• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    长江干流丰水期河水硫酸盐同位素组成特征及其来源解析

    李小倩 刘运德 周爱国 张彬

    李小倩, 刘运德, 周爱国, 张彬, 2014. 长江干流丰水期河水硫酸盐同位素组成特征及其来源解析. 地球科学, 39(11): 1547-1554,1592. doi: 10.3799/dqkx.2014.147
    引用本文: 李小倩, 刘运德, 周爱国, 张彬, 2014. 长江干流丰水期河水硫酸盐同位素组成特征及其来源解析. 地球科学, 39(11): 1547-1554,1592. doi: 10.3799/dqkx.2014.147
    Li Xiaoqian, Liu Yunde, Zhou Aiguo, Zhang Bin, 2014. Sulfur and Oxygen Isotope Compositions of Dissolved Sulfate in the Yangtze River during High Water Period and Its Sulfate Source Tracing. Earth Science, 39(11): 1547-1554,1592. doi: 10.3799/dqkx.2014.147
    Citation: Li Xiaoqian, Liu Yunde, Zhou Aiguo, Zhang Bin, 2014. Sulfur and Oxygen Isotope Compositions of Dissolved Sulfate in the Yangtze River during High Water Period and Its Sulfate Source Tracing. Earth Science, 39(11): 1547-1554,1592. doi: 10.3799/dqkx.2014.147

    长江干流丰水期河水硫酸盐同位素组成特征及其来源解析

    doi: 10.3799/dqkx.2014.147
    基金项目: 

    国家自然科学基金项目 41202169

    中国博士后基金项目 2014M552114

    中央高校基本科研业务费专项资金资助项目 CUGL140407

    详细信息
      作者简介:

      李小倩(1982-), 博士, 讲师, 主要从事同位素地球化学与环境地球化学研究.E-mail: lixiaoqian2007@gmail.com

      通讯作者:

      周爱国, E-mail: aiguozhou@cug.edu.cn

    • 中图分类号: P736.5

    Sulfur and Oxygen Isotope Compositions of Dissolved Sulfate in the Yangtze River during High Water Period and Its Sulfate Source Tracing

    • 摘要: 碳酸盐岩的硫酸风化机制及其与碳循环的关系是全球碳循环研究中最为关注的科学问题之一, 其关键问题是识别硫酸盐来源.通过分析长江干流丰水期SO42-浓度及其硫、氧同位素组成特征, 探讨长江硫酸盐的来源及其主要控制因素.长江河水SO42-含量呈现逐年增加的趋势, 并且年增幅度逐渐加大.δ34SSO4δ18OSO4变化范围为-3.5‰~5.6‰和3.7‰~9.2‰, 二者呈现显著的线性负相关关系.δ18OSO4值从上游到下游的增加趋势受长江水δ18OH2O值的空间组成特征的影响.研究表明, 大气降水(酸雨)和硫化物氧化是控制长江干流丰水期河水硫、氧同位素组成及其来源的主要机制, 为研究长江流域化学风化侵蚀作用和碳循环过程提供重要的理论依据.

       

    • 图  1  长江流域采样点分布(据丁悌平等(2013)修改)

      Fig.  1.  A sketch map of the Yangtze River drainage area with sampling locations

      图  2  长江干流丰水期河水SO42-浓度沿径流途径的变化曲线

      Fig.  2.  Plots showing spatial variations of SO42- concentrations from the mainstream of the Yangtze River during high water period

      图  3  长江干流丰水期河水硫酸盐硫和氧同位素组成沿径流途径的变化曲线

      Fig.  3.  The special δ34SSO4 and δ18OSO4 variations of dissolved sulfate in the water from the mainstream of the Yangtze River during high water period

      图  4  长江干流丰水期SO42-δ34SSO4δ18OSO4关系

      Fig.  4.  δ34SSO4 vs. δ18OSO4 of dissolved sulfate in the water of the Yangtze River during high water period

      图  5  长江水的δ18OH2O与硫酸盐的δ18OSO4的关系

      Fig.  5.  δ18OH2O of water vs. δ18OSO4 of dissolved sulfate in the water of the Yangtze River

      表  1  长江干流丰水期河水主要离子与同位素组成的分析结果

      Table  1.   Chemical and isotopic compositions of Yangtze River during high water period

