• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    江汉平原砷中毒病区地下水砷形态季节性变化特征

    邓娅敏 王焰新 李慧娟 李红梅 郭伟 段艳华 董创举 甘义群 刘乃静 丁旭峰

    邓娅敏, 王焰新, 李慧娟, 李红梅, 郭伟, 段艳华, 董创举, 甘义群, 刘乃静, 丁旭峰, 2015. 江汉平原砷中毒病区地下水砷形态季节性变化特征. 地球科学, 40(11): 1876-1886. doi: 10.3799/dqkx.2015.168
    引用本文: 邓娅敏, 王焰新, 李慧娟, 李红梅, 郭伟, 段艳华, 董创举, 甘义群, 刘乃静, 丁旭峰, 2015. 江汉平原砷中毒病区地下水砷形态季节性变化特征. 地球科学, 40(11): 1876-1886. doi: 10.3799/dqkx.2015.168
    Deng Yamin, Wang Yanxin, Li Huijuan, Li Hongmei, Guo Wei, Duan Yanhua, Dong Chuangju, Gan Yiqun, Liu Naijing, Ding Xufeng, 2015. Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain. Earth Science, 40(11): 1876-1886. doi: 10.3799/dqkx.2015.168
    Citation: Deng Yamin, Wang Yanxin, Li Huijuan, Li Hongmei, Guo Wei, Duan Yanhua, Dong Chuangju, Gan Yiqun, Liu Naijing, Ding Xufeng, 2015. Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain. Earth Science, 40(11): 1876-1886. doi: 10.3799/dqkx.2015.168

    江汉平原砷中毒病区地下水砷形态季节性变化特征

    doi: 10.3799/dqkx.2015.168
    基金项目: 

    国家自然科学基金项目 41102153

    国家自然科学基金项目 41120124003

    国家自然科学基金项目 41472217

    中央高校基本科研业务费专项基金 CUGL140412

    中央高校基本科研业务费专项基金 CUG120113

    中国地调局地质调查子项目 12120114069301

    科技部国合项目 2014DFA20720

    详细信息
      通讯作者:

      王焰新, E-mail: yx.wang@cug.edu.cn

    • 中图分类号: P641.69

    Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain

    • 摘要: 查明地下水中砷的时间变异性规律及机理是高砷地下水研究的难点和热点, 也是防控地下水砷污染的根本.选择在雨季前后对浅层潜水和孔隙承压水进行了动态监测.研究表明地下水砷含量和形态与地下水位波动存在明显的响应关系: 雨季开始后随着地下水位抬升, 地下水还原环境增强, As(Ⅴ)和Asp转化成As(Ⅲ), 颗粒态铁大幅降低, 导致水中溶解的砷和铁大幅增加, 地下水砷含量在雨季达到最高且As(Ⅲ)所占比例达到90%;雨季结束后随着水位逐渐降低, 地下水中As(Ⅲ)所占比例和溶解的砷含量下降.农业活动对浅层潜水砷形态季节性变化有明显的影响.孔隙承压水的砷形态分布变化较浅层潜水幅度大, 其变化与水位波动存在滞后效应.自然或人为活动引起的地下水位季节性变化改变了含水层的氧化还原环境, 补给水源与地下水之间的混合过程带来新的物质输入促进地下水系统中砷的迁移转化.

       

    • 图  1  江汉平原高砷地下水监测场位置及监测井结构分布

      Fig.  1.  Distribution and structure of monitoring wells in high arsenic groundwater field monitoring site of Jianghan plain

      图  2  高砷地下水监测场水文地质剖面

      Fig.  2.  Hydrogeological profile in high arsenic groundwater field monitoring site

      图  3  不同深度地下水砷含量季节性变化与降雨量、水位波动的响应关系

      降雨量数据来源于仙桃市气象局

      Fig.  3.  Seasonal variation of arsenic concentration in groundwater at different depths responding to fluctuation of water level and precipitation change

