Paleoclimate Instruction of Sediment Grain Size and Deuterium-Oxygen Isotope in Saline Stratum of Hengshui
-
摘要: 衡水地区的咸水层特征一直备受关注.为了探讨咸水层分布区的沉积环境与咸水形成期的古气候特征,利用钻孔(深度130 m)采集了衡水地区咸水层沉积物,进行了沉积物粒度和粘性土孔隙水氘氧同位素测试.沉积物粒度标准偏差显示,剖面上由深至浅,沉积时期水动力呈由弱到强再到弱的变化趋势,其中水动力强段为90~65 m,为厚层砂砾层.孔隙水TDS和δ18O特征显示在6 m以上受到大气降水和人类活动的影响,并且主要是以淡水灌溉影响为主.剖面上粘性土孔隙水的δ18O在130~90 m平均值为-11.5‰,65~29 m平均值为-12.1‰,23~0 m为-10.6‰,而下部淡水含水层地下水δ18O为-9.8‰,上部咸水含水层地下水δ18O为-8.2‰,粘性土孔隙水δ18O明显偏负于含水层的地下水,反映保存记录了古气候信息.130~90 m,δ18O先增大后减小反映温度先升高后降低;65~29 m,δ18O反映温度偏低的气候特征;23~0 m,δ18O相对比较稳定,总体偏正,反映了全新世为一个相对较为稳定但较高的温度.Abstract: The characteristics of saline stratum in Hengshui have always been concerned. In order to discuss the paleoenvironment and the paleoclimate in Hengshui area, grain size and pore water stable isotope (δD, δ18O) of clay collected from Hengshui saline stratum(thickness of 130 m) by drilling were analyzed. The standard deviation of sediment grain size shows that the hydrodynamic strength changed from weak to strong and then to weak, there is a deep gravel layer in 90-65 m, which reflects a strong hydrodynamic strength and a humid clime. The TDS and δ18O reflect the affect of atmospheric precipitation and human irrigation above 6 m, specially for the human irrigation. The mean value of δ18O at depth of 130-90 m is -11.5‰, and it is -12.1‰ and -10.6‰ at depth of 65-29 m and 23-0 m. The δ18O of aquifer at 90-65 m is -9.8‰, and -8.2‰ of 29-23 m. The δ18O of clay pore water is negative compared with the aquifer groundwater, reflecting that the clay pore water saves paleoenvironment information. The δ18O at depth of 65-29 m firstly increases and than decreases reflecting the temperature firstly increases and than decreases; the δ18O at depth of 65-29 m reflects a low temperature; the δ18O at depth of 23-0 m is relatively stable, but is positive overall, indicating a warm climate in Holocene.
-
Key words:
- Hengshui /
- sediment grain size /
- clay pore water /
- deuterium-oxygen isotopes /
- paleoclimate
-
0. 引言
云南会泽铅锌矿床是我国著名的铅锌锗生产基地之一, 位于扬子板块西缘川—黔—滇铅锌银多金属成矿域的中南部、小江深断裂带和昭通—曲靖隐伏深断裂带间的北东构造带、南北构造带及北西向紫云—垭都构造带的构造复合部位(图 1).该矿床的矿石品位极高(矿石Pb+Zn多在25%~35%之间, 部分矿石含量超过60%)、伴生组分多(Ag、Ge、Ga、Cd、In等), 与一般的铅锌矿床有着截然不同的差别, 很值得地学工作者去研究.自20世纪被发现以来, 虽然先后有多位学者和专家(陈进, 1993; 周朝宪, 1996; 郑庆鳌, 1997; 柳贺昌和林文达, 1999; 韩润生等, 2001a; 黄智龙等, 2001a; Zhou et al., 2001; Huang et al., 2003) 对该矿床进行过细致研究, 但从研究的内容来看, 无一涉及高品位矿石的成因问题.笔者认为, 会泽矿床的矿石品位之所以这么高, 其成矿流体在上升成矿的过程中可能被高度浓缩过.因此, 本文从成矿流体的角度出发, 在深入研究流体的性质后, 认为不同流体混合及混合后的降压沸腾作用是导致流体浓缩、矿石品位增大的主因.
