• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    平顶山矿区原生结构煤和构造煤孔渗实验对比

    郭德勇 李春娇 张友谊

    郭德勇, 李春娇, 张友谊, 2014. 平顶山矿区原生结构煤和构造煤孔渗实验对比. 地球科学, 39(11): 1500-1506. doi: 10.3799/dqkx.2014.142
    引用本文: 郭德勇, 李春娇, 张友谊, 2014. 平顶山矿区原生结构煤和构造煤孔渗实验对比. 地球科学, 39(11): 1500-1506. doi: 10.3799/dqkx.2014.142
    Guo Deyong, Li Chunjiao, Zhang Youyi, 2014. Contrast Study on Porosity and Permeability of Tectonically Deformed Coal and Indigenous Coal in Pingdingshan Mining Area, China. Earth Science, 39(11): 1500-1506. doi: 10.3799/dqkx.2014.142
    Citation: Guo Deyong, Li Chunjiao, Zhang Youyi, 2014. Contrast Study on Porosity and Permeability of Tectonically Deformed Coal and Indigenous Coal in Pingdingshan Mining Area, China. Earth Science, 39(11): 1500-1506. doi: 10.3799/dqkx.2014.142

    平顶山矿区原生结构煤和构造煤孔渗实验对比

    doi: 10.3799/dqkx.2014.142
    基金项目: 

    国家自然科学基金项目 41072118

    教育部科学技术研究重大项目 311022

    详细信息
      作者简介:

      郭德勇(1966-), 博士, 教授, 主要从事煤矿瓦斯防治与利用等研究.E-mail: kjkfg@cumtb.edu.cn

    • 中图分类号: P618

    Contrast Study on Porosity and Permeability of Tectonically Deformed Coal and Indigenous Coal in Pingdingshan Mining Area, China

    • 摘要: 为了研究构造煤孔渗变化特性, 利用平顶山矿区原生结构煤和构造煤, 进行了不同围压、温度、湿度和煤体结构类型等条件下孔隙度及渗透率的实验测定, 对煤层孔渗特性在不同条件下的变化趋势进行了分析.结果表明: 围压、温度、湿度和煤体结构类型4种因素对煤的孔隙度和渗透率均有较大影响, 当温度和围压同时作用时, 围压的作用效果大于温度的作用效果.并用Origin软件对部分实验数据进行了数据拟合, 得出原生结构煤和构造煤的渗透率-孔隙度函数关系.

       

    • 图  1  煤孔隙度随围压变化曲线

      a.原生结构煤;b.构造煤

      Fig.  1.  Variation curves of porosity under different temperatures and confining pressure

      图  2  不同湿度原生结构煤孔隙度随围压变化曲线

      Fig.  2.  Variation curves of porosity of dried sample and common sample

      图  3  粗细粒构造煤孔隙度随围压变化曲线

      Fig.  3.  Variation curves of porosity of coarse samples and fine samples

      图  4  不同条件下原生结构煤和构造煤渗透率变化曲线

      a.恒围压条件下原生结构煤渗透率变化曲线;b.恒围压条件下构造煤渗透率变化曲线;c.恒温度条件下原生结构煤渗透率变化曲线;d.恒温度条件下构造煤渗透率变化曲线

      Fig.  4.  Variation curves of permeability under different conditions

      图  5  不同湿度原生结构煤渗透率变化曲线

      a.恒定围压条件下;b.恒定温度条件下

      Fig.  5.  Variation curves of permeability of dried samples and common samples

      图  6  粗细粒构造煤渗透率变化曲线

      a.恒定围压条件下;b.恒定温度条件下

      Fig.  6.  Variation curves of permeability of coarse samples and fine samples

      图  7  煤的孔隙度与渗透率关系曲线

      a.原生结构煤;b.构造煤

      Fig.  7.  Variation curves of porosity and permeability

      表  1  原生结构煤和构造煤煤岩显微组分测定结果

      Table  1.   Determination of coal maceral

      式样名称 镜质组(%) 惰质组(%) 壳质组(%) 矿物(%) 煤级
      原生结构煤 61.7 23.5 13.5 1.3 肥煤
      61.5 25.5 11.8 1.2 肥煤
      构造煤 56.8 24.2 13.4 5.6 肥煤
      55.9 23.3 14.9 4.3 肥煤
      下载: 导出CSV