      图  4  监测场5月和7月浅层潜水与孔隙承压水中砷形态分布特征对比

      Fig.  4.  Comparison of arsenic speciation distribution in shallow phreatic aquifer and confined aquifer in May and July at field monitoring site

      图  5  监测场浅层潜水与孔隙承压水不同季节砷形态分布

      图例同图 4

      Fig.  5.  Comparison of arsenic speciation distribution in shallow phreatic aquifer and confined aquifer in different months at field monitoring site

      图  6  监测场浅层潜水与孔隙承压水的氧化还原环境与As(Ⅲ)比例、铁浓度变化在雨季前后的对比

      Fig.  6.  Comparison of redox environment change and seasonal variation of As(Ⅲ) percentage and iron concentration in shallow phreatic aquifer and confined aquifer from pre-monsoon to post-monsoon

      图  7  监测场浅层潜水与孔隙承压水颗粒态铁含量在雨季前后变化

      Fig.  7.  Comparison of particulate iron in shallow phreatic aquifer and confined aquifer in different months at field monitoring site

      表  1  江汉平原高砷地下水监测场剖面不同深度含水层水位季节性变化统计

      Table  1.   Seasonal variations of water level at different depths at monitoring field site (SY01-SY05)

      监测点编号 全新统浅层孔隙潜水水位(m) 下中更新统孔隙承压水水位(m)
      丰水期 枯水期 水位变幅 丰水期 枯水期 水位变幅
      SY01 22.12 21.38 0.74 22.26 21.00 1.26
      SY02 22.24 20.77 1.47 22.06 20.84 1.22
      SY03 22.17 21.67 0.50 21.94 20.87 1.07
      SY04 22.04 21.66 0.38 21.67 20.64 1.03
      SY05 22.18 21.53 0.65 21.56 20.58 0.98
      下载: 导出CSV

      表  2  地下水砷形态分析的HPLC-HG-AFS条件

      Table  2.   Experimental condition for determination of arsenic speciation with HPLC-HG-AFS

      HPLC HG-AFS
      色谱柱 保护柱 流动相 进样体积 还原剂 负高压 载气
      Hamilton PRP-X100(250 mm×4.1 mm i.d., 10 μm) Hamilton PRP-X100(25 mm×2.3 mm i.d., 12~20 μm) 15 mmol/L(NH4)2HPO4,pH=6.00,流速1.0 mL/min 20 μL 1.5% NaBH4+0.5% NaOH 300 V 450 mL/min
      载流7% HCl 灯电流50 mA 屏蔽气/min
      下载: 导出CSV

      表  3  监测场内不同深度监测井中溶解性有机碳的季节性变化

      Table  3.   Seasonal variation of dissolved organic matter in different aquifers from Jianghan plain

