• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    污水灌溉下土壤孔隙特征的CT定量分析

    郭晓明 马腾 陈柳竹 刘林

    郭晓明, 马腾, 陈柳竹, 刘林, 2015. 污水灌溉下土壤孔隙特征的CT定量分析. 地球科学, 40(11): 1896-1903. doi: 10.3799/dqkx.2015.170
    引用本文: 郭晓明, 马腾, 陈柳竹, 刘林, 2015. 污水灌溉下土壤孔隙特征的CT定量分析. 地球科学, 40(11): 1896-1903. doi: 10.3799/dqkx.2015.170
    Guo Xiaoming, Ma Teng, Chen Liuzhu, Liu Lin, 2015. Quantitative Analysis of Soil Pores under Sewage Irrigation Using Computerized Tomography. Earth Science, 40(11): 1896-1903. doi: 10.3799/dqkx.2015.170
    Citation: Guo Xiaoming, Ma Teng, Chen Liuzhu, Liu Lin, 2015. Quantitative Analysis of Soil Pores under Sewage Irrigation Using Computerized Tomography. Earth Science, 40(11): 1896-1903. doi: 10.3799/dqkx.2015.170

    污水灌溉下土壤孔隙特征的CT定量分析

    doi: 10.3799/dqkx.2015.170
    基金项目: 

    国家重点基础研究发展计划(973计划)项目 2010CB428802

    国家自然科学基金项目 40872157

    国家自然科学基金项目 40830748

    高等学校博士学科点专项科研基金项目 20110145110003

    河南省高校科技创新团队支持计划 15IRTSTHN027

    详细信息
      作者简介:

      郭晓明(1982-), 男, 讲师, 博士, 从事水文地质相关教学工作, 主要从事包气带水文地质学的研究.E-mail: guoxiaoming@hpu.edu.cn

      通讯作者:

      马腾, E-mail: mateng@cug.edu.cn

    • 中图分类号: P641.1

    Quantitative Analysis of Soil Pores under Sewage Irrigation Using Computerized Tomography

    • 摘要: 污水中的悬浮物、盐分和有机营养物对土壤孔隙状况产生了深刻的影响.通过室内模拟和CT(computed tomography)扫描的方法, 定量研究污水灌溉条件下土壤孔隙数、孔隙度及形态特征.结果表明: 与对照点相比, 污水灌溉区上层土壤总孔隙数和大孔隙数(当量直径≥1.00 mm)均显著升高, 而下层土壤总孔隙数、大孔隙数、粗孔隙数(当量直径为0.26~1.00 mm)、总孔隙度、大孔隙度和粗孔隙度均显著降低(p<0.05);在模拟悬浮液和盐液灌溉条件下, 土壤总孔隙数、粗孔隙数和粗孔隙度均有所升高, 而大孔隙数、总孔隙度、大孔隙度和孔隙成圆率均有所降低; 在模拟营养液灌溉条件下, 土壤总孔隙数、大孔隙数、粗孔隙数和粗孔隙度均有所增加, 而孔隙成圆率有所降低; 对于研究区土壤来说, 悬浮液灌溉对土壤孔隙的影响效应强于盐液灌溉; 对于同种性质的污水灌溉来说, 污灌对对照点土壤孔隙的影响效应强于污灌区土壤.

       

    • 图  1  图像分析过程

      Fig.  1.  Process of CT image analysis

      表  1  不同灌区土壤的基本理化性质

      Table  1.   Basic physical and chemical properties of soils irrigated with sewage and groundwater

      灌区 层位(cm) pH 电导(μS·cm-1) 有机质(g·kg-1) Na+(mg·kg-1) Ca2+(mg·kg-1) CEC(cmol·kg-1) 粘粒(g·kg-1)
      污灌区 0~20 8.13 286 24.58 36.23 13.22 14.65 405
      20~40 8.19 293 11.60 32.50 20.17 13.33 345
      对照点 0~20 8.16 173 19.10 11.09 23.09 14.79 349
      20~40 8.59 206 8.99 14.44 24.62 15.10 342
      注:CEC.阳离子交换量(cation exchange capacity).
      下载: 导出CSV