      表  2  煤孔隙度测试实验条件

      Table  2.   Experimental scheme of coal porosity

      原生结构煤 构造煤 温度(℃) 围压(MPa)
      普通 干燥 细粒 粗粒
      K1 K2 K3 K4 25 2~10
      K5 K6 K7 K8 45 2~10
      K9 K10 60 2~10
      注:K1~K10为样品号.
      下载: 导出CSV

      表  3  煤渗透率测试实验条件

      Table  3.   Experimental scheme of coal permeability

      原生结构煤 构造煤 温度(℃) 围压(MPa)
      普通 干燥 细粒 粗粒
      S1 S2 S3 S4 25~55 2
      S5 S6 S7 S8 25~55 6
      S9 S10 25 2~10
      S11 S12 S13 S14 25~55 10
      S15 S16 S17 S18 40 2~10
      S19 S20 55 2~10
      注:S1~S20为样品号.
      下载: 导出CSV

      表  4  不同温度下煤孔隙度与围压函数关系

      Table  4.   Functions between porosity and confining pressure

      温度(℃) 原生结构煤 构造煤
      拟合关系φ(%) 相关系数R2 拟合关系φ(%) 相关系数R2
      25 5.2597P-0.1421 0.9949 12.611P-0.2335 0.9923
      45 4.4449P-0.2729 0.9989 25.178P-0.2711 0.9365
      60 4.8410P-0.1908 0.9359 32.484P-0.1748 0.9831
      下载: 导出CSV

      表  5  恒围压条件下煤渗透率与温度函数关系

      Table  5.   Functions between permeability and temperature

      围压(MPa) 原生结构煤 构造煤
      拟合关系K (10-9m2) 相关系数R2 拟合关系K (10-9m2) 相关系数R2
      2 K=0.014+ 0.104e-0.113T 0.9984 K=0.146+ 1.24e-0.097T 0.9927
      6 K= 0.003e-0.057T 0.9652 K=0.091- 0.006e0.042T 0.9606
      10 K=8× 10-4e-0.046T 0.9921 K=0.048- 0.009e0.025T 0.9355
      下载: 导出CSV

      表  6  恒温度条件下煤渗透率与围压函数关系

      Table  6.   Functions between permeability and confining pressure

      温度(℃) 原生结构煤 构造煤
      拟合关系K (10-9m2) 相关系数R2 拟合关系K (10-9m2) 相关系数R2
      25 K=0.001+ 0.08e-0.528P 0.9983 K=-0.002+ 0.4e-0.378P 0.9994
      40 K= 0.059e-1.068P 0.9987 K=-0.011+ 0.17e-0.27P 0.9967
      55 K= 0.061e-0.471P 0.9996 K=0.054+ 0.79e-0.481P 0.9969
      下载: 导出CSV

