• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    江南中段慈化地区新元古代高镁安山岩的厘定及其构造意义

    张玉芝 王岳军 郭小飞 甘成势 邢晓婉 宋菁菁

    张玉芝, 王岳军, 郭小飞, 甘成势, 邢晓婉, 宋菁菁, 2015. 江南中段慈化地区新元古代高镁安山岩的厘定及其构造意义. 地球科学, 40(11): 1781-1795. doi: 10.3799/dqkx.2015.159
    引用本文: 张玉芝, 王岳军, 郭小飞, 甘成势, 邢晓婉, 宋菁菁, 2015. 江南中段慈化地区新元古代高镁安山岩的厘定及其构造意义. 地球科学, 40(11): 1781-1795. doi: 10.3799/dqkx.2015.159
    Zhang Yuzhi, Wang Yuejun, Guo Xiaofei, Gan Chengshi, Xing Xiaowan, Song Jingjing, 2015. Geochronology and Geochemistry of Cihua Neoproterozoic High-Mg Andesites in Jiangnan Orogen and Their Tectonic Implications. Earth Science, 40(11): 1781-1795. doi: 10.3799/dqkx.2015.159
    Citation: Zhang Yuzhi, Wang Yuejun, Guo Xiaofei, Gan Chengshi, Xing Xiaowan, Song Jingjing, 2015. Geochronology and Geochemistry of Cihua Neoproterozoic High-Mg Andesites in Jiangnan Orogen and Their Tectonic Implications. Earth Science, 40(11): 1781-1795. doi: 10.3799/dqkx.2015.159

    江南中段慈化地区新元古代高镁安山岩的厘定及其构造意义

    doi: 10.3799/dqkx.2015.159
    基金项目: 

    国家重点基础研究发展计划(973计划)项目 2014CB440901

    国家自然科学基金项目 41402165

    国家自然科学基金项目 41372198

    国家自然科学基金项目 41190073

    详细信息
      作者简介:

      张玉芝(1984-), 女, 助理研究员, 主要从事岩石大地构造研究.E-mail: zhangyz@gig.ac.cn

    • 中图分类号: P59

    Geochronology and Geochemistry of Cihua Neoproterozoic High-Mg Andesites in Jiangnan Orogen and Their Tectonic Implications

    • 摘要: 江南造山带被普遍认为是扬子与华夏陆块在新元古代的拼合带, 其拼合机制及精细时代却一直备受争议.在江南造山带中段湘赣交界慈化地区识别出新元古代火山岩, 并对其进行了锆石U-Pb年代学及主微量地球化学研究.该火山岩发育于冷家溪群地层中, 其锆石LA-ICP-MS年代学测试得到了832±12 Ma的206Pb/238U加权平均年龄(n=16, MSWD=0.12), 代表其喷发年龄.主量元素结果显示, SiO2和MgO含量分别为57.67%~61.33%和3.51%~4.29%, Mg#为52~57, 高于正常弧火山岩, 属高镁安山岩.微量元素富集轻稀土元素和大离子亲石元素, 亏损高场强元素, 其Nb-Ta、Ti亏损, 具"弧型"地球化学特征, 可能来源于受板片熔体/流体或者俯冲再循环沉积物交代的难熔地幔源区.上述资料表明, 慈化高镁安山岩是江南造山带中段楔形地幔源区受消减组分交代作用的产物, 暗示此时江南造山带中段仍在消减, 扬子和华夏陆块尚未完全拼合.结合前人研究成果, 江南造山带不同区段的闭合时间可能存在差异.

       

    • 图  1  湘东北-赣西北地区地质概况及采样点位置

      图1改编自Zhang et al., 2013

      Fig.  1.  NE Hunan and NW Jiangxi provinces with the sampling location

      图  2  慈化高镁安山岩样品LA-ICP-MS锆石U-Pb年龄谐和图和阴极发光图像(CL)

      Fig.  2.  Concordia diagrams of zircon U-Pb data for the Cihua high-Mg andesitic sample

      图  3  慈化高镁安山岩样品SiO2-K2O+Na2O (a)和SiO2-Mg-number (b)关系

      Fig.  3.  Relation of SiO2-K2O+Na2O (a) and SiO2-Mg-number (b) for the Cihua high-Mg andesite in NW Jiangxi Province

      图  4  慈化高镁安山岩球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

      球粒陨石和原始地幔标准化数据分别引自文献Taylor and McLennan(1985)Sun and McDonough(1989)

      Fig.  4.  The patterns of the chondrite-normalized rare-earth elements (a) and primitive mantle-normalized spidergram (b) for the Cihua high-Mg andesite in NW Jiangxi Province

      图  5  慈化高镁安山岩样品Cr-Ni关系

      Fig.  5.  Plot of Cr vs. Ni for the Cihua high-Mg andesite in NW Jiangxi Province

      图  6  慈化高镁安山岩与文家市-芳溪N-MORB岩石球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

      b.数据来自Zhang et al., 2013

      Fig.  6.  The chondrite-normalized rare-earth elements (a) and primitive mantle-normalized spidergram (b) of the Cihua high-Mg andesite and Wenjiashi-Fangxi N-MORB

      表  1  慈化高镁安山岩样品LA- ICP-MS锆石U-Pb分析结果

      Table  1.   Table 1 LA-ICP-MS zircon U-Pb dating results for the Cihua high-Mg andesite