      监测点编号 A井DOC含量(mg/L) B井DOC含量(mg/L)
      2013-05 2013-08 2013-11 2013-05 2013-08 2013-11
      SY03 12.34 18.25 6.54 3.75 13.84 3.27
      SY05 11.01 13.98 13.54 8.11 13.49 3.03
      SY07 8.08 17.64 4.47 3.84 4.67 3.44
      下载: 导出CSV
    • Aziz, Z., van Geen, A., Versteeg, R., et al., 2008. Impact of Local Recharge on Arsenic Concentrations in Shallow Aquifers Inferred from the Electromagnetic Conductivity of Soils in Araihazar, Bangladesh. Water Resources Research, 44: W07416. doi: 10.1029/2007WR00600
      Benner, S.G., Polizzotto, M.L., Kocar, B.D., et al., 2008. Groundwater Flow in an Arsenic-Contaminated Aquifer, Mekong Delta, Cambodia. Applied Geochemistry, 23(11): 3072-3087. doi: 10.1016/j.apgeochem.2008.06.013
      Berg, M., Tran, H.C., Nguyen, T.C., et al., 2001. Arsenic Contamination of Groundwater and Drinking Water in Vietnam: A Human Health Threat. Environmental Science & Technology, 35(13): 2621-2626. doi: 10.1021/es010027y
      Cheng, Z., van Geen, A., Seddique, A.A., et al., 2005. Limited Temporal Variability of Arsenic Concentrations in 20 Wells Monitored for 3 Years in Araihazar, Bangladesh. Environmental Science & Technology, 39(13): 4759-4766. doi: 10.1021/es048065f
      Deng, Y.M., 2008. Geochemical Processes of High Arsenic Groundwater System at Western Hetao Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Dhar, R.K., Zheng, Y., Stute, M., et al., 2008. Temporal Variability of Groundwater Chemistry in Shallow and Deep Aquifers of Araihazar, Bangladesh. Journal of Contaminant Hydrology, 99(1-4): 97-111. doi: 10.1016/j.jconhyd.2008.03.007
      Farooq, S.H., Chandrasekharam, D., Berner, Z., et al., 2010. Influence of Traditional Agricultural Practices on Mobilization of Arsenic from Sediments to Groundwater in Bengal Delta. Water Research, 44(19): 5575-5588. doi: 10.1016/j.watres.2010.05.057
      Fendorf, S., Michael, H.A., van Geen, A., 2010. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 328(5982): 1123-1127. doi: 10.1126/science.1172974
      Gan, Y.Q., Wang, Y.X., Duan, Y.H., et al., 2014. Dynamic Changes of Groundwater Arsenic Concentration in the Monitoring Field Site, Jianghan Plain. Earth Science Frontiers, 21(4): 37-49 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201404006.htm
      Gan, Y.Q., Wang, Y.X., Duan, Y.H., et al., 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China. Journal of Geochemical Exploration, 138: 81-93. doi: 10.1016/j.gexplo.2013.12.013
      Gong, Z., Lu, X., Watt, C., et al., 2006. Speciation Analysis of Arsenic in Groundwater from Inner Mongolia with an Emphasis on Acid-Leachable Particulate Arsenic. Analytica Chimica Acta, 555(1): 181-187. doi: 10.1016/j.aca.2005.08.062
      Guo, H.M., Guo, Q., Jia, Y.F., 2013. Chemical Characteristics and Geochemical Processes of High Arsenic Groundwater in Different Regions of China. Journal of Earth Sciences and Environment, 35(3): 83-96 (in Chinese with English abstract).
      Guo, H.M., Guo, Q., Jia, Y.F., et al., 2013. Dynamic Behaviors of Water Levels and Arsenic Concentration in Shallow Groundwater from the Hetao Basin, Inner Mongolia. Journal of Geochemical Exploration, 135(SI): 130-140. doi: 10.1016/j.gexplo.2012.06.010
      Guo, H.M., Yang, S.Z., Shen, Z.L., 2007. High Arsenic Groundwater in the World: Overview and Research Perspectives. Advances in Earth Science, 22(11): 1109-1117 (in Chinese with English abstract). http://www.researchgate.net/publication/281018109_High_arsenic_groundwater_in_the_world_Overview_and_research_perspectives