      表  2  灌溉污水和灌溉地下水的基本性质

      Table  2.   Characteristics of sewage effluents and groundwater used for irrigation of agricultural soils

      pH 电导(μS·cm-1) SS(mg·L-1) 有机碳(mg·L-1) Na+(mg·L-1) Ca2+(mg·L-1) Mg2+(mg·L-1) SAR
      污水 7.7 1 599 293 136.9 162.5 107.7 30.6 3.5
      地下水 7.2 1 347 ND 16.7 46.2 139.8 52.9 0.8
      注:SS.悬浮物(Suspended solids);SAR.钠吸附比(sodium adsorption ratio);ND.未检测(not detected).
      下载: 导出CSV

      表  3  不同灌区土壤中孔隙参数统计均值

      Table  3.   Average numbers of soil pores attributes in the different irrigated fields

      下载: 导出CSV

      表  4  悬浮液灌溉条件下污灌区土壤中孔隙参数统计均值

      Table  4.   Average numbers of pores attributes in sewage irrigated soils under the condition of irrigation with suspension

      灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率
      总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度
      污灌区 0~20 120b 61a 59b 3.17a 2.96a 0.21b 0.659b
      20~40 41c 18b 23d 0.60c 0.51c 0.08c 0.672a
      对照点 0~20 161a 54a 107a 2.14b 1.79b 0.34a 0.638c
      20~40 54c 16b 37c 0.48c 0.36c 0.12c 0.648bc
      下载: 导出CSV

      表  5  悬浮液灌溉条件下对照点土壤中孔隙参数统计均值

      Table  5.   Average numbers of pores attributes in groundwater irrigated soils under the condition of irrigation with suspension

      灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率
      总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度
      污灌区 0~20 94b 41a 53c 2.70a 2.51a 0.18b 0.636ab
      20~40 94b 39a 54c 1.97b 1.78b 0.20b 0.645a
      对照点 0~20 136a 42a 95a 2.00b 1.69b 0.31a 0.625b
      20~40 95b 23b 73b 1.08c 0.84c 0.24b 0.630b
      下载: 导出CSV

      表  6  盐液灌溉条件下污灌区土壤中孔隙参数统计均值

      Table  6.   Average numbers of pores attributes in sewage irrigated soils under the condition of irrigation with salt solution

      灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率
      总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度
      污灌区 0~20 88b 37a 51b 1.96a 1.78a 0.18b 0.654a
      20~40 26c 9b 17c 0.33b 0.26b 0.06c 0.656a
      对照点 0~20 129a 36a 93a 1.65a 1.37a 0.28a 0.626b
      20~40 33c 7b 26c 0.24b 0.16b 0.08c 0.638b
      下载: 导出CSV

      表  7  盐液灌溉条件下对照点土壤中孔隙参数统计均值

      Table  7.   Average numbers of pores attributes in groundwater irrigated soils under the condition of irrigation with salt solution

      灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率
      总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度
      污灌区 0~20 91bc 36a 55b 2.02a 1.82a 0.20bc 0.641b
      20~40 80c 31ab 50b 1.54ab 1.36a 0.17c 0.658a
      对照点 0~20 119a 36a 83a 1.85a 1.59a 0.26a 0.621c
      20~40 101ab 27b 74a 1.03b 0.80b 0.23ab 0.633b
      下载: 导出CSV

      表  8  营养液灌溉条件下污灌区土壤中孔隙参数统计均值

      Table  8.   Average numbers of soil pores attributes in sewage irrigated soils under the condition of irrigation with nutrient solution

      灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率
      总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度
      污灌区 0~20 112b 47b 65b 3.05a 2.81a 0.23b 0.661a
      20~40 48c 16c 32c 0.60b 0.49b 0.11c 0.651ab
      对照点 0~20 175a 59a 116a 2.93a 2.55a 0.37a 0.627c
      20~40 57c 19c 39c 0.80b 0.67b 0.13c 0.642b
      下载: 导出CSV

      表  9  营养液灌溉条件下对照点土壤中孔隙参数统计均值

      Table  9.   Average numbers of soil pores attributes in groundwater irrigated soils under the condition of irrigation with nutrient solution