      分析点 Th/U 207Pb/206U 207Pb/235U 206Pb/238U 207Pb/206U 207Pb/235U 206Pb/238U
      比值 ±1σ 比值 ±1σ 比值 ±1σ 年龄(Ma) ±1σ 年龄(Ma) ±1σ 年龄(Ma) ±1σ
      12WS-79A-01 0.13 0.067 7 0.002 0 1.289 1 0.039 6 0.138 2 0.004 2 859 63 834 24 841 18
      12WS-79A-02 0.47 0.112 3 0.003 4 5.156 5 0.156 9 0.332 9 0.010 1 1 839 54 1 852 49 1 845 26
      12WS-79A-03 0.59 0.067 9 0.002 0 1.285 7 0.039 7 0.137 2 0.004 2 878 36 829 24 839 18
      12WS-79A-04 1.18 0.159 5 0.004 8 9.952 4 0.308 7 0.452 5 0.014 0 2 450 51 2 406 62 2 430 29
      12WS-79A-05 0.33 0.067 0 0.002 0 1.273 2 0.042 9 0.137 3 0.004 6 839 63 829 26 834 19
      12WS-79A-06 0.98 0.079 3 0.002 4 2.240 3 0.069 4 0.204 9 0.006 3 1 189 60 1 202 34 1 194 22
      12WS-79A-07 0.24 0.116 9 0.003 5 5.402 9 0.165 2 0.335 2 0.010 3 1 910 54 1 864 49 1 885 26
      12WS-79A-08 0.28 0.067 7 0.002 0 1.278 0 0.039 4 0.136 9 0.004 2 861 63 827 24 836 18
      12WS-79A-09 0.33 0.069 2 0.002 1 1.314 7 0.040 5 0.137 8 0.004 2 906 61 832 24 852 18
      12WS-79A-10 0.27 0.068 2 0.002 1 1.293 8 0.040 1 0.137 4 0.004 2 876 62 830 24 843 18
      12WS-79A-11 0.36 0.068 6 0.002 1 1.303 7 0.040 0 0.137 8 0.004 2 887 56 832 24 847 18
      12WS-79A-12 0.57 0.098 0 0.002 9 3.734 6 0.114 5 0.276 2 0.008 5 1 587 56 1 572 43 1 579 25
      12WS-79A-13 0.12 0.067 0 0.002 0 1.270 7 0.039 0 0.137 6 0.004 2 839 63 831 24 833 17
      12WS-79A-14 0.38 0.067 3 0.002 0 1.282 3 0.039 2 0.138 1 0.004 2 856 63 834 24 838 17
      12WS-79A-15 0.44 0.067 4 0.002 0 1.281 4 0.039 4 0.137 8 0.004 2 850 68 832 24 837 18
      12WS-79A-16 0.60 0.112 8 0.003 4 5.166 7 0.159 0 0.332 2 0.010 2 1 844 54 1 849 49 1 847 26
      12WS-79A-17 0.27 0.066 8 0.002 0 1.276 6 0.039 6 0.138 5 0.004 3 831 63 836 24 835 18
      12WS-79A-18 0.18 0.066 6 0.002 0 1.260 5 0.038 5 0.137 2 0.004 2 833 63 829 24 828 17
      12WS-79A-19 0.35 0.067 1 0.002 0 1.276 9 0.039 2 0.137 9 0.004 2 843 62 833 24 835 17
      12WS-79A-20 0.61 0.067 0 0.002 0 1.276 7 0.039 3 0.138 2 0.004 2 839 63 834 24 835 18
      12WS-79A-21 0.23 0.067 8 0.002 0 1.295 2 0.039 8 0.138 6 0.004 2 861 63 837 24 844 18
      12WS-79A-22 0.55 0.111 8 0.003 4 5.126 7 0.156 5 0.332 6 0.010 1 1 829 55 1 851 49 1 841 26
      12WS-79A-23 0.26 0.067 0 0.002 0 1.272 5 0.039 2 0.137 8 0.004 2 837 63 832 24 833 18
      12WS-79A-24 0.51 0.114 0 0.003 4 5.214 4 0.159 4 0.331 5 0.010 1 1 865 54 1 846 49 1 855 26
      12WS-79A-25 0.12 0.124 0 0.003 7 6.275 6 0.192 6 0.367 1 0.011 3 2 015 53 2 016 53 2 015 27
      12WS-79A-26 0.35 0.067 7 0.002 0 1.285 0 0.039 4 0.137 7 0.004 2 857 63 831 24 839 18
      12WS-79A-27 1.05 0.104 8 0.003 2 4.369 4 0.133 9 0.302 2 0.009 2 1 722 56 1 702 46 1 707 25
      12WS-79A-28 0.52 0.113 8 0.003 6 5.120 1 0.188 5 0.325 9 0.011 4 1 861 57 1 819 55 1 839 31
      12WS-79A-29 0.59 0.154 2 0.004 6 9.340 4 0.286 5 0.439 1 0.013 5 2 394 50 2 347 60 2 372 28
      12WS-79A-30 0.48 0.113 3 0.003 4 5.219 6 0.160 4 0.333 9 0.010 2 1 853 54 1 857 50 1 856 26
      下载: 导出CSV

      表  2  慈化高镁安山岩主量(%)和微量元素(10-6)分析结果

      Table  2.   Major (%) and trace element (10-6) analytical results for the Cihua high-Mg andesite