      表  7  煤的渗透率与孔隙度的函数关系

      Table  7.   Functions between permeability and porosity

      温度(℃) 原生结构煤 构造煤
      拟合关系K (10-2m2) 相关系数R2 拟合关系K (10-2m2) 相关系数R2
      25 3×10-10φ11.86 0.9923 6×10-8φ6.33 0.9856
      40 5×10-16φ19.36 0.9996 8×10-8φ5.89 0.9570
      55 4×10-9φ10.07 0.9872 2×10-6φ5.07 0.9987
      下载: 导出CSV
    • Arenas, E., Chejne, F., 2004. The Effect of the Activating Agent and Temperature on the Porosity Development of Physically Activated Coal Chars. Carbon, 42(12-13): 2451-2455. doi: 10.1016/j.carbon.2004.04.041
      Baghbanan, A., Jing, L., 2008. Stress Effects on Permeability in a Fractured Rock Mass with Correlated Fracture Length and Aperture. International Journal of Rock Mechanics and Mining Sciences, 45(8): 1320-1334. doi: 10.1016/j.ijrmms.2008.01015
      Dana, E., Skoczylas, F., 1999. Gas Relative Permeability and Pore Structure of Sandstones. International Journal of Rock Mechanics and Mining Sciences, 36(5): 613-625. doi: 10.1016/S0148-9062(99)00037-6
      Díaz Aguado, M.B., González Nicieza, C., 2007. Control and Prevention of Gas Outbursts in Coal Mines, Riosa-Olloniego Coalfield, Spain. International Journal of Coal Geology, 69(4): 253-266. doi: 10.1016/j.coal.2006.05.004
      Feng, Z.J., Wan, Z.J., Zhao, Y.S., et al., 2010. Experimental Study of Permeability of Anthracite and Gas Coal Masses under High Temperature and Triaxial Stress. Chinese Journal of Rock Mechanics and Engineering, 29(4): 689-696 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/yslxygcxb201004005
      Fu, X.H., Li, D.H., Qin, Y., et al., 2002. Experimental Research of Influence of Coal Matrix Shrinkage on Permeability. Journal of China University of Mining & Technology, 31(2): 129-131, 137 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKD200202004.htm
      Ghabezloo, S., Sulem, J., Guédon, S., et al., 2009. Effective Stress Law for the Permeability of a Limestone. International Journal of Rock Mechanics and Mining Sciences, 46(2): 297-306. doi: 10.1016/j.ijrmms.2008.05.006
      Guo, D.Y., Han, D.X., Feng, Z.L., 1998. Experimental Study on the Porosity and Permeability of Disturbed Coal under Confined Pressure. Coal Geology & Exploration, 26(4): 31-34 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/QK199800863669
      Guo, D.Y., Song, G.T., Ku, M.X., 2002. Research on Coal Structure Indices to Coal and Gas Outbursts in Pingdingshan Mine Area, China. Journal of Coal Science & Engineering (China), 8(1): 1-6. http://qikan.cqvip.com/Qikan/Article/Detail?id=8588204
      He, Y.L., Yang, L.Z., 2005. Mechanism of Effects of Temperature and Effective Stress on Permeability of Sandstone. Chinese Journal of Rock Mechanics and Engineering, 24(14): 2420-2427 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX200514004.htm
      Hu, X., Liang, W., Hou, S.J., et al., 2012. Experimental Study of Effect of Temperature and Stress on Permeability Characteristics of Raw Coal and Shaped Coal. Chinese Journal of Rock Mechanics and Engineering, 31(6): 1222-1229 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSLX201206019.htm
      Hu, Y.Q., Zhao, Y.S., Yang, D., et al., 2010. Experimental Study of Effect of Temperature on Permeability Characteristics of Lignite. Chinese Journal of Rock Mechanics and Engineering, 29(8): 1585-1590 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/yslxygcxb201008010
      Huang, Y.Z., Wang, E.Z., 2007. Experimental Study on Coefficient of Sensitiveness between Percolation Rate and Effective Pressure for Low Permeability Rock. Chinese Journal of Rock Mechanics and Engineering, 26(2): 410-414 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/yslxygcxb200702025
      Jasinge, D., Ranjith, P.G., Choi, S.K., 2011. Effects of Effective Stress Changes on Permeability of Latrobe Valley Brown Coal. Fuel, 90(3): 1292-1300. doi: 10.1016/j.fuel.2010.10.053
      Konecny, P., Kozusnikova, A., 2011. Influence of Stress on the Permeability of Coal and Sedimentary Rocks of the Upper Silesian Basin. International Journal of Rock Mechanics and Mining Sciences, 48(2): 347-352. doi: 10.1016/j.jirmms.2010.11.017.