      灌区 层位(cm) 孔隙数 孔隙度(%) 成圆率
      总孔隙数 大孔隙数 粗孔隙数 总孔隙度 大孔隙度 粗孔隙度
      污灌区 0~20 93b 40b 53b 2.30a 2.12a 0.19b 0.660a
      20~40 36d 15c 22c 0.53b 0.46b 0.07c 0.666a
      对照点 0~20 177a 57a 120a 2.70a 2.30a 0.40a 0.630b
      20~40 66c 18c 48b 0.79b 0.64b 0.15b 0.639b
      下载: 导出CSV
    • Al-Subu, M.M., Haddad, M., Mizyed, N., et al., 2003. Impacts of Irrigation with Water Containing Heavy Metals on Soil and Groundwater— A Simulation Study. Water, Air and Soil Pollution, 146(1-4): 141-152. doi: 10.1023/A:1023995119824
      Alvarez-Bernal, D., Contreras-Ramos, S.M., Trujillo-Tapia, N., et al., 2006. Effects of Tanneries Wastewater on Chemical and Biological Soil Characteristics. Applied Soil Ecology, 33(3): 269-277. doi: 10.1016/j.apsoil.2005.10.007
      Bao, S.D., 2000. Soil Agro-Chemical Analysis. The Third Edition. China Agricultural Press, Beijing, 188-193 (in Chinese).
      Emdad, M.R., Raine, S.R., Smith, R.J., 2004. Effect of Water Quality on Soil Structure and Infiltration under Furrow Irrigation. Irrigation Science, 23(2): 55-60. doi: 10.1007/s00271-004-0093-y
      Feng, J., Hao, Z.C., 2002. Distribution of Soil Macropores Characterized by CT. Advances in Water Science, 13(5): 611-617 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ200205013.htm
      Gao, C.X., Xue, X.X., Zhao, J.N., et al., 2014. Review on Macropore Flow in Soil. Acta Ecologica Sinica, 34(11): 2801-2811 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_acta-ecologica-sinica_thesis/0201254794345.html
      Gharaibeh, M.A., Eltaif, N.I., Al-Abdullah, B., 2007. Impact of Field Application of Treated Wastewater on Hydraulic Properties of Vertisols. Water, Air and Soil Pollution, 184: 347-353. doi: 10.1007/s11270-007-9423-z
      Halliwell, D.J., Barlow, K.M., Nash, D.M., 2001. A Review of the Effects of Wastewater Sodium on Soil Physical Properties and Their Implications for Irrigation Systems. Australian Journal of Soil Research, 39: 1259-1267. doi: 10.1071/SR00047
      Huang, G.X., Sun, J.C., Zhang, Y., et al., 2011. Distribution of Arsenic in Sewage Irrigation Area of Pearl River Delta, China. Journal of Earth Science, 22(3): 396-410. doi: 10.1007/s12583-011-0192-7
      Lado, M., Ben-Hur, M., 2009. Treated Domestic Sewage Irrigation Effects on Soil Hydraulic Properties in Arid and Semiarid Zones: A Review. Soil & Tillage Research, 106(1): 152-163. doi: 10.1016/j.still.2009.04.011
      Li, F.H., Huang, G.H., Ding, Y., et al., 2006. Effects of Soil Sodicity, Gypsum Application, and Filtration Disposal on Hydraulic Conductivity under Irrigation with Domestic Effluent Water. Transactions of the CSAE, 22(1): 48-52 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-NYGU200601011.htm
      Li, L.Q., Du, H.L., Feng, L.R., et al., 2001. Study on Properties of Physics and Chemistry of Cinnamon Soil with Wastewater Irrigation. Journal of Shanxi Agricultural University, 21(1): 73-75 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SXNY200101023.htm
      Lu, R.K., 2000. Chemical Analysis Methods of Agricultural Soil. China Agricultural Science and Technology Press, Beijing, 22-169 (in Chinese).