      样品号 12WS-79A 12WS-79B 12WS-79C 12WS-79D 12WS-79E
      SiO2 57.03 59.67 55.89 56.71 59.78
      Al2O3 19.46 16.78 19.96 18.76 18.10
      CaO 2.76 3.25 3.02 4.63 3.10
      FeOt 6.19 6.59 6.47 6.83 6.93
      MgO 4.05 3.61 3.78 3.48 3.35
      MnO 3.92 3.72 4.16 3.51 3.43
      K2O 0.07 0.10 0.08 0.11 0.09
      Na2O 1.76 1.41 1.63 1.72 1.47
      P2O5 0.14 0.15 0.12 0.13 0.14
      TiO2 0.91 1.02 0.96 1.09 0.86
      Loi 2.49 2.24 2.48 2.03 1.86
      Total 99.47 99.54 99.40 99.37 99.49
      Mg# 57.1 53.3 57.0 53.2 52.2
      Sc 22.8 23.0 24.3 14.2 16.1
      V 163 176 214 110 140
      Cr 109.0 91.6 102 54.9 75.1
      Co 18.2 18.2 19.5 17.3 19.8
      Ni 39.3 39.8 40.4 34.1 36.3
      Rb 189 201 180 182 173
      Sr 107.0 149.0 136.0 62.0 73.7
      Y 35.7 38.4 39.2 26.7 28.9
      Zr 196 262 265 194 212
      Nb 15.4 17.7 18.0 13.1 14.4
      Ba 1 123 402 371 355 354
      La 42.5 59.0 59.7 35.8 36.0
      Ce 89.3 118.0 121.0 73.8 71.7
      Pr 11.10 14.90 14.80 9.25 8.80
      Nd 39.4 53.1 55.2 32.8 33.5
      Sm 8.13 10.20 10.00 6.40 6.25
      Eu 1.97 2.37 2.28 1.04 0.98
      Gd 7.22 8.06 8.34 5.61 5.89
      Tb 1.14 1.30 1.30 0.90 0.91
      Dy 6.62 7.24 7.48 5.27 5.52
      Ho 1.40 1.55 1.56 1.14 1.16
      Er 3.79 4.19 4.37 3.03 3.11
      Tm 0.58 0.62 0.65 0.46 0.48
      Yb 3.92 4.12 4.40 2.99 3.18
      Lu 0.59 0.62 0.69 0.44 0.49
      Hf 5.97 7.82 6.98 6.07 5.56
      Ta 1.33 1.57 1.64 1.15 1.21
      Pb 26.1 30.0 29.6 15.9 15.4
      Th 19.4 23.7 22.5 14.4 13.8
      U 3.85 4.74 4.79 3.04 3.05
      下载: 导出CSV
    • Bai, D.Y., Jia, B.H., Liu, W., et al., 2010. Zircon SHRIMP U-Pb Dating of the Igneous Rocks from Chengbu, Hunan: Constraint on the Neoproterozoic Tectonic Evolution of the Jiangnan Orogenic Belt. Acta Geologica Sinica, 84(12): 1715-1726 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201012001.htm
      Baker, M.B., Hirschmann, M.M., Ghiorso, M.S., et al., 1995. Compositions of Nearsolidus Peridotite Melts from Experiments and Thermodynamic Calculations. Nature, 375(129): 308-311. doi: 10.1038/375308a0
      Baker, M.B., Stolper, E.M., 1994. Determining the Composition of High-Pressure Mantle Melts Using Diamond Aggregates. Geochim. Cosmochi. Acta, 58(6529): 2811-2827. http://www.sciencedirect.com/science/article/pii/0016703794901163
      Bureau of Geology and Mineral Resources of Guangxi, 1985. Regional Geology of Guangxi Autonomous Region. Geological Publishing House, Beijing (in Chinese).
      Bureau of Geology and Mineral Resources of Hunan Province, 1988. Regional Geology of Hunan Province. Geological Publishing House, Beijing (in Chinese).
      Bureau of Geology and Mineral Resources of Jiangxi Province, 1984. Regional Geology of Jiangxi Province. Geological Publishing House, Beijing (in Chinese).
      Campbell, I.H., 2002. Identification of Ancient Mantle Plumes. Mantle Plumes: Their Identification through Time. GSA Special Paper, 352: 5-22. http://www.researchgate.net/publication/282750086_Identification_of_ancient_mantle_plumes
      Chalot-Prat, F., Boullier, A.M., 1997. Metasomatism in the Subcontinental Mantle beneath the Eastern Carpathians (Romania): New Evidence from Trace Element Geochemistry. Contrib. Mineral. Petrol., 129(4): 284-307. doi: 10.1007/s004100050338
      Charvet, J., Shu, L.S., Shi, Y.S., et al., 1996. The Building of South China, Collision of Yangzi and Cathaysia Blocks, Problems and Tentative Answers. J. Southeast Asian Earth Sci., 13(3-5): 223-235. doi: 10.1016/0743-9547(96)00029-3
      Chauvel, C., McDonough, W., Guille, G., et al., 1997. Contrasting Old and Young Volcanism in Rurutu Island, Austral Chain. Chem. Geol., 139(1-4): 125-143. doi: 1016/S0009-2541(97)00029-6
      Chen, Z.H., Guo, K.Y., Dong, Y.G., et al., 2009a. Possible Early Neoproterozoic Magmatism Associated with Slab Window in the Pingshui Segment of the Jiangshan-Shaoxing Suture Zone: Evidence from Zircon LA-ICP-MS U-Pb Geochronology and Geochemistry. Science in China (Series D), 39(7): 994-1008 (in Chinese).
      Chen, Z.H., Xing, G.F., Guo, K.Y., et al., 2009b. Petrogenesis of Keratophyes in the Pingshui Group, Zhejiang: Constraints from Zircon U-Pb Ages and Hf Isotopes. Chinese Science Bulletin, 54(5): 610-617 (in Chinese). doi: 10.1360/csb2009-54-5-610
      Ding, B.H., Shi, R.D., Zhi, X.C., et al., 2008. Neoproterozoic (~850 Ma) Subduction in the Jiangnan Orogen: Evidence from the SHRIMP U-Pb Dating of the SSZ-Type Ophiolite in Southern Anhui Province. Acta Petrologica et Mineralogica, 27(5): 375-388 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW200805001.htm
      Evans, O.C., Hanson, G.N., 1997. Late- to Post-Kinematic Archean Boninitoids of the S.W. Superior Province: Derivation through Direct Mantle Melting, Greenstone Belts. Oxford University Press, Oxford, 280-295.
      Falloon, T.J., Green, D.H., Hatton, C.J., et al., 1988. Anhydrous Partial Melting of a Fertile and Depleted Peridotite from 2 to 30 kbar and Applications to Basalt Petrogenesis. J. Petrol., 29: 1257-1282. doi: 10.1093/petrology/29.6.1257
      Gallagher, K., Hawkesworth, C.J., 1992. Dehydration Melting and the Generation of Continental Flood Basalts. Nature, 358: 57- 59. doi: 10.1038/358057a0