      样品编号 采集时间 采样地点 经纬度坐标 pH EC(μS/cm) SO42- Cl- HCO3- K++Na+ Ca2+ Mg2+ δ34SSO4(‰ vs. VCDT) δ18OSO4(‰ vs. VSMOW) δ18OH2O(‰ vs. VSMOW)
      (mg/L)
      CJ1 2013.8.14 宜宾 E104°36′50.65″, N28°45′23.84″ 8.19 317 37.3 24.9 124.4 22.4 31.3 7.7 3.5 5.0 -14.6
      CJ2 2013.8.15 泸州 E105°26′07.41″, N28°52′13.31″ 8.07 306 37.9 20.1 127.7 19.8 32.1 7.5 -0.8 5.9 -13.9
      CJ3 2013.8.16 重庆 E106°31′28.72″, N29°31′39.03″ 7.90 319 41.3 19.4 129.6 19.4 34.6 7.3 2.7 5.0 -13.7
      CJ4 2013.8.17 涪陵 E107°23′20.32″, N29°42′53.31″ 7.96 312 39.5 18.0 128.3 18.0 35.4 7.3 - - -13.2
      CJ5 2013.8.19 万州 E108°22′54.51″, N30°48′34.17″ 7.88 312 28.8 14.6 127.0 17.0 36.0 6.9 0.8 6.0 -12.7
      CJ6 2013.8.20 奉节 E109°27′23.70″, N31°00′05.66″ 7.86 319 41.9 16.8 132.9 17.0 36.8 6.8 1.5 6.9 -12.7
      CJ7 2013.8.20 巴东 E110°19′46.73″, N31°02′55.35″ 7.80 328 45.4 15.0 130.3 16.0 39.6 6.8 5.4 4.5 -11.9
      CJ8 2013.8.20 宜昌 E111°16′50.94″, N30°45′16.03″ 8.01 329 43.1 16.4 133.6 17.6 37.6 7.2 3.7 5.7 -11.8
      CJ9 2013.8.22 沙市 E112°14′19.51″, N30°18′22.67″ 7.84 335 42.2 17.3 128.3 17.0 37.0 7.0 5.2 3.7 -11.1
      CJ23 2013.8.14 监利 E110°03′51.87″, N29°26′44.78″ 7.96 324 36.1 14.8 130.0 17.4 37.3 6.9 -0.4 8.0 -11.5
      CJ10 2013.8.23 岳阳 E113°31′00.27″, N29°49′53.60″ 7.88 312 30.4 14.2 124.1 16.5 36.4 6.6 1.3 7.6 -12.3
      CJ11 2013.8.22 洪湖 E114°14′27.08″, N30°30′15.16″ 7.88 321 30.7 15.3 130.6 15.1 31.3 5.6 -3.5 9.2 -10.1
      CJ12 2013.8.22 武汉 E115°03′58.39″, N30°14′48.88″ 7.82 312 33.3 12.6 126.7 14.5 38.9 6.3 5.6 5.2 -10.7
      CJ13 2013.8.7 黄石 E116°00′32.40″, N29°44′30.52″ 7.77 313 35.8 12.4 128.3 15.1 38.3 6.4 3.8 7.0 -10.3
      CJ14 2013.8.6 九江 E117°03′09.14″, N30°30′10.59″ 7.73 293 34.5 11.8 117.3 14.2 35.5 6.0 -0.5 8.0 -9.5
      CJ15 2013.8.5 安庆 E117°43′51.69″, N30°51′09.96″ 7.78 304 33.9 12.7 123.8 14.7 36.5 6.0 4.8 5.1 -9.6
      CJ16 2013.8.4 铜陵 E118°21′03.37″, N31°20′21.64″ 7.73 306 35.0 12.9 122.2 15.1 37.7 6.1 -0.3 7.0 -9.5
      CJ17 2013.8.4 芜湖 E118°29′11.98″, N31°45′58.97″ 7.73 317 36.8 13.0 126.7 14.9 39.0 6.4 -1.5 8.4 -9.4
      CJ18 2013.8.3 马鞍山 E118°37′08.29″, N31°56′32.31″ 7.73 319 38.0 12.8 128.7 14.8 39.7 6.5 2.4 6.3 -8.5
      CJ19 2013.8.2 南京 E119°22′47.55″, N32°13′55.79″ 7.73 330 39.3 15.1 123.1 17.4 39.1 6.6 0.8 6.3 -9.1
      CJ20 2013.7.31 镇江 E120°48′09.53″,N32°01′03.04″ 7.81 319 36.9 15.4 114.0 21.3 45.7 7.6 -0.8 8.4 -9.2
      CJ21 2013.7.30 南通 E121°36′44.00″, N31°21′29.00″ 7.58 409 37.4 34.9 123.5 35.4 39.4 7.4 1.7 7.0 -8.4
      CJ22 2013.7.28 上海 E113°01′25.00″, N29°31′44.50″ 7.78 338 48.9 13.5 137.5 17.0 39.7 7.0 -2.3 8.8 -7.6
      下载: 导出CSV