1. 混合流体存在的证据
关于会泽铅锌矿床基本地质特征, 黄智龙等(2001b)、韩润生等(2001b)进行过详细的介绍, 在此就不再赘述.
关于成矿流体的来源问题, 目前存在较大的争论.多数学者认为会泽铅锌矿床的成矿流体为单一的地层循环水(廖文, 1984; 张位及, 1984; 陈士杰, 1986) 或单一的基底循环水(周朝宪, 1996; Zhou et al., 2001), 部分学者则认为是热液水改造的结果(陈进, 1993; 柳贺昌和林文达, 1999), 也有少数学者(赵准, 1995) 认为矿床是沉积改造型, 流体以地层深循环水为主.但笔者认为, 会泽矿成矿流体应为不同流体混合均匀的结果, 有着多重来源.其理由如下:
(1) 从碳、氧同位素的测定结果来看(Huang et al., 2003), 矿石中脉石矿物方解石的C、O同位素组成相对均一, 其δ13C (PDB) 为-2.1×10-3~-3.5×10-3、极差-1.4×10-3、均值-2.8×10-3, δ18O (SMOW) 为16.7×10-3~18.6×10-3、极差1.9×10-3、均值17.7×10-3; 不同矿体(不同标高)、不同产状以及相同矿体不同产状方解石的C、O同位素组成不具明显差别.另外, 本区脉石矿物方解石的Sr同位素组成也相对稳定, (87Sr/86Sr) 0为0.716 353~0.717 012, (见下文), 与矿石矿物闪锌矿和黄铁矿的(87Sr/86Sr) 0也不具成因意义上的差别, 成矿流体在成矿过程中基本没有发生Sr同位素分馏.这表明矿床成矿流体中Sr同位素组成也存在均一化过程, 这些都可以说明成矿流体在形成的过程中曾经存在均一化作用.
(2) 从所测定的流体包裹体均一温度数值来看(图 2), 其分布具有双峰结构, 第一个峰, 包裹体均一温度变化于110~250 ℃之间, 并主要集中于150~220 ℃之间; 第二个峰, 包裹体均一温度变化于250~400 ℃之间(甚至有可能大于400 ℃), 并主要集中于300~350 ℃范围内.这种现象的产生, 不太可能是单一流体作用的结果, 而很可能是多种来源的流体混合的结果. 黄智龙等(2001a)的研究结果表明, 在(206Pb/204Pb) - (208Pb/204Pb) 和(206Pb/204Pb) - (207Pb/204Pb) 图上, 会泽矿床铅锌矿石和矿石矿物(方铅矿、闪锌矿和黄铁矿) 投入下地壳铅平均演化线与岛弧铅平均演化线之间的克拉通化地壳范围之内, 表明了地层、基底岩石和玄武岩提供成矿物质的可能性, 也证实了多种流体的推测.
(3) 从锶同位素组成(表 1) 看, 矿床脉石矿物方解石的(87Rb/86Sr) 极低(除1件样品为0.218 1外, 其余样品在0.000 7~0.047 1).由于Rb的衰变常数(λ) 为1.42×10-11/a (Steiger et al., 1977), 而一般矿床形成约需10 Ma, 最多也不超过100 Ma, 故Rb衰变形成的87Sr对体系初始Sr同位素组成影响极小, 因此, 其(87Sr/86Sr) 0或(87Sr/86Sr) 可视为矿床成矿流体的Sr同位素组成.矿床的(87Sr/86Sr) 0 (0.713 676~0.717 012) 不仅明显高于地幔(0.704±0.002; Faure, 1977) 和峨嵋山玄武岩(0.703 932~0.707 818; 85件样品) 的(87Sr/86Sr) 0 (黄智龙等, 2004), 也相对高于矿区赋矿地层(C1b) 的(87Sr/86Sr) 0 (0.708 68~0.709 31;3件样品) (胡耀国, 1999), 但明显低于基底岩石的(87Sr/86Sr) 0 (0.724 3~0.728 8; 5件样品) (李复汉和覃嘉铭, 1988; 从柏林, 1988; 陈好寿和冉崇英, 1992).由于在成矿过程中流体基本没有发生Sr同位素分馏现象, 因此很难理解其成矿物质或成矿流体仅由单一的岩石(碳酸盐岩、基底岩石或玄武岩) 所提供.所以, 成矿物质或成矿流体由相对高(87Sr/86Sr) 0端元(基底岩石) 和相对低(87Sr/86Sr) 0端元(峨嵋山玄武岩、各时代碳酸盐地层) 共同提供可能更为合理, 这与Pb同位素的研究结果相吻合, 说明了混合流体的存在.