      Gao, J., Klemd, R., Long, L.L., et al., 2009. Adakitic Signature Formed by Fractional Ophiolitic Mélange Belt, South China. Lithos, 110(1-4): 277-293. doi: 10.1016/j.lithos.2009.01.009
      Gao, S., Luo, T.C., Zhang, B.R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochi. Cosmochimi. Acta, 62(11): 1959-1975. doi: 10.1016/j.lithos.2009.01.009
      Gasparik, T., Litvin, Y.A., 2002. Experimental Investigation of the Effect of Metasomatism by Carbonatic Melt on the Composition and Structure of the Deep Mantle. Lithos, 60(3-4): 129-143. doi: 10.1016/S0024-4937(01)00078-0
      Ge, W.C., Li, X.H., Li, Z.X., et al., 2001. Geochemical Studies on Two Types of Neoproterozoic Peraluminous Granitoids in Northern Guangxi. Geochimica, 30(1): 24-34 (in Chinese with English abstract). http://www.researchgate.net/publication/284324481_Geochemical_studies_on_two_types_of_Neoproterozoic_peraluminous_granitoids_in_northern_Guangxi
      Greentree, M.R., Li, Z.X., Li, X.H., et al., 2006. Late Mesoproterozoic to Earliest Neoproterozoic Basin Record of the Sibao Orogenesis in Western South China and Relationship to the Assembly of Rodinia. Precambrian Res., 151(1-2): 79-100. doi: 10.1016/j.precamres.2006.08.02
      Gu, X.X., Liu, J.M., Schulz, O., et al., 2003. Geochemical Constraints on the Tectonic Setting of the Proterozoic Turbidites in the Xuefeng Uplift Region of the Jiangnan Orogenic Belt. Geochimica, 32(5): 406-426 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX200305001.htm
      Guo, L.Z., Shi, Y.S., Ma, R.S., 1980. The Geotectonic Framework and Crustal Evolution of South China. In: Scientific Paper on Geology for International Exchange. Geological Publishing House, Beijing, 109-116 (in Chinese).
      Hammouda, T., 2003. High-Pressure Melting of Carbonated Eclogite and Experimental Constraints on Carbon Recycling and Storage in the Mantle. Earth Planet. Sci. Lett., 214(1-2): 357-368. doi: 10.1016/S0012-821X(03)00361-3
      Hirose, K., 1997. Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High-Mg Andesitic Melts. Geology, 25(1): 42-44. doi: 10.1130/0091-7613(1997)0252.3.CO;2
      Hoang, N., Yamamoto, T., Itoh, J., et al., 2009. Anomalous Intra-Plate High-Mg Andesites in the Choshi Area (Chiba, Central Japan) Produced during Early Stages of Japan Sea Opening?Lithos, 112(3-4): 545-555. doi: 10.1016/j.lithos.2008.11.012
      Kamei, A., 2004. An Adakitic Pluton on Kyushu Island, Southwest Japan Arc. J. Asian Earth Sci., 24(1): 43-58. doi: 10.1016/j.jseaes.2003.07.001
      Kawabata, H., Shuto, K., 2005. Magma Mixing Recorded in Intermediate Rocks Associated with High-Mg Andesites from the Setouchi Volcanic Belt, Japan: Implications for Archean TTG Formation. J. Volcanol. Geotherm. Res., 140(4): 241-271. doi: 10.1016/j.jvolgeores.2004.08.013
      Kelemen, P.B., 1995. Genesis of High-Mg Andesites and the Continental Crust. Contrib. Mineral. Petrol., 120(1): 1-19. doi: 10.1007/BF00311004
      Kelemen, P.B., Hart, S.R., Bernstein, S., 1998. Silica Enrichment in the Continental Upper Mantle via Melt/Rock Reaction. Earth Planet. Sci. Lett., 164(1-2): 387-406. doi: 10.1016/S0012-821X(98)00233-7
      Kogarko, L.N., Kurat, G., Ntaflos, T., 2001. Carbonatite Metasomatism of the Oceanic Mantle beneath Fermando de Noronha Island, Brazil. Contrib. Mineral. Petrol., 140(5): 577-587. doi: 10.1007/s004100000201
      Kushiro, I., 1990. Partial Melting of Mantle Wedge and Evolution of Island Arc Crust. J. Geophys. Res., 95(B10): 15929-15939. doi: 10.1029/JB095iB10p15929
      LaFlèche, M.R., Camire, G., Jenner, G.A., 1998. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Quebec. Canada Chemi. Geol., 148(3-4): 115-136. doi: 10.1016/S0009-2541(98)00002-3
      Le Bas, M.J., 2000. IUGS Reclassification of the High-Mg and Picritic Volcanic Rocks. J. Petrol., 41(10): 1467-1470. doi: 10.1093/petrology/41.10.1467
      Li, W.X., Li, X.H., 2003. Adakitic Granites within the NE Jiangxi Ophiolite, South China: Geochemical and Nd Isotopic Evidence. Precambrian Res., 122(1-4): 29-44. doi: 10.1016/S0301-9268(02)00206-1
      Li, W.X., Li, X.H., Li, Z.X., 2008a. Middle Neoproterozoic Syn-Rifting Volcanic Rocks in Guangfeng, South China: Petrogenesis and Tectonic Significance. Geol. Mag., 145(4): 475-489. doi: 10.1017/S0016756808004561
      Li, W.X., Li, X.H., Li, Z.X., et al., 2008b. Obduction-Type Granites within the NE Jiangxi Ophiolite, Implications for the Final Amalgamation between the Yangtze and Cathaysia Blocks. Gondwana Res., 13(3): 288-301. doi: 10.1016/j.gr.2007.12.010
      Li, W.X., Li, X.H., Li, Z.X., 2010a. ca. 850 Ma Bimodal Volcanic Rocks in Northeastern Jiangxi, South China: Initial Extension during the Breakup of Rodinia. American J. Sci., 310: 951-980. doi: 10.2475/09.2010.08
      Li, X.H., 1997. Geochemistry of the Longsheng Ophiolite from the Southern Margin of Yangtze Craton, SE China. Geochem. J., 31: 323-337. doi: 10.2343/geochemj.31.323
      Li, X.H., Li, W.X., He, B., 2012. Building of the South China Block and Its Relevance to Assembly and Breakup of Rodinia Supercontinent: Observations, Interpretations and Tests. Bulletin of Mineralogy, Petrology and Geochemistry, 31(6): 543-559 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201206001.htm