      表  2  铜陵-芜湖段SO42-含量与历史数据的对比

      Table  2.   Comparisons of SO42- concentration and its growth rate in the lower Tongling-Wuhu area

      取样地点 取样时间 SO42-(mg/L) 年增幅(mg/(L·a))
      铜陵-芜湖段 2013年8月 35.0~36.8(35.9)a 1.00b
      大通附近 2007年7月 29.6~30.1(29.9)(夏学齐等, 2008) 0.85c
      大通 1958—1990年平均值 11.9(Chen et al., 2002) 0.22d
      a.本研究的数据,括号内为铜陵-芜湖段数据的平均值;b.2007—2013年的SO42-增加速率;c.1990—2007年的SO42-增加速率.其中,1990年SO42-含量(15.4mg/L)是结合1958—1990年SO42-含量平均值(11.9mg/L)及其年增幅估算的;d.1958—1990年的SO42-增加速率,数据来源于Chen et al.(2002).
      下载: 导出CSV
    • Bao, H.M., 2006. Purifying Barite for Oxygen Isotope Measurement by Dissolution and Reprecipitation in a Chelating Solution. Analytical Chemistry, 78(1): 304-309. doi: 10.1021/ac051568z
      Brunner, B., Bernasconi, S.M., 2005. A Revised Isotope Fractionation Model for Dissimilatory Sulfate Reduction in Sulfate Reducing Bacteria. Geochimica et Cosmochimica Acta, 69(20): 4759-4771. doi: 10.1016/j.gca.2005.04.015
      Brunner, B., Bernasconi, S.M., Kleikemper, J., et al., 2005. A Model for Oxygen and Sulfur Isotope Fractionation in Sulfate during Bacterial Sulfate Reduction Processes. Geochimica et Cosmochimica Acta, 69(20): 4773-4785. doi: 10.1016/j.gca.2005.04.017
      Calmels, D., Gaillardet, J., Brenot, A., et al., 2007. Sustained Sulfide Oxidation by Physical Erosion Processes in the Mackenzie River Basin: Climatic Perspectives. Geology, 35(11): 1003-1006. doi: 10.1130/G24132A.1
      Chen, J.S., Wang, F.Y., Xia, X.H., et al., 2002. Major Element Chemistry of the Changjiang (Yangtze River). Chemical Geology, 187(3-4): 231-255. doi: 10.1016/S0009-2541(02)00032-3
      Ding, T.P., Gao, J.F., Shi, G.Y., et al., 2013. The Contents and Mineral and Chemical Compositions of Suspended Particulate Materials in the Yangtze River, and Their Geological and Environmental Implications. Acta Geologica Sinica, 87(5): 634-660 (in Chinese with English abstract).
      Du, F., 2012. Inorganic Sulfur and Nitrogen Isotope Variation in Atmospheric Precipitation at Chengdu, China (Dissertation). Chengdu University of Technology, Chengdu, 30-32 (in Chinese with English abstract).
      Jiang, Y.K., Liu, C.Q., Tao, F.X., 2006. Sulfur Isotope Compositions of Wujiang River Water in Guizhou Province during Low-Flow Period. Geochimica, 35(6): 623-628 (in Chinese with English abstract).
      Jiang, Y.K., Liu, C.Q., Tao, F.X., 2007. Sulfur Isotope Composition Characters of Wujiang River Water in Guizhou Province. Advances in Water Science, 18(4): 558-565 (in Chinese with English abstract).
      Krouse, H.R., Mayer, B., 2000. Sulphur and Oxygen Isotopes in Sulphate. In: Cook, P.G., Herczeg, A.L., eds., Environmental Tracers in Subsurface Hydrology. Kluwer Academic Publishers, Boston, 195-231.
      Li, J., Liu, C.Q., Li, L.B., et al., 2010. The Impacts of Chemical Weathering of Carbonate Rock by Sulfuric Acid on the Cycling of Dissolved Inorganic Carbon in Changjiang River Water. Geochimica, 39(4): 305-313 (in Chinese with English abstract).