表 1 会泽超大型矿床Sr同位素组成Table Supplementary Table Sr isotopic compositions of minerals in Huize lead-zinc ore deposits(4) 另外, 黄智龙等(2001b; 2003) 也从构造带方解石稀土元素地球化学和脉石矿物方解石REE地球化学的角度出发, 证实了混合流体存在的可能性.
2. 成矿流体的性质
从镜下鉴定的结果来看, 会泽矿床脉石矿物方解石及热液白云石中除了纯液相包裹体、富液相的气液两相包裹体和不混溶的三相(VCO2+LCO2+LH2O) 包裹体外, 还有纯气相包裹体、富气相的气液两相包裹体及含子晶三相包裹体的存在, 并且发现有富液相的气液两相包裹体、纯气相包裹体与富气相的气液两相包裹体密切共存、均一温度相近的现象, 表明了流体沸腾作用的存在.根据野外观察及室内测试的结果, 暂将矿床划分为2个成矿阶段: 中高温(300~400 ℃) 成矿阶段和中低温(100~280 ℃) 成矿阶段.其性质如下(表 2) :
表 2 会泽铅锌矿床各成矿阶段流体性质Table Supplementary Table Characteristics of fluid in Huize lead-zinc ore deposits据前人(韩润生, 2002) 的测试结果来看, 包裹体气相成分主要为CO2、CO、CH4和H2, 其中H2最低, CO2最高; 液相成分主要有H2O、K+、Na+、Ca2+、Mg2+、F-、Cl-等.其中F- < Cl-, K+ < Na+, Mg2+ < Ca2+; 而总体说来, Ca2+ > Na+ > Mg2+ > K+, 故可以认为矿床的成矿流体性质为含有Pb、Zn等成矿金属元素的Na-Ca-Cl-CO2-H2O型.就主矿物而言, 黄铁矿、方解石中包裹体的各成分与闪锌矿中包裹体的相应成分也有所不同, 由于溶解度表现出来的差异而导致这3种矿物的生成顺序不同, 因此, 包裹体成分的差异也反映出成矿过程中流体的成分与浓度是不断变化的.
从气液两相包裹体盐度-均一温度图解(图 3) 可以看出, 在(300~400 ℃) 区间, 包裹体盐度基本被孤立为两群: 一群为5%~6% (w (NaCl)), 另一群为12%~16% (w (NaCl)); 而在(100~300 ℃) 特别是(150~250 ℃) 区间, 包裹体盐度则基本均匀分布在7%~23% (w (NaCl)) 之间.这反映出在(300~400 ℃) 左右, 流体可能曾发生过沸腾作用或不混溶现象, 部分流体以低盐度的气相形式挥发.沸腾作用后, 剩余的流体盐度大大增大.据笔者的研究, 会泽铅锌矿床的流体沸腾作用主要发生在(320~370 ℃)、289×105~350×105 Pa的条件下, 与推测的结果基本一致.