      Li, X.H., Li, W.X., Li, Q.L., et al., 2010b. Petrogenesis and Tectonic Significance of the ~850 Ma Gangbian Alkaline Complex in South China, Evidence from in Situ Zircon U-Pb Dating, Hf-O Isotopes and Whole-Rock Geochemistry. Precambrian Res., 114: 1-15. doi: 10.1016/j.lithos.2009.07.011
      Li, X.H., Li, W.X., Li, Z.X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China, Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Res., 174(1-2): 117-128. doi: 10.1016/j.precamres.2009.07.004
      Li, X.H., Li, Z.X., Ge, W.C., et al., 2003a. Neoproterozoic Granitoids in South China, Crustal Melting above a Mantle Plume at ca. 825 Ma?Precambrian Res., 122(1-4): 45-83. doi: 10.1016/S0301-9268(02)00207-3
      Li, X.H., Li, Z.X., Ge, W.C., et al., 2004. Reply to the Comment, Mantle Plume, but not Arcrelated Neoproterozoic Magmatism in South China. Precambrian Res., 132(4): 405-407. doi: 10.1016/j.precamres.2004.03.008
      Li, X.H., Su, L., Chung, S.L., et al., 2005. Formation of the Jinchuan Ultramafic Intrusion and the World's Third Largest Ni-Cu Sulfide Deposit, Associated with the ~825 Ma South China Mantle Plume?Geochem., Geophys., Geosyst., 6: Q11004. doi:10.1029/2005GC 001006
      Li, X.H., Zhou, G.Q., Zhao, J.X., et al., 1994. SHRIMP Ion Microprobe Zircon U-Pb Age of the NE Jiangxi Ophiolite and Its Tectonic Implications. Geochimica, 23(2): 125-131 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DQHB199404002.htm
      Li, Z.X., Li, X.H., Kinny, P.D., et al., 1999. The Breakup of Rodinia, Did It Start with a Mantle Plume beneath South China?Earth Planet. Sci. Lett., 173(3): 171-181. doi: 10.1016/S0012-821X(99)00240-X
      Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003b. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents, Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Res., 122(1-4): 85-109. doi: 10.1016/S0301-9268(02)00208-5
      Li, Z.X., Li, X.H., Zhou, H., et al., 2002. Grenvillian Continental Collision in South China, New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2): 163-166. doi:10.1130/0091-7613(2002)030<0163:gccisc>2.0.CO
      Li, Z.X., Zhang, L.H., Powell, C.M.A., 1995. South China in Rodinia, Part of the Missing Link between Australia-East Antarctica and Laurentia?Geology, 23(5): 407-410. doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2
      Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In-Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chem. Geol., 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
      Ludwig, K.R., 2001. Users Manual for Isoplot/Ex Rev. 2.49, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 53-55.
      Ma, T.Q., Chen, L.X., Bai, D.Y., et al., 2009. Zircon SHRIMP Dating and Geochemical Characteristics of Neoproterozoic Granites in Southeast Hunan. Geology in China, 36(1): 65-73 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200901007.htm
      Moyen, J.F., Martin, H., Jayananda, M., et al., 2003. Late Archaean Granites: A Typology Based on the Dharwar Craton (India). Precambrian Res., 127(1-3): 103-123. doi: 10.1016/S0301-9268(03)00183-9
      Oliveira, M.A., Agnol, R.D., Althoff, F.J., et al., 2009. Mesoarchean Sanukitoid Rocks of the Rio Maria Granite-Greenstone Terrane, Amazonian Craton, Brazil. J. South America Earth Sci., 27(2-3): 146-160. doi: 10.1016/j.jsames.2008.07.003
      Prouteau, G., Scaillet, B., Pichavant, M., et al., 2001. Evidence for Mantle Metasomatism by Hydrous Silicic Melts Derived from Subducted Oceanic Crust. Nature, 410: 197-200. doi: 10.1038/35065583
      Qin, Y.J., Du, Y.S., Mou, J., et al., 2015. Geochronology of Neoproterozoic Xiajiang Group in Southeast Guizhou, South China, and Its geological Implications. Earth Science—Journal of China University of Geosciences, 40(7): 1107-1120 (in Chinese with English abstract). doi: 10.3799/dqkx.2015.093
      Rapp, R.P., Shimizu, N., Norman, M.D., 1999. Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chem. Geol., 160(4): 335-356. doi: 10.1016/S0009-2541(99)00106-0
      Rudnick, R.L., Fountain, D.M., 1995. Nature and Composition of the Continental Crust, a Lower Crustal Perspective. Rev. Geophys., 33(3): 267-309. doi: 10.1029/95RG01302
      Sajona, F.G., Maury, R.C., Pubellier, M., et al., 2000. Magmatic Source Enrichment by Slab-Derived Melts in a Young Post-Collision Setting, Central Mindanao (Philippines). Lithos, 54(3-4): 173-206. doi: 10.1016/S0024-4937(00)00019-0
      Shimoda, G., Tatsumi, Y., Nohda, S., et al., 1998. Setouchi High-Mg Andesite Revisited; Geochemical Evidence for Melting of Subducting Sediments. Earth Planet. Sci. Lett., 160(3-4): 479-492. doi: 10.1016/S0012-821X(98)00105-8
      Shu, L.S., Zhou, G.Q., Shi, Y.S., et al., 1993. Study on the High Pressure Blueschist of Eastern Segment of Jiangnan Erogenic Belt and Its Geological Age. Chinese Science Bulletin, 38(20): 1879-1882 (in Chinese). doi: 10.1360/csb1993-38-20-1879
      Smithies, R.H., Champion, D.C., 2000. The Archean High-Mg Diorite Suite: Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archean Crustal Growth. J. Petrol., 41: 1653-1671. doi: 10.1093/petrology/41.12.1653
