• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于植被胁迫光谱的高光谱遥感植被元素富集信息提取

    帅琴 黄爽 李志忠 陈圣波 徐守礼

    帅琴, 黄爽, 李志忠, 陈圣波, 徐守礼, 2015. 基于植被胁迫光谱的高光谱遥感植被元素富集信息提取. 地球科学, 40(8): 1319-1324. doi: 10.3799/dqkx.2015.112
    引用本文: 帅琴, 黄爽, 李志忠, 陈圣波, 徐守礼, 2015. 基于植被胁迫光谱的高光谱遥感植被元素富集信息提取. 地球科学, 40(8): 1319-1324. doi: 10.3799/dqkx.2015.112
    Shuai Qin, Huang Shuang, Li Zhizhong, Chen Shengbo, Xu Shouli, 2015. The Metal Element Information Extraction from Hyperion Data Based on the Vegetation Stress Spectra. Earth Science, 40(8): 1319-1324. doi: 10.3799/dqkx.2015.112
    Citation: Shuai Qin, Huang Shuang, Li Zhizhong, Chen Shengbo, Xu Shouli, 2015. The Metal Element Information Extraction from Hyperion Data Based on the Vegetation Stress Spectra. Earth Science, 40(8): 1319-1324. doi: 10.3799/dqkx.2015.112

    基于植被胁迫光谱的高光谱遥感植被元素富集信息提取

    doi: 10.3799/dqkx.2015.112
    基金项目: 

    国家自然科学基金项目 41402293

    国家高技术研究发展计划(863计划)项目 2008AA121100

    国家高技术研究发展计划(863计划)项目 2012AA12A308

    详细信息
      作者简介:

      帅琴(1963-), 女, 教授, 主要研究方向为地质分析.E-mail: shuaiqin@cug.edu.cn

      通讯作者:

      黄爽, E-mail: hsmylife2012@163.com

    • 中图分类号: P627

    The Metal Element Information Extraction from Hyperion Data Based on the Vegetation Stress Spectra

    • 摘要: 含矿层中成矿元素的迁移富集可胁迫影响上覆植物光谱, 因此, 利用植物响应特征提取成矿元素富集信息可指示潜在的矿床位置.以内蒙古西乌旗草原覆盖区为例, 采集典型植物光谱并测试元素含量, 分析红边和吸收深度对不同成矿元素的敏感性, 并进行模型显著性参数检验, 建立了基于植物吸收深度的Co和W元素响应模型, 应用于示范区的Hyperion影像, 圈定了Co和W元素富集信息.结合野外实地采样验证, 富集点元素含量均高于背景值.该研究可为植被覆盖区的高光谱遥感地质调查提供新的思路.

       

    • 图  1  研究区采样点分布

      Fig.  1.  The distribution of sampling point in study area

      图  2  红边位置与元素含量的相关性分析

      Fig.  2.  Analysis of relation between red edge position and elements content

      图  3  各采样点植物的光谱吸收深度

      Ⅰ类样点.植物元素含量高于均值和标准差;Ⅱ类样点.植物元素含量低于均值和标准差

      Fig.  3.  Spectral absorption depth of vegetation in each sample site

      图  4  研究区富集元素分布

      Fig.  4.  The distribution of metal elements enrichment in study area

      图  5  富集点的Co和W元素含量与背景值对比

      Fig.  5.  Elements contents of Co and W in enrichment point and background value compared