      Li, X.D., Liu, C.Q., Liu, X.L., et al., 2011a. Identication of Dissolved Sulfate Sources and the Role of Sulfuric Acid in Carbonate Weathering Using Dual-Isotopic Data from the Jialing River, Southwest China. Journal of Asian Earth Sciences, 42(3): 370-380. doi: 10.1016/j.jseaes.2011.06.002
      Li, S.L., Liu, C.Q., Patra, S., et al., 2011b. Using a Dual Isotopic Approach to Trace Sources and Mixing of Sulphate in Changjiang Estuary, China. Applied Geochemistry, 26(S): S210-S213. doi: 10.1016/j.apgeochem.2011.03.106
      Li, X.Q., Gan, Y.Q., Zhou, A.G., et al., 2013a. Hydrological Controls on the Sources of Dissolved Sulfate in the Heihe River, a Large Inland River in the Arid Northwestern China, Inferred from S and O Isotopes. Applied Geochemistry, 35: 99-109. doi: 10.1016/j.apgeochem.2013.04.001
      Li, X.Q., Bao, H.M., Gan, Y.Q., et al., 2013b. Multiple Oxygen and Sulfur Isotope Compositions of Secondary Atmospheric Sulfate in a Mega-City in Central China. Atmospheric Environment, 81: 591-599. doi: 10.1016/j.atmosenv.2013.09.051
      Mukai, H., Tanaka, A., Fujii, T., et al., 2001. Regional Characteristics of Sulfur and Lead Isotope Ratios in the Atmosphere at Several Chinese Urban Sites. Environmental Science and Technology, 35(6): 1064-1072. doi: 10.1021/es001399u
      Stögbauer, A., Strauss, H., Arndt, J., et al., 2008. Rivers of North-Rhine Westphalia Revisited: Tracing Changes in River Chemistry. Applied Geochemistry, 23(12): 3290-3304. doi: 10.1016/j.apgeochem.2008.06.030
      Turchyn, A.V., Tipper, E.T., Galy, A., et al., 2013. Isotope Evidence for Secondary Sulfide Precipitation along the Marsyandi River, Nepal, Himalayas. Earth and Planetary Science Letters, 374: 36-46. doi: 10.1016/j.epsl.2013.04.033
      Tuttle, M.L.W., Breit, G.N., Cozzarelli, I.M., 2009. Processes Affecting δ34S and δ18O Values of Dissolved Sulfate in Alluvium along the Canadian River, Central Oklahoma, USA. Chemical Geology, 265(3-4): 455-467. doi: 10.1016/j.chemgeo.2009.05.009
      Van Stempvoort, D.R., Krouse, H.R., 1994. Controls of δ18O in Sulphate. In: Alpers, C.A., Blowes, D.W., eds., Environmental Geochemistry of Sulphide Oxidation. American Chemical Society, Washington D.C., 445-479.
      Wang, Y.P., Wang, L., Xu, C.X., et al., 2010. Hydro-Geochemistry and Genesis of Major Ions in the Yangtze River, China. Geological Bulletin of China, 29(2-3): 446-456 (in Chinese with English abstract).
      Wu, Q.X., Han, G.L., 2012. Isotopic Composition and Isotope Tracing of Sulfur in Atmospheric Precipitation at the Head Area of the Three Gorges Reservoir, China. Environmental Science, 33(7): 2145-2150 (in Chinese with English abstract).
      Xia, X.H., Wu, Q., Mou, X.L., 2012. Advances in Impacts of Climate Change on Surface Water Quality. Advances in Water Science, 23(1): 124-133 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ201201017.htm