      Stern, R.A., Hanson, G.N., 1991. Archean High-Mg Granodiorite: A Derivative of Light Rare Earth Element-Enriched Monzodiorite of Mantle Origin. J. Petrol., 32(1): 201-238. doi: 10.1093/petrology/32.1.201
      Su, J.B., Zhang, Y.Q., Dong, S.W., et al., 2014. Geochronology and Hf Isotopes of Granite Gravel from Fanjingshan, South China: Implication for the Precambrian Tectonic Evolution of Western Jiangnan Orogen. J. Earth Sci., 25(4): 619-629. doi: 10.1007/s12583-014-0469-8
      Sun, H.Q., Chen, J., Meng, D.B., et al., 2009. The Dayaogu Formation of Northeast Hunan Province. Geology and Mineral Resources of South China, (4): 54-58 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNKC200904008.htm
      Sun, S.S., McDonough, W.F., 1989. Geochemical and Isotopic Systematics of Oceanic Basalts: Implication for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Ocean Basins, 42. Geol. Soc. London Spec. Pub., 42(1): 313-345.
      Tang, X.S., Huang, J.Z., Guo, L.Q., 1997. Hunan Banxi Group and Its Tectonic Environment. Hunan Geology, 16(4): 219-226 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HNDZ704.002.htm
      Tatsumi, Y., 1981. Melting Experiments on a High Magnesian Andesite. Earth Planet. Sci. Lett., 54: 357-365. doi: 10.1016/0012-821X(81)90017-0
      Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Oxford Press Blackwell, Oxford, 1-312. http://ci.nii.ac.jp/ncid/BA00414266
      van der Laan, S.R., Flower, M.F.J., van Groos, A.F.K., 1989. Experimental Evidence for the Origin of Boninites: Near-Liquidus Phase Relations to 7.5 kbar. In: Crawford, A.J., ed., Boninite and Relate Rocks. Unwin Hyman, London, 112-147.
      Wang, X.C., Li, X.H., Li, W.X., et al., 2007a. ca. 825 Ma Komatiitic Basalts in South China, First Evidence for > 1 500 ℃ Mantle Melts by a Rodinia Mantle Plume. Geology, 35(12): 1103-1106. doi: 10.1130/G23878a.1
      Wang, X.L., Zhao, G.C., Zhou, J.C., et al., 2008. Geochronology and Hf Isotopes of Zircon from Volcanic Rocks of the Shuangqiaoshan Group, South China, Implications for the Neoproterozoic Tectonic Evolution of the Eastern Jiangnan Orogen. Gondwana Res., 14(3): 355-367. doi: 10.1016/j.gr.2008.03.001
      Wang, X.L., Zhou, J.C., Griffin, W.L., et al., 2007b. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen, Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Res., 159(1-2): 117-131. doi: 10.1016/j.precamres.2007.06.005
      Wang, X.L., Zhou, J.C., Griffin, W.L., et al., 2014a. Geochemical Zonation across a Neoproterozoic Orogenic Belt: Isotopic Evidence from Granitoids and Metasedimentary Rocks of the Jiangnan Orogen, China. Precambrian Res., 242: 154-171. doi: 10.1016/j.precamres.2013.12.023
      Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2003. Geochemistry of the Meso-Neoproterozoic Volcanic-Intrusive Rocks from Hunan Province and Its Petrogenic Significances. Acta Petrologica Sinica, 19(1): 49-60 (in Chinese with English abstract).
      Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2004. Geochemistry of the Meso- to Neoproterozoic Basic-Acid Rocks from Hunan Province, South China, Implications for the Evolution of the Western Jiangnan Orogen. Precambrian Res., 135(1-2): 79-103. doi: 10.1016/j.precamres.2004.07.006
      Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2004. Petrogenesis of Neoproterozoic Peraluminous Granites from Northeastern Hunan Province: Chronological and Geochemical Constraints. Geological Review, 50(1): 65-76 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200401010.htm
      Wang, X.L., Zhou, J.C., Qiu, J.S., et al., 2006. LA-ICP-MS U-Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China, Implications for Petrogenesis and Tectonic Evolution. Precambrian Res., 145(1-2): 111-130. doi: 10.1016/j.precamres.2005.11.014
      Wang, Y.J., Zhang, A.M., Cawood, P.A., et al., 2013. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly Accretionary Assembly along the Margin of Rodinia. Precambrian Res., 231: 343-371. doi: 10.1016/j.precamres.2013.03.020
      Wang, Y.J., Zhang, F.F., Fan, W.M., et al., 2010. Tectonic Setting of the South China Block in the Early Paleozoic, Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6): TC6020. doi: 10.1029/2010TC002750
      Wang, Y.J., Zhang, Y.Z., Fan, W.M., et al., 2014b. Early Neoproterozoic Accretionary Assemblage in the Cathaysia Block: Geochronological, Lu-Hf Isotopic and Geochemical Evidence from Granitoid Gneisses. Precambrian Res., 249: 144-161. doi: 10.1016/j.precamres.2014.05.003
      Wang, Y.J., Zhang, Y.Z., Zhao, G.C., et al., 2009. Zircon U-Pb Geochronological and Geochemical Constraints on the Petrogenesis of the Taishan Sanukitoids (Shandong): Implications for Neoarchean Subduction in the Eastern Block, North China Craton. Precambrian Res., 174(3-4): 273-286. doi: 10.1016/j.precamres.2009.08.005
      Wang, Y.J., Zhao, G.C., Fan, W.M., et al., 2007c. LA-ICP-MS U-Pb Zircon Geochronology and Geochemistry of Paleoproterozoic Mafic Dykes from Western Shandong Province: Implications for Back-Arc Basin Magmatism in the Eastern Block, North China Craton. Precambrian Res., 154(1-2): 107-124. doi: 10.1016/j.precamres.2006.12.010