3. 讨论
流体的混合作用在热液矿床的形成中起了非常重要的作用(张德会, 1997).它的出现, 对揭示大型-超大型矿床的形成机理具有重要的意义, 如对美国内华达州Jerritt Canyon的卡林型金矿床、克罗拉多Creede多金属脉状矿床、环太平洋的浅成低温热液矿床及奥林匹克坝Cu-U-Au矿床的研究(Hayba et al., 1985; 刘英俊和马东升, 1991; Haynes et al., 1995; Cooke et al., 1996).它主要通过以下两种机制引起矿物的沉淀: ①降温冷却使矿物的溶解度降低; ②稀释效应使热液系统的配位基浓度降低.
上已述及, 会泽铅锌矿床成矿流体在形成的过程中曾经有过不同流体的混合作用.根据研究, 它主要由3种流体混合而成: 一种是低温(80~200 ℃) 低压低盐度的地层循环卤水; 一种为高温(> 300 ℃) 高压高盐度的玄武岩浆水, 主要由玄武岩浆的去气作用而生成; 一种为高温(300~400 ℃) 的基底循环水.从表 2可以看出, 当这3种流体在流体储库汇聚时, 由于温度、压力各不相同, 其混合的第一个后果便是高温流体温度的降低(300~400 ℃→150~250 ℃).由于大多数铅、锌络合物的溶解度为温度的函数, 因此, 温度降低必然导致溶解度降低而使部分金属从流体中沉淀出来.由于温度逐渐下降, 因此出现了不同温度下的矿物共生组合.混合作用的第二个后果是流体pH值的升高(弱酸性→中性).pH值的升高, 主要是通过2种途径来实现的: 一为流体混合导致高盐度流体被稀释, 降低H+、Cl-等离子的浓度; 二为水-岩反应, 即通过矿物的蚀变作用消耗掉部分H+, 如钾长石蚀变为绢云母的反应:
pH值的升高, 导致金属络合物(氯化物、硫氢化物) 的稳定性下降, 金属离子得以被释放出来, 参与S2-的反应而沉淀下来.另外, 由于混合后硫逸度和氧逸度的变化, 混合作用还导致了氧化-还原作用的发生, 如下式:
因为流体混合作用影响范围大、作用时间长、反应速度快(张德会, 1997), 使得金属矿物能够大规模地从流体中沉淀下来, 形成规模巨大的矿体或矿床.
根据笔者对会泽矿断裂带白云岩中白云石的包裹体研究, 断裂带的形成压力为(50~320) ×105 Pa, 属开放-半开放环境; 而成矿深度约为2 200~2 450 m (图 4).以岩石比重2.70 g/cm3计算, 其上覆岩石的压力为574×105~640×105 Pa, 与利用包裹体数据测定的压力(145×105~754×105 Pa) 数据有所不同.因此, 高压(650×105~754×105 Pa)、携带成矿金属的成矿流体可能进入断裂带中而使压力得以释放.成矿流体进入断裂带后, 压力的大幅度降低(650×105~754×105 Pa→289×105~350×105 Pa), 既可以使成矿物质因溶解度降低而沉淀(张德会, 1997), 同时也导致了流体沸腾作用的发生.沸腾时, 大量的挥发份如H2O、H2S、CO2、HCl、F-等及部分轻金属阳离子如Li+、Na+等从流体中逸出, 使流体的浓度不断增大而达到过饱和; 另一方面, H2S、CO2、HCl、F-等酸性气体的逸出造成了流体pH值增大和还原硫浓度的增大, 同时也造成了剩余流体的温度降低.因此, 金属矿物得以从流体中大量沉淀出来, 在断裂带中形成矿体, 这与矿体被断裂带严格控制相一致(韩润生, 2002). Drummond and Ohmoto (1985)的研究表明, 沸腾作用发生在300 ℃左右时, 只要有5%的流体转化为蒸汽就可使大多数金属元素从流体中沉淀出来, 其沉淀顺序依次为氧化物(Fe3O4、Fe2O3、SnO2等) →简单金属硫化物(ZnS、PbS、AgS、FeS等) →自然金属(氯化物络合物为主, 如Ag、Au) →碳酸盐(CaCO3) →具中间价态的硫化物(CuFeS2、FeS2等) →Me2S族的硫化物(Ag2S、Cu2S等) →自然金属(硫化物络合物为主, 如Au).这一顺序, 也基本与笔者在会泽矿床所观测到的矿物生成顺序一致.