      Xia, X.Q., Yang, Z.F., Wang, Y.P., et al., 2008. Major Ion Chemistry in the Yangtze River. Earth Science Frontiers, 15(5): 194 -202 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200805020.htm
      Xiao, H.W., Xiao, H.Y., Long, A.M., et al., 2011. Sulfur Isotopic Geochemical Characteristics in Precipitation at Guiyang. Geochimica, 40(6): 559-565 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX201106006.htm
      Yue, S.K., Pan, J.Y., Chen, Y.P., et al., 2007. Study on Sulfur Isotopes in Rain Water and Lake Water in Nanchang City. Earth and Environment, 35(4): 297-302 (in Chinese with English abstract).
      Zhang, D., Huang, X.Y., Li, C.J., 2013. Sources of Riverine Sulfate in Yellow River and Its Tributaries Determined by Sulfur and Oxygen Isotopes. Advances in Water Science, 24(3): 418-426 (in Chinese with English abstract).
      Zhang, F.E., Lu, Y.R., Yin, M.Y., et al., 2012. Sulfur Isotopic Evidence for Biological Karst of Sulfate Rocks in Burial Environment. Earth Science—Journal of China University of Geosciences, 37(2): 357-364 (in Chinese with English abstract).
      丁悌平, 高建飞, 石国钰, 等, 2013. 长江水中悬浮物含量与矿物和化学组成及其地质环境意义. 地质学报, 87(5): 634-660. doi: 10.3969/j.issn.0001-5717.2013.05.004
      杜锋, 2012. 成都市大气降水中无机硫、氮同位素的变化特征(硕士学位论文). 成都: 成都理工大学, 30-32.
      蒋颖魁, 刘丛强, 陶发祥, 2006. 贵州乌江水系枯水期河水硫同位素组成研究. 地球化学, 35(6): 623-628. doi: 10.3321/j.issn:0379-1726.2006.06.007
      蒋颖魁, 刘丛强, 陶发祥, 2007. 贵州乌江水系河水硫同位素组成特征研究. 水科学进展, 18(4): 558-565. doi: 10.3321/j.issn:1001-6791.2007.04.013
      李军, 刘丛强, 李龙波, 等, 2010. 硫酸侵蚀碳酸盐岩对长江河水DIC循环的影响. 地球化学, 39(4): 305-313. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201004002.htm
      王亚平, 王岚, 许春雪, 等, 2010. 长江水系水文地球化学特征及主要离子的化学成因. 地质通报, 29(2-3): 446-456. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2010Z1033.htm
      吴起鑫, 韩贵琳, 2012. 三峡库首秭归地区大气降水硫同位素组成及示踪研究. 环境科学, 33(7): 2145-2150. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201207001.htm
      夏星辉, 吴琼, 牟新利, 2012. 全球气候变化对地表水环境质量影响研究进展. 水科学进展, 23(1): 124-133. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201201017.htm
      夏学齐, 杨忠芳, 王亚平, 等, 2008. 长江水系河水主要离子化学特征. 地学前缘, 15(5): 194-202. doi: 10.3321/j.issn:1005-2321.2008.05.020
      肖红伟, 肖化云, 龙爱民, 等, 2011. 贵阳大气降水硫同位素地球化学特征. 地球化学, 40(6): 559-565. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201106006.htm
      乐淑葵, 潘家永, 陈益平, 等, 2007. 南昌市雨水和湖水硫同位素特征的研究. 地球与环境, 35(4): 297-302. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200704002.htm
      张东, 黄兴宇, 李成杰, 2013. 硫和氧同位素示踪黄河及支流河水硫酸盐来源. 水科学进展, 24(3): 418-426. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201303017.htm
      张凤娥, 卢耀如, 殷密英, 等, 2012. 埋藏环境中硫酸盐岩生物岩溶作用的硫同位素证据, 地球科学——中国地质大学学报, 37(2): 357-364. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202026.htm
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  4069
    • HTML全文浏览量:  503
    • PDF下载量:  619
    • 被引次数: 0
    出版历程
    • 收稿日期:  2014-04-29
    • 刊出日期:  2014-11-01

    目录

      /

      返回文章
      返回