      Woodhead, J.D., 1996. Extreme HIMU in an Oceanic Setting: the Geochemistry of Mangaia Island (Polynesia), and Temporal Evolution of the Cook-Austral Hotspot. J. Volcanol. Geotherm. Res., 72(1-2): 1-19. doi: 10.1016/0377-0273(96)00002-9
      Wu, R.X., Zheng, Y.F., Wu, Y.B., et al., 2006. Reworking of Juvenile Crust, Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Res., 146(3-4): 179-212. doi: 10.1016/j.precamres.2006.01.012
      Xia, X.P., Sun, M., Geng, H.Y., et al., 2011. Quasi-Simultaneous Determination of U-Pb and Hf Isotope Compositions of Zircon by Excimer Laser-Ablation Multiple-Collector ICP-MS. J. Anal. At. Spectrom., 26: 1868-1871. doi: 10.1039/CIJA10116A
      Yaxley, G.M., Green, D.H., Kamenetsky, V., 1998. Carbonatite Metasomatism in the Southeastern Australian Lithosphere. J. Petrol., 39(11-12): 1917-1930. doi: 10.1093/petroj/39.11-12.1917
      Ye, M.F., Li, X.H., Li. W.X., et al., 2007. SHRIMP Zircon U-Pb Geochronological and Whole-Rock Geochemical Evidence for an Early Neoproterozoic Sibaoan Magmatic Arc along the Southeastern Margin of the Yangtze Block. Gondwana Res., 12(1-2): 144-156. doi: 10.1016/j.gr.2006.09.001
      Yin, C.Q., Lin, S.F., Davis, D.W., et al., 2013. Tectonic Evolution of the Southeastern Margin of the Yangtze Block: Constraints from SHRIMP U-Pb and LA-ICP-MS Hf Isotopic Studies of Zircon from the Eastern Jiangnan Orogenic Belt and Implications for the Tectonic Interpretation of South China. Precambrian Res., 236: 145-156. doi: 10.1016/j.precamres.2013.07.022
      Yogodzinski, G.M., Kay, R.W., Volynets, O.N., et al., 1995. Magnesian Andesite in the Western Aleutian Komandorsky Region, Implications for Slab Melting and Processes in the Mantle Wedge. Geol. Soc. Am. Bull., 107(5): 505-519. doi: 10.1130/0016-7606(1995)1072.3.CO;2
      Zhang, B.R., Luo, T.C., Gao, S., et al., 1994. Geochemical Study of the Lithosphere, Tectonism and Metallogenesis in the Qinling-Dabashan Region. China University of Geosciences Press, Wuhan, 1-446.
      Zhang, F.F., Wang, Y.J., Fan, W.M., et al., 2011. Zircon U-Pb Geochronology and Hf Isotopes of the Neoproterozoic Granites in the Central of Jiangnan Uplift. Geotectonica et Metallogenia, 35(1): 73-84 (in Chinese with English abstract). http://www.researchgate.net/publication/285473083_Zircon_U-Pb_geochronology_and_Hf_isotopes_of_the_Neoproterozoic_granites_in_the_central_of_Jiangnan_Uplift
      Zhang, S.B., Wu, R.X., Zheng, Y.F., 2012a. Neoproterozoic Continental Accretion in South China, Geochemical Evidence from the Fuchuan Ophiolite in the Jiangnan Orogen. Precambrian Res., 220-221: 45-64. doi: 10.1016/j.precamres.2012.07.010
      Zhang, Y.J., Zhou, X.H., Liao, S.B., et al., 2011. Geological and Geochemical Characteristics and Petrogenesis of the Mafic Rocks from Zhangyuan, Northern Jiangnan Orogen. Geological Journal of China Universities, 17(3): 393-405 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253565629.html
      Zhang, Y.Z., Wang, Y.J., Fan, W.M., et al., 2012b. Geochronological and Geochemical Constraints on the Metasomatised Source for the Neoproterozoic (~825 Ma) High-Mg Volcanic Rocks from the Cangshuipu Area (Hunan Province) along the Jiangnan Domain and Their Tectonic Implications. Precambrian Res., 220-221: 139-157. doi: 10.1016/j.precamres.2012.07.003
      Zhang, Y.Z., Wang, Y.J., Geng, H.Y., et al., 2013. Early Neoproterozoic (~850 Ma) Back-Arc Basin in the Central Jiangnan Orogen (Eastern South China): Geochronological and Petrogenetic Constraints from Meta-Basalts. Precambrian Res., 231: 325-342. doi: 10.1016/j.precamres.2013.03.016
      Zhang, Y.Z., Wang, Y.J., Zhang, Y.H., et al., 2015. Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks: Evidence from the Cangshuipu Group and Associated Rocks along the Central Jiangnan Orogen, South China. Precambrian Res., 269: 18-30. doi: 10.1016/j.precamres.2015.08.003
      Zhao, G.C., 2015. Jiangnan Orogen in South China: Developing from Divergent Double Subduction. Gondwana Res., 27: 1173-1180. doi: 10.1016/j.gr.2014.09.004
      Zhao, G.C., Cawood, P.A., 1999. Tectonothermal Evolution of the Mayuan Assemblage in the Cathaysia Block, New Evidence for Neoproterozoic Collision-Related Assembly of the South China Craton. Am. J. Sci., 299: 309-339. doi: 10.2475/ajs.299.4.309
      Zhao, G.C., Cawood, P.A., 2012. Precambrian Geology of China. Precambrian Res., 222-223: 13-54. doi: 10.1016/j.precamres.2012.09.017
      Zhao, J.H., Asimow, P.D., 2014. Neoproterozoic Boninite-Series Rocks in South China: A Depleted Mantle Source Modified by Sediment-Derived Melt. Chem. Geol., 388: 98-111. doi: 10.1016/j.chemgeo.2014.09.004
      Zhao, J.H., Zhou, M.F., 2008. Neoproterozoic Adakitic Suite at the Northwestern Margin of the Yangtze Block, China, Evidence for Partial Melting of Thickened Lower Crust and Secular Crustal Evolution. Lithos, 104(1-4): 231-248. doi: 10.1016/j.lithos.2007.12.009
      Zhao, J.H., Zhou, M.F., 2013. Neoproterozoic High-Mg Basalts Formed by Melting of Ambient Mantle in South China. Precambrian Res., 233: 193-205. doi: 10.1016/j.precamres.2013.04.017