另外, 会泽矿区断裂带的活动空间极为有限, 其宽度仅约0.1~30 m, 主要宽度为1.0~10.0 m (韩润生, 2002).不难想象, 发生在断裂带中的成矿作用, 由于成矿压力(流体压力与断裂带的内压相差并不大) 和成矿空间受到限制, 难以使矿体横向发展.因此, 尽管有混合作用和沸腾作用的双重影响, 但也只能使沉淀的金属矿物重复地叠加在一起, 形成品位特高的矿体.
4. 结论
综上所述, 会泽铅锌矿床成矿流体为地层循环卤水、基底循环水和岩浆水混合的产物; 而高品位矿石的形成, 则是流体混合和沸腾作用共同作用的结果.
-
表 1 粘性土孔隙水δ18O、δD
Table 1. δ18O and δD of clay pore water
深度(m) δD‰ δ18O‰ 0.5 -66.8 -8.9 0.8 -68.3 -9.2 1.5 -71.1 -9.4 2.0 -65.7 -8.8 2.5 -78.1 -10.4 3.0 -77.1 -10.3 3.5 -92.4 -12.6 4.0 -70.1 -9.4 4.5 -93.6 -12.5 5.0 -69.8 -9.5 6.0 -85.8 -11.9 7.0 -86.8 -11.6 8.0 -83.3 -11.0 9.0 -93.5 -12.2 10.0 -77.4 -10.5 11.0 -65.9 -8.9 12.0 -93.5 -12.6 13.0 -85.9 -11.7 15.0 -77.3 -10.4 16.0 -71.1 -9.0 19.0 -73.6 -9.9 20.0 -93.6 -12.6 21.0 -82.6 -10.9 22.0 -70.3 -9.7 24.0 -91.5 -12.0 25.0 -89.3 -11.8 27.0 -68.9 -9.1 29.0 -80.8 -10.8 30.0 -101.9 -13.1 31.0 -93.4 -12.2 32.0 -87.9 -11.8 33.0 -76.9 -9.9 34.0 -107.8 -14.6 35.1 -75.7 -9.9 39.0 -97.2 -13.2 40.0 -74.2 -9.8 41.0 -96.7 -13.0 43.0 -90.7 -11.8 44.0 -86.1 -11.7 45.0 -84.7 -11.2 46.0 -90.3 -12.0 47.0 -95.3 -12.6 49.0 -92.1 -12.2 51.0 -79.6 -10.3 52.0 -85.7 -11.1 53.0 -96.4 -12.2 54.0 -102.8 -13.8 55.0 -86.3 -11.3 56.0 -96.0 -12.8 57.0 -96.2 -12.6 58.0 -80.3 -10.8 58.8 -88.3 -11.9 60.0 -100.0 -13.1 61.0 -104.7 -13.8 62.0 -87.1 -12.2 63.0 -90.0 -12.1 64.0 -104.5 -14.0 65.0 -88.1 -12.0 83.0 -92.3 -12.5 91.0 -94.7 -12.8 92.0 -86.7 -11.4 93.0 -91.7 -11.7 94.0 -86.1 -11.3 95.0 -95.9 -12.5 99.0 -84.7 -10.5 100.0 -88.1 -10.7 101.0 -97.6 -12.5 102.0 -90.9 -11.7 103.0 -86.4 -11.0 104.0 -94.1 -12.3 105.0 -86.8 -11.4 106.0 -80.7 -10.6 109.0 -81.0 -10.6 110.0 -87.4 -11.4 111.0 -84.6 -11.2 112.0 -82.0 -10.7 113.0 -88.9 -11.9 114.0 -83.7 -11.0 115.0 -86.3 -11.5 117.2 -82.6 -10.9 118.0 -96.7 -13.3 119.0 -84.5 -11.6 120.0 -83.5 -11.3 123.0 -84.4 -11.5 124.0 -82.5 -11.2 125.0 -87.0 -11.9 129.3 -86.8 -11.7 -
An, Z.S., Wu, X.H., Wang, P.X., et al., 1991a.China's Paleomonsoon in the Recent 130 ka-Ⅱ.Paleomonsoon Change.Scientia Sinica Chemica, (11):1 (in Chinese). An, Z.S., Wu, X.H., Wang, P.X., et al., 1991b.China's Paleomonsoon in the Recent 130 ka-Ⅰ.Paleomonsoon Change.Scientia Sinica Chemica, (10):1076-1081 (in Chinese). Blott, S.J., Pye, K., 2001.GRADISTAT:A Grain Size Distribution and Statistics Package for the Analysis of Unconsolidated Sediments.Earth Surface Processes and Landforms, 26(11):1237-1248.doi: 10.1002/esp.261 Bricker, O.P., Matisoff, G., Holder, G.R.Jr., 1977.Interstitial Water Chemistry of Chesapeake Bay Sediments, Basic Date Report