      Li, Z.Q., Xian, X.F., Long, Q.M., 2009. Experiment Study of Coal Permeability under Different Temperature and Stress. Journal of China University of Mining & Technology, 38(4): 523-527 (in Chinese with English abstract). http://www.researchgate.net/publication/279908140_Experiment_study_of_coal_permeability_under_different_temperature_and_stress
      Liu, X.J., Gao, H., Liang, L.X., 2011. Study of Temperature and Confining Pressure Effects on Porosity and Permeability in Low Permeability Sandstone. Chinese Journal of Rock Mechanics and Engineering, 30(Suppl. 2): 3771-3778 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSLX2011S2053.htm
      Peng, S.P., Meng, Z.P., Wang, H., et al., 2003. Testing Study on Pore Ratio and Permeability of Sandstone under Different Confining Pressures. Chinese Journal of Rock Mechanics and Engineering, 22(5): 742-746 (in Chinese with English abstract). http://www.researchgate.net/publication/285735297_Testing_study_on_pore_ratio_and_permeability_of_sandstone_under_different_confining_pressures
      Sulem, J., Ouffroukh, H., 2006. Shear Banding in Drained and Undrained Triaxial Tests on a Saturated Sandstone: Porosity and Permeability Evolution. International Journal of Rock Mechanics and Mining Sciences, 43(2): 292-310. doi: 10.1016/j.ijrmms.2005.07.001
      Wang, R.F., Chen, M.Q., 2008. Characteristics and Influencing Factors of Movable Fluid in Ultra-Low Permeability Sandstone Reservoir. Acta Petrolei Sinica, 29(4): 558-561, 566 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB200804016.htm
      Xu, J., Zhang, D.D., Peng, S.J., et al., 2011. Experimental Research on Impact of Temperature on Seepage Characteristics of Coal Containing Methane under Triaxial Stress. Chinese Journal of Rock Mechanics and Engineering, 30(9): 1848-1854 (in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=39311738
      Xu, J.Y., Peng, D.J., Luo, Z.T., 1995. Significant Effect of Confining Pressure on Structural Fracture Porosities. Acta Petrolei Sinica, 16(3): 44-47 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB503.006.htm
      Yuan, C.F., 1985. Tectonically Deformed Coal and Coal Gas Outburst. Coal Science and Technology, 1(1): 53-60 (in Chinese).
      冯子军, 万志军, 赵阳升, 等, 2010. 高温三轴应力下无烟煤、气煤煤体渗透特性的试验研究. 岩石力学与工程学报, 29(4): 689-696. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004008.htm
      傅雪海, 李大华, 秦勇, 等, 2002. 煤基质收缩对渗透率影响的实验研究. 中国矿业大学学报, 31(2): 129-131, 137. doi: 10.3321/j.issn:1000-1964.2002.02.005
      郭德勇, 韩德馨, 冯志亮, 1998. 围压下构造煤的孔隙度和渗透率特征实验研究. 煤田地质与勘探, 26(4): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT804.007.htm
      贺玉龙, 杨立中, 2005. 温度和有效应力对砂岩渗透率的影响机理研究. 岩石力学与工程学报, 24(14): 2420-2427. doi: 10.3321/j.issn:1000-6915.2005.14.004
      胡雄, 梁为, 侯厶靖, 等, 2012. 温度与应力对原煤、型煤渗透特性影响的试验研究. 岩石力学与工程学报, 31(6): 1222-1229. doi: 10.3969/j.issn.1000-6915.2012.06.018
      胡耀青, 赵阳升, 杨栋, 等, 2010. 温度对褐煤渗透特性影响的试验研究. 岩石力学与工程学报, 29(8): 1585-1590. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201008012.htm
      黄远智, 王恩志, 2007. 低渗透岩石渗透率对有效应力敏感系数的试验研究. 岩石力学与工程学报, 26(2): 410-414. doi: 10.3321/j.issn:1000-6915.2007.02.025
      李志强, 鲜学福, 隆晴明, 2009. 不同温度应力条件下煤体渗透率实验研究. 中国矿业大学学报, 38(4): 523-527. doi: 10.3321/j.issn:1000-1964.2009.04.012
      刘向君, 高涵, 梁利喜, 2011. 温度围压对低渗透砂岩孔隙度和渗透率的影响研究. 岩石力学与工程学报, 30(增刊2): 3771-3778. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2011S2053.htm
      彭苏萍, 孟召平, 王虎, 等, 2003. 不同围压下砂岩孔渗规律试验研究. 岩石力学与工程学报, 22(5): 742-746. doi: 10.3321/j.issn:1000-6915.2003.05.010
      王瑞飞, 陈明强, 2008. 特低渗透砂岩储层可动流体赋存特征及影响因素. 石油学报, 29(4): 558-561, 566. doi: 10.3321/j.issn:0253-2697.2008.04.015
      许江, 张丹丹, 彭守建, 等, 2011. 三轴应力条件下温度对原煤渗流特性影响的实验研究. 岩石力学与工程学报, 30(9): 1848-1854. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109015.htm
      许浚远, 彭大钧, 罗蛰潭, 1995. 围压对构造裂缝孔隙度的重要影响. 石油学报, 16(3): 44-47. doi: 10.3321/j.issn:0253-2697.1995.03.017
      袁崇孚, 1985. 构造煤和煤与瓦斯突出. 煤炭科学技术, 1(1): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ198601011.htm
    • 加载中
    图(7) / 表(7)
    计量
    • 文章访问数:  3421
    • HTML全文浏览量:  502
    • PDF下载量:  634
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-05-20
    • 刊出日期:  2014-11-01

    目录

      /

      返回文章
      返回