      Zhao, J.H., Zhou, M.F., Yan, D.P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China, no Connection with the Grenvillian Orogeny. Geology, 39(4): 299-302. doi: 10.1130/G31701.1
      Zhao, J.H., Zhou, M.F., Zheng, J.P., 2013. Constraints from Zircon U-Pb Ages, O and Hf Isotopic Compositions on the Origin of Neoproterozoic Peraluminous Granitoids from the Jiangnan Fold Belt, South China. Contrib. Mineral. Petrol., 166: 1505-1519. doi: 10.1007/S00410-013-0940-z
      Zheng, Y.F., Wu, R.X., Wu, Y.B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust, Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Res., 163(3-4): 351-383. doi: 10.1016/j.chemgeo.2008.01.004
      Zheng, Y.F., Zhang, S.B., Zhao, Z.F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China, Implications for Growth and Reworking of Continental Crust. Lithos, 96(1-2): 127-150. doi: 10.1016/j.lithos.2006.01.003
      Zheng, Y.F., Zhao, Z.F., Wu, Y.B., et al., 2006. Zircon U-Pb Age, Hf and O Isotope Constraints on Protolith Origin of Ultrahigh-Pressure Eclogite and Gneiss in the Dabie Orogen. Chem. Geol., 231(1-2): 135-138. doi: 10.1016/j.chemgeo.2006.01.005
      Zhong, Y.F., Ma, C.Q., She, Z.B., et al., 2005. SHRIMP U-Pb Zircon Geochronology of the Jiuling Granitic Complex Batholith in Jiangxi Province. Earth Science—Journal of China University of Geosciences, 30(6): 685-691 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200506005
      Zhou, J.C., Wang, X.L., Qiu, J.S., 2009. Geochronology of Neoproterozoic Mafic Rocks and Sandstones from Northeastern Guizhou, South China, Coeval Arc Magmatism and Sedimentation. Precambrian Res., 170(1-2): 27-42. doi: 10.1016/j.chemgeo.2008.11.002
      Zhou, J.C., Wang, X.L., Qiu, J.S., et al., 2003. Lithogeochemistry of Meso- and Neoproteozoic Mafic-Ultramafic Rocks from Northern Guangxi. Acta Petrologica Sinica, 19(1): 9-18 (in Chinese with English abstract). http://www.researchgate.net/publication/258419192_Lithogeochemistry_of_Meso-_and_Neoproterozoic_mafic-ultramafic_rocks_from_northern_Guangxi
      Zhou, J.C., Wang, X.L., Qiu, J.S., et al., 2004. Geochemistry of Meso- and Neoproterozoic Mafic-Ultramafic Rocks from Northern Guangxi, China, Arc or Plume Magmatism?Geochem. J., 38: 139-152. doi: 10.2343/geochemj.38.139
      柏道远, 贾宝华, 刘伟, 等, 2010. 湖南城步火成岩锆石SHRIMP U-Pb年龄及其对江南造山带新元古代构造演化的约束. 地质学报, 84(12): 1715-1726. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201012001.htm
      广西壮族自治区地质矿产局, 1985. 广西壮族自治区区域地质志. 北京: 地质出版社.
      湖南地质矿产局, 1988. 湖南省区域地质志. 北京: 地质出版社.
      江西地质矿产局, 1984. 江西省区域地质志. 北京: 地质出版社.
      陈志洪, 郭坤一, 董永观, 等, 2009a. 江山-绍兴拼合带平水段可能存在新元古代早期板片窗岩浆活动, 来自锆石LA-ICP-MS年代学和地球化学的证据. 中国科学(D辑), 39(7): 994-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907011.htm
      陈志洪, 邢光福, 郭坤一, 等, 2009b. 浙江平水群角斑岩的成因-锆石U-Pb年龄和Hf同位素制约. 科学通报, 54(5): 610-617. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200905012.htm
      丁炳华, 史仁灯, 支霞臣, 等, 2008. 江南造山带存在新元古代~850 Ma俯冲作用, 来自皖南SSZ型蛇绿岩锆石SHRIMP U-Pb年龄证据. 岩石矿物学杂志, 27(5): 375-388. doi: 10.3969/j.issn.1000-6524.2008.05.001
      顾雪祥, 刘建明, Schulz, O., 等, 2003. 江南造山带雪峰隆起区元古宙浊积岩沉积构造背景的地球化学制约. 地球化学, 32(5): 406-426. doi: 10.3321/j.issn:0379-1726.2003.05.002
      郭令智, 施央申, 马瑞士, 1980. 华南大地构造格架和地壳演化. 见: 第26届国际地质大会国际交流学术论文集. 北京: 地质出版社, 109-116.
      李献华, 李武显, 何斌, 2012. 华南陆块的形成与Rodinia超大陆聚合-裂解——观察、解释与检验. 矿物岩石地球化学通报, 31(6): 543-559. doi: 10.3969/j.issn.1007-2802.2012.06.002
      李献华, 周国庆, 赵建新, 等, 1994. 赣东北蛇绿岩的离子探针锆石U-Pb年龄及其构造意义. 地球化学, 23(2): 125-131. doi: 10.3321/j.issn:0379-1726.1994.02.007
      马铁球, 陈立新, 柏道远, 等, 2009. 湘东北新元古代花岗岩体锆石SHRIMP U-Pb年龄及地球化学特征. 中国地质, 36(1): 65-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901007.htm
      舒良树, 周国庆, 施央申, 等, 1993. 江南造山带东段高压变质蓝片岩及其地质时代研究. 科学通报, 38(20): 1879-1882. doi: 10.3321/j.issn:0023-074X.1993.20.024
      覃永军, 杜远生, 牟军, 等, 2015. 黔东南地区新元古代下江群的地层年代及其地质意义. 地球科学——中国地质大学学报, 40(7): 1107-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201507001.htm
      孙海清, 陈俊, 孟德饱, 等, 2009. 湘东北地区冷家溪群大药菇组. 华南地质与矿产, (4): 54-58. doi: 10.3969/j.issn.1007-3701.2009.04.009
      唐晓珊, 黄健中, 郭乐群, 1997. 再论湖南板溪群及其大地构造环境. 湖南地质, 16(4): 219-226. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDZ704.002.htm
      王孝磊, 周金城, 邱检生, 等, 2003. 湖南中-新元古代火山-侵入岩地球化学及成因意义. 岩石学报, 19(1): 49-60. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200301005.htm
      王孝磊, 周金城, 邱检生, 等, 2004. 湘东北新元古代强过铝花岗岩的成因: 年代学和地球化学证据. 地质论评, 50(1): 65-76. doi: 10.3321/j.issn:0371-5736.2004.01.009
      张菲菲, 王岳军, 范蔚茗, 等, 2011. 江南隆起带中段新元古代花岗岩锆石U-Pb年代学和Hf同位素组成研究. 大地构造与成矿学, 35(1): 73-84. doi: 10.3969/j.issn.1001-1552.2011.01.008
      张彦杰, 周效华, 廖圣兵, 等, 2011. 江南造山带北缘鄣源基性岩地质-地球化学特征及成因机制. 高校地质学报, 17(3): 393-405. doi: 10.3969/j.issn.1006-7493.2011.03.004
      钟玉芳, 马昌前, 佘振兵, 等, 2005. 江西九岭花岗岩类复式岩基锆石SHRIMP U-Pb年代学. 地球科学——中国地质大学学报, 30(6): 685-691. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200506004.htm
      周金城, 王孝磊, 邱检生, 等, 2003. 桂北中-新元古代镁铁质-超镁铁质岩的岩石地球化学. 岩石学报, 19(1): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200301001.htm
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  3617
    • HTML全文浏览量:  520
    • PDF下载量:  496
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-02-09
    • 刊出日期:  2015-11-15

    目录

      /

      返回文章
      返回