      Magesan, G.N., Williamson, J.C., Yates, G.W., et al., 2000. Wastewater C: N Ratio Effects on Soil Hydraulic Conductivity and Potential Mechanisms for Recovery. Bioresource Technology, 71: 21-27. doi: 10.1016/S0960-8524(99)00054-1
      Nunan, N., Ritz, K., Rivers, M., et al., 2006. Investigating Microbial Micro-Habitat Structure Using X-Ray Computed Tomography. Geoderma, 133(3-4): 398-407. doi: 10.1016/j.geoderma.2005.08.004
      Sander, T., Gerke, H.H., Rogasik, H., 2008. Assessment of Chinese Paddy-Soil Structure Using X-Ray Computed Tomography. Geoderma, 145(3-4): 303-314. doi: 10.1016/j.geoderma.2008.03.024
      State Bureau of Environmental Protection, 2002. Water and Wastewater Monitoring Analysis Method (the Forth Edition). China Environmental Science Press, Beijing, 102-415 (in Chinese).
      Wang, Z., Chang, A.C., Wu, L., et al., 2003. Assessing the Soil Quality of Long-Term Reclaimed Wastewater-Irrigated Cropland. Geoderma, 114(3-4): 261-278. doi: 10.1016/S0016-7601(03)00044-2
      Xia, J.B., Liu, Q., Xie, W.J., et al., 2009. Effect of Wastewater Irrigation on Soil Hydrological Properties in Reed Marsh. Transactions of the CSAE, 25(12): 63-68 (in Chinese with English abstract). http://www.cabdirect.org/abstracts/20103100824.html
      Yadav, R.K., Goyal, B., Sharma, R.K., et al., 2002. Post-Irrigation Impact of Domestic Sewage Effluent on Composition of Soils, Crops and Ground Water—A Case Study. Environment International, 28(6): 481-486. doi: 10.1016/S0160-4120(02)00070-3
      Yang, J., Zheng, Y.M., Chen, T.B., et al., 2006. Leaching of Heavy Metals in Soil Column under Irrigation Reclaimed Water: A Simulation Experiment. Geographical Research, 25(3): 449-456 (in Chinese with English abstract). http://www.oalib.com/paper/1569529
      Zhao, S.W., Zhao, Y.G., Wu, J., S., 2010. Quantitative Analysis of Soil Pores under Natural Vegetation Seccesssions on the Loess Plateau. Science in China (Series D), 40(2): 223-231 (in Chinese). http://www.irgrid.ac.cn/handle/1471x/516834?mode=full&submit_simple=Show+full+item+record
      鲍士旦, 2000. 土壤农化分析(第三版). 北京: 中国农业出版社, 188-193.
      冯杰, 郝振纯, 2002. CT扫描确定土壤大孔隙分布. 水科学进展, 13(5): 611-617. doi: 10.3321/j.issn:1001-6791.2002.05.014
      高朝侠, 徐学选, 赵娇娜, 等, 2014. 土壤大孔隙流研究现状与发展趋势. 生态学报, 34(11): 2801-2811. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201411001.htm
      李法虎, 黄冠华, 丁贇, 等, 2006. 污灌条件下土壤碱度、石膏施用以及污水过滤处理对水力传导度的影响. 农业工程学报, 22(1): 48-52. doi: 10.3321/j.issn:1002-6819.2006.01.011
      李恋卿, 杜慧玲, 冯两蕊, 等, 2001. 不同年限污水灌溉对石灰性褐土理化性质的影响. 山西农业大学学报, 21(1): 73-75. doi: 10.3969/j.issn.1671-8151.2001.01.022
      鲁如坤, 2000. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 22-169.
      国家环境保护总局, 2002. 水和废水监测分析方法(第四版). 北京: 中国环境科学出版社, 102-415.
      夏江宝, 刘庆, 谢文军, 等, 2009. 废水灌溉对芦苇地土壤水文特征的影响. 农业工程学报, 25(12): 63-68. doi: 10.3969/j.issn.1002-6819.2009.12.011
      杨军, 郑袁明, 陈同斌, 等, 2006. 中水灌溉下重金属在土壤中的垂直迁移及其对地下水的污染风险. 地理研究, 25(3): 449-456. doi: 10.3321/j.issn:1000-0585.2006.03.010
      赵世伟, 赵勇刚, 吴金水, 2010. 黄土高原植被演替下土壤孔隙的定量分析. 中国科学(D辑), 40(2): 223-231. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201002009.htm
    • 加载中
    图(1) / 表(9)
    计量
    • 文章访问数:  2816
    • HTML全文浏览量:  550
    • PDF下载量:  423
    • 被引次数: 0
    出版历程
    • 收稿日期:  2015-03-22
    • 刊出日期:  2015-11-15

    目录

      /

      返回文章
      返回