      表  1  植被元素含量

      Table  1.   Elements content within vegetation

      Au As Co Cu Hg Ni Pb W Zn
      NXV01-1 羊草 0.41 218.00 24.50 5 459.00 238.00 532.00 549.00 144.00 19 180.00
      NXV01-2 糙隐子草 0.61 294.00 113.00 6 604.00 159.00 1 352.00 954.00 336.00 27 660.00
      NXV01-3 大针茅 1.88 359.00 125.00 3 651.00 223.00 647.00 2 725.00 172.00 15 440.00
      NXV03 大针茅 0.58 272.00 37.70 4 136.00 142.00 776.00 916.00 19.30 19 110.00
      NXV04-1 大针茅 0.40 337.00 247.00 4 240.00 245.00 366.00 1 452.00 193.00 20 640.00
      NXV05-1 大针茅 0.54 235.00 0.33 2 466.00 78.90 479.00 491.00 6.34 12 040.00
      NXV05-2 糙隐子草 0.30 481.00 88.80 7 321.00 165.00 811.00 1 135.00 29.60 10 880.00
      NXV06-2 糙隐子草 0.57 572.00 394.00 7 971.00 207.00 867.00 2 208.00 247.00 27 240.00
      NXV08-1 大针茅 0.51 461.00 303.00 6 201.00 461.00 571.00 2 347.00 60.80 12 410.00
      NXV08-2 羊草 0.67 249.00 33.80 4 069.00 536.00 170.00 346.00 22.50 15 690.00
      NXV10-1 大针茅 0.69 469.00 148.00 4 129.00 281.00 551.00 2 883.00 86.50 9 603.00
      NXV11-1 大针茅 0.38 430.00 236.00 7 885.00 215.00 1 010.00 1 282.00 24.10 24 250.00
      均值 0.62 370.54 142.16 5 302.92 247.76 647.85 1 497.54 112.09 17 878.69
      标准偏差 0.38 108.22 114.95 1 682.45 120.27 305.22 839.91 98.12 5 731.83
      变异系数 61.90 29.20 80.90 31.70 48.50 47.10 56.10 87.50 32.10
      注:植物含量单位:ng/g.
      下载: 导出CSV

      表  2  金属元素Co和W含量与光谱吸收深度拟合方程

      Table  2.   Regression equation between the absorption depths and the contents of Co and W

