(B辑), 24(12): 1290-1297. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199412009.htm
      吕厚远, 刘东生, 2001. C3, C4植物及燃烧对土壤磁化率的影响. 中国科学(D辑), 31(1): 43-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXG200310010.htm
      乔彦松, 赵志中, 王燕, 等, 2006. 川西甘孜黄土磁性地层学研究及其古气候意义. 第四纪研究, 26(2): 250-256. doi: 10.3321/j.issn:1001-7410.2006.02.013
      饶志国, 朱照宇, 吴翼, 等, 2007. 华南地区发育于不同母岩之上的表土磁化率特征及其意义. 第四纪研究, 27(4): 651-652. doi: 10.3321/j.issn:1001-7410.2007.04.022
      石培宏, 杨太保, 许善洋, 等, 2010. 靖远黄土-古土黄土-古土壤上部磁化率变化及其影响因素. 海洋地质与第四纪地质, 30(4): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201004032.htm
      孙东怀, 苏瑞侠, 陈发虎, 等, 2001. 黄土高原现代天然降尘的组成、通量和磁化率. 地理学报, 56(2): 171-180. doi: 10.3321/j.issn:0375-5444.2001.02.005
      王丽霞, 汪卫国, 李心清, 等, 2005. 中国北方干旱半干旱区表土的有机质碳同位素磁化率与年降水量的关系. 干旱区地理, 28(3): 311-315. doi: 10.3321/j.issn:1000-6060.2005.03.008
      魏海涛, 夏敦胜, 陈发虎, 等, 2008. 黄土高原及相邻地区表土磁化率与降水量的关系. 冰川冻土, 30(3): 433-439. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200803011.htm
      谢淑云, 焦杨, 燕敏, 等, 2012. 白音诺尔矿区土壤地球化学纵向迁移特征. 地球科学——中国地质大学学报, 37(6): 1140-1148. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201206008.htm
      杨恬, 2008. 中国东部表土与风化壳地球化学特征及其环境意义(博士学位论文), 广州: 中国科学院广州地球化学研究所, 29-83.
      张玉芬, 李长安, 陈国金, 等, 2005. 江汉平原湖区周老镇钻孔磁化率和有机碳稳定同位素特征及其古气候意义. 地球科学——中国地质大学学报, 30(1): 114-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200501016.htm
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  3788
    • HTML全文浏览量:  657
    • PDF下载量:  862
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-01-26
    • 刊出日期:  2014-10-01

    目录

      /

      返回文章
      返回