      Guo, X.X., 2014. Hydrogeological Monitoring and Reactive Transport Modeling of Arsenic-Contaminated Aquifer System in Jianghan Plain, Central China (Dissertation). China University of Geosciences, Wuhan (in English with Chinese abstract).
      Jia, Y.F., Guo, H.M., 2013. Hot Topics and Trends in the Study of High Arsenic Groudnwater. Advances in Earth Science, 28(1): 51-61 (in Chinese with English Abstract). http://www.researchgate.net/publication/308308294_Hot_topics_and_trends_in_studies_of_high_arsenic_groundwater
      Kumar, A.R., Riyazuddin, P., 2012. Seasonal Variation of Redox Species and Redox Potentials in Shallow Groundwater: A Comparison of Measured and Calculated Redox Potentials. Journal of Hydrology, 444: 187-198. doi: 10.1016/j.jhydrol.2012.04.018
      Larsen, M.A.D., Pham, N.Q., Dang, N.D., et al., 2008. Controlling Geological and Hydrogeological Processes in an Arsenic Contaminated Aquifer on the Red River Flood Plain, Vietnam. Applied Geochemistry, 23(11): 3099-3115. doi: 10.1016/j.apgeochem.2008.06.014
      McArthur, J.M., Ravenscroft, P., Banerjee, D.M., et al., 2008. How Paleosols Influence Groundwater Flow and Arsenic Pollution: A Model from the Bengal Basin and Its Worldwide Implication. Water Resources Research, 44: W11411. doi: 10.1029/2007WR006552.
      Munk, L., Hagedorn, B., Sjostrom, D., 2011. Seasonal Fluctuations and Mobility of Arsenic in Groundwater Resources, Anchorage, Alaska. Applied Geochemistry, 26(11): 1811-1817. doi: 10.1016/j.apgeochem.2011.06.005
      Neumann, R.B., Ashfaque, K.N., Badruzzaman, A.B., et al., 2010. Anthropogenic Influences on Groundwater Arsenic Concentrations in Bangladesh. Nature Geoscience, 3(1): 46-52. doi: 10.1038/ngeo685
      Nordstrom, D.K., 2002. Worldwide Occurrences of Arsenic in Groundwater. Science, 296(5576): 2143-2145. doi: 10.1126/science.1072375
      Oinam, J.D., Ramanathan, A., Linda, A., et al., 2011. A Study of Arsenic, Iron and Other Dissolved Ion Variations in the Groundwater of Bishnupur District, Manipur, India. Environmental Science & Technology, 62(6): 1183-1195. doi: 10.1007/s12665-010-0607-2
      Planer, F.B., Härtig, C., Lissner, H., et al., 2012. Organic Carbon Mobilization in a Bangladesh Aquifer Explained by Seasonal Monsoon-Driven Storativity Changes. Applied Geochemistry, 27(12): 2324-2334. doi: 10.1016/j.apgeochem.2012.08.005
      Romi ć, Ž., Habuda-Stani ć, M., Kalajdži ć, B., et al., 2011. Arsenic Distribution, Concentration and Speciation in Groundwater of the Osijek Area, Eastern Croatia. Applied Geochemistry, 26(1): 37-44. doi: 10.1016/j.apgeochem.2010.10.013
      Shen, Z.L., Guo, H.M., Xu, G., et al., 2010. Abnormal Groundwater Chemistry and Endemic Disease. Chinese Journal of Nature, 32(2): 83-89 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZZ201002006.htm
      Shraim, A., Sekaran, N.C., Anuradha, C.D., et al., 2002. Speciation of Arsenic in Tube-Well Water Samples Collected from West Bengal, India, by High-Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry. Applied Organometallic Chemistry, 16(4): 202-209. doi: 10.1002/aoc.279
      Smedley, P.L., Kinniburgh, D.G., 2002. A Review of the Source, Behavior and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517-568. doi: 10.1016/S0883-2927(02)00018-5