      拟合方程 R2 R
      MCo=-2 543.752+1 200.211x1-14 161.749x2+12 005.275x3+ 3 038.511x4-89.022x5 0.996 0 0.997 9
      MW=-972.878+1 908.580x1-11 395.301x2+8 814.099x3+1 886.741x4 0.949 9 0.974 6
      注:x1x2x3x4x5x6x7分别表示(750-550)/(n-1)处的波段吸收深度值.
      下载: 导出CSV
    • Chen, S.B., Liu, Y.L., Yang, Q., et al., 2012a. Lithologic Classification from Hyperspectral Data in Dense Vegetation Cover Area. Journal of Jilin University: Earth Science Edition, 42(6): 1959-1965(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201206044.htm
      Chen, S.B., Zhou, C., Wang, J.N., 2012b. Vegetation Stress Spectra and Their Relation with the Contents of Metal Elements within the Plant Leaves in Metal Mines in Heilongjiang. Spectroscopy and Spectral Analysis, 32(5): 1310-1315(in Chinese with English abstract).
      Darvishzadeh, R., Skidmore, A., Schlerf, M., et al., 2008. LAI and Chlorophyll Estimation for a Heterogeneous Grassland Using Hyperspectral Measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 63(4): 409-426. doi: 10.1016/j.isprsjprs.2008.01.001
      Gan, F.P., Liu, S.W., Zhou, Q., 2004. Identification of Mining Pollution Using Hyperion Data at Dexing Copper Mine Jiangxi Province, China. Earth Science—Journal of China University of Geosciences, 29(1): 119-126(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200401020.htm
      Gitelson, A.A., Merzlyak, M.N., Lichtenthaler, H.K., 1996. Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm. Journal of Plant Physiology, 148(3-4): 501-508. doi: 10.1016/s0176-1617(96)80285-9
      Gong, S.Q., Wang, X., Shen, R.P., et al., 2010. Study on Heavy Metal Element Content in the Coastal Saline Soil by Hyperspectral Remote Sensing. Remote Sensing Technology and Application, 25(2): 169-177(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGJS201002000.htm
      Houborg, R., Anderson, M., Daughtry, C., 2009. Utility of an Image-Based Canopy Reflectance Modeling Tool for Remote Estimation of LAI and Leaf Chlorophyll Content at the Field Scale. Remote Sensing of Environment, 113(1): 259-274. doi: 10.1016/j.rse.2008.09.014
      Huang, Z., Turner, B.J., Dury, S.J., et al., 2004. Estimating Foliage Nitrogen Concentration from HYMAP Data Using Continuum Removal Analysis. Remote Sensing of Environment, 93(1-2): 18-29. doi: 10.1016/j.rse.2004.06.008
      Kruse, F.A., Boardman, J.W., Huntington, J.F., 2003. Comparison of Airborne Hyperspectral Data and EO-1 Hyperion for Mineral Mapping. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1388-1400. doi: 10.1109/tgrs.2003.812908
      Lin, F.F., Chen, Z.L., Wang, K., et al., 2009. Determination of Nitrogen in Rice Leaf Based on Ftir Spectra and siPLS-GA-PLS Algorithm. Journal of Infrared and Millimeter Waves, 28(4): 277-280(in Chinese with English abstract). doi: 10.3724/SP.J.1010.2009.00277
      Rosso, P.H., Pushnik, J.C., Lay, M., et al., 2005. Reflectance Properties and Physiological Responses of Salicornia Virginica to Heavy Metal and Petroleum Contamination. Environmental Pollution, 137(2): 241-252. doi: 10.1016/j.envpol.2005.02.025
      Sánchez-Azofeifa, G.A., Castro, K., Wright, S.J., et al., 2009. Differences in Leaf Traits, Leaf Internal Structure, and Spectral Reflectance between Two Communities of Lianas and Trees: Implications for Remote Sensing in Tropical Environments. Remote Sensing of Environment, 113(10): 2076-2088. doi: 10.1016/j.rse.2009.05.013
      Xu, M.X., Wu, S.H., Zhou, S.L., et al., 2011. Hyperspectral Reflectance Models for Retrieving Heavy Metal Content: Application in the Archaeological Soil. J. Infrared Milli. Waves, 30(2): 109-114(in Chinese with English abstract). http://www.oalib.com/paper/1598232
      Zarco-Tejada, P.J., Miller, J.R., Morales, A., et al., 2004. Hyperspectral Indices and Model Simulation for Chlorophyll Estimation in Open-Canopy Tree Crops. Remote Sensing of Environment, 90(4): 463-476. doi: 10.1016/j.rse.2004.01.017
      Zhu, X.Y., Zhou, H., Yu, X.B., 2009. The Calculation Methods of Permeability Variation Coefficient-Taking Ningdong Oilflied in Mahuangshan West Block as An Example. Offshore Oil, 29(2): 23-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYSY200902006.htm
      Zhu, Y.Q., Qu Y.H., Liu S.H., et al., 2014. A Reflectance Spectra Model for Copper-Stressed Leaves: Advances in the PROSPECT Model through Addition of the Specific Absorption Coefficients of the Copper Ion. International Journal of Remote Sensing, 35(4): 1356-1373. doi: 10.1080/01431161.2013.876123
      陈圣波, 刘彦丽, 杨倩, 等, 2012a. 植被覆盖区卫星高光谱遥感岩性分类. 吉林大学学报: 地球科学版, 42(6): 1959-1965. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201206044.htm
      陈圣波, 周超, 王晋年, 2012b. 黑龙江多金属矿区植物胁迫光谱及其与金属元素含量关系研究. 光谱学与光谱分析, 32(5): 1310-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201205043.htm
      甘甫平, 刘圣伟, 周强, 2004. 德兴铜矿矿山污染高光谱遥感直接识别研究. 地球科学——中国地质大学学报, 29(1): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200401020.htm
      龚绍琦, 王鑫, 沈润平, 等, 2010. 滨海盐土重金属含量高光谱遥感研究. 遥感技术与应用, 25(2): 169-177. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201002000.htm
      林芬芳, 陈祝炉, 王珂, 等, 2009. 基于傅里叶变换红外光谱和siPLS-GA-PLS的水稻叶片氮素含量预测研究. 红外与毫米波学报, 28(4): 277-280. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200904008.htm
      徐明星, 吴绍华, 周生路, 等, 2011. 重金属含量的高光谱建模反演: 考古土壤中的应用. 红外与毫米波学报, 30(2): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH201102004.htm
      朱小影, 周红, 余训兵, 2009. 渗透率变异系数的几种计算方法——以麻黄山西区块宁东油田2, 3井区为例. 海洋石油, 29(2): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY200902006.htm
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  2876
    • HTML全文浏览量:  487
    • PDF下载量:  294
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-03-19
    • 刊出日期:  2015-08-01

    目录

      /

      返回文章
      返回