      Waeles, M., Vandenhecke, J., Salaün, P., et al., 2013. External Sources vs Internal Processes: What Control Inorganic as Speciation and Concentrations in the Penzé Estuary. Journal of Marine Systems, 109-110(Suppl. ): 261-272. doi: 10.1016/j.jmarsys.2011.09.008
      Wen, D.G., Zhang, F.C., Zhang, E.Y., et al., 2013. Arsenic, Fluoride and Iodine in Groundwater of China. Journal of Geochemical Exploration, 135(SI): 1-21. doi: 10.1016/j.gexplo.2013.10.012
      Williams, M.D., Oostrom, M., 2000. Oxygenation of Anoxic Water in a Fluctuating Water Table System: An Experimental and Numerical Study. Journal of Hydrology, 230(1-2): 70-85. doi: 10.1016/S0022-1694(00)00172-4
      Yu, Q., Xie, X.J., Ma, R., et al., 2013. Impact of Groundwater Flow on Arsenic Transport: A Field Observation and Simulation in Datong Basin. Earth Science—Journal of China University of Geosciences, 38(4): 877-886 (in Chinese with English abstract). doi: 10.3799/dqkx.2013.086
      Zeng, Z.H., Cai, W.D., Zhang, Z.L., 2004. The Migration Enrichment of Mn Element in Groundwater and the Controlling Factor. Resources Environment & Engineering, 18(4): 39-42 (in Chinese with English abstract).
      Zhang, F.C., Wen, D.G., Guo, J.Q., et al., 2010. Research Progress and Prospect of Geological Environment in Main Endemic Disease Area. Geology in China, 37(3): 551-562 (in Chinese with English abstract). http://www.researchgate.net/publication/284852910_Research_progress_and_prospect_of_geological_environment_in_main_endemic_disease_area
      Zhao, D.J., 2005. The Three-Dimensional Numerical Simulation for Groundwater System in Jianghan Plain (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      Zhao, S.J., Liu, G.L., Yang, B.X., et al., 2009. Screening Report on Endemic Arsenism and High Content of Arsenic in Xiantao City, Hubei Province. Chinese Journal of Endemiology, 28(1): 71-74 (in Chinese with English abstract). http://www.researchgate.net/publication/298258131_Screening_report_on_endemic_arsenism_and_high_content_of_arsenic_in_Xiantao_City_Hubei_Province
      邓娅敏, 2008. 河套盆地西部高砷地下水系统中的地球化学过程研究(博士学位论文). 武汉: 中国地质大学.
      甘义群, 王焰新, 段艳华, 等, 2014. 江汉平原高砷地下水监测场砷的动态变化特征分析. 地学前缘, 21(4): 37-49. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404006.htm
      郭华明, 郭琦, 贾永锋, 等, 2013. 中国不同区域高砷地下水化学特征及形成过程. 地球科学与环境学报, 35(3): 83-96. doi: 10.3969/j.issn.1672-6561.2013.03.008
      郭华明, 杨素珍, 沈照理, 2007. 富砷地下水研究进展. 地球科学进展, 22(11): 1109-1117. doi: 10.3321/j.issn:1001-8166.2007.11.002
      郭欣欣, 2014. 江汉平原浅层含水层系统中砷释放与迁移过程研究(博士学位论文). 武汉: 中国地质大学.
      贾永锋, 郭华明, 2013. 高砷地下水研究的热点及发展趋势. 地球科学进展, 28(1): 51-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201301007.htm
      沈照理, 郭华明, 徐刚, 等, 2010. 地下水化学异常与地方病. 自然杂志, 32(2): 83-89. doi: 10.3969/j.issn.0253-9608.2010.02.006
      余倩, 谢先军, 马瑞, 等, 2013. 地下水流动对砷迁移的影响: 大同盆地试验场的观测与模拟. 地球科学——中国地质大学学报, 38(4): 877-886. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201304022.htm
      曾昭华, 蔡伟娣, 张志良, 2004. 地下水中锰元素的迁移富集及其控制因素. 资源环境与工程, 18(4): 39-42. doi: 10.3969/j.issn.1671-1211.2004.04.008
      张福存, 文东光, 郭建强, 等, 2010. 中国主要地方病区地质环境研究进展与展望. 中国地质, 37(3): 551-562. doi: 10.3969/j.issn.1000-3657.2010.03.002
      赵德君, 2005. 江汉平原地下水系统三维数值模拟(硕士学位论文). 武汉: 中国地质大学.
      赵淑军, 刘甘露, 杨宝霞, 等, 2009. 湖北省仙桃市饮水型地方性砷中毒病区和高砷区水砷筛查报告. 中国地方病学杂志, 28(1): 71-74.
    • 加载中
    图(7) / 表(3)
    计量
    • 文章访问数:  4134
    • HTML全文浏览量:  556
    • PDF下载量:  535
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-01-26
    • 刊出日期:  2015-11-15

    目录

      /

      返回文章
      返回