No.9.Department of Natural Resources Maryland Geological Survey, U.S.A. Cao, J.T., Wang, S.M., Shen, J., et al., 2000.The Paleoclimate Changes during the Past Millennium Lnferred from the Lacustrine Core in Daihai Lake, Inner Mongolia.Scientia Geographica Sinica, 20(5):391-396 (in Chinese with English abstract). Chen, H., Wang, G.L., Zhang, W., et al., 2005.The Evolvement of Groundwater Chemic Character in Hebei Plain.Earth and Environment, 33(z1):620-623 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ2005S1131.htm Chen, S.Y., Wang, S.M., Wu, Y.H., 2006.Sedimentary Cycles and Paleoenvironmental Evolution of the Co Ngoin Lake in Tibetan Plateau since Late Cenozoic.Acta Geoscientica Sinica, 27(4):315-322 (in Chinese with English abstract). http://www.oalib.com/paper/1557882 Chen, Z.Y., Gao, H.Q., Wei, W., et al., 2009.Confined Aquifer in North China Plain.Resources Science, 31(3):388-393 (in Chinese with English abstract). http://www.oalib.com/paper/1704460#.WX7ZI_l69Hc Dansgaard, W., 1964.Stable Isotopes in Precipitation.Tellus, 16(4):436-468.doi: 10.1111/j.2153-3490.1964.tb00181.x Dansgaard, W., Johnson, J., Clausen, H.B., et al.1971.Climatic Oscillations Depicted and Predicted by Isotope Analysis of a Greenland Ice Core//First International Conference on Port and Ocean Engineering under Arctic Conditions I., U.S.A.17-22. Desaulniers, D.E., Cherry, J.A., Fritz, P., 1981.Origin, Age and Movement of Pore Water in Argillaceous Quaternary Deposits at Four Sites in Southwestern Ontario.Journal of Hydrology, 50:231-257.doi: 10.1016/0022-1694(81)90072-x Gao, H.Q., Fei, Y.H., Luo, G.Z., et al., 2010.Effect Analysis of Saline Groundwater Utilization in Hebei Plain.South-To-North Water Transfers and Water Science & Technology, 8(2):53-56 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NSBD201002022.htm Gao, Y.X., 2008.Study on Groundwater Hydraulic Connection in Different Aquifers under Mass Pumped Conditions in Typical Area North China Plain (Dissertation).Chinese Academey of Geological Sciences, Beijing (in Chinese with English abstract). He, H.C., Ding, H.Y., Zhang, Z.K., et al., 2005.Grain-Size Characteristics and their Environmental Significance of Hongze Lake Sediments.Scientia Geographica Sinica, 25(5):80-86 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX200505012.htm Hendry, M.J., Wassenaar, L.I., 1999.Implications of the Distribution of δD in Pore Waters for Groundwater Flow and the Timing of Geologic Events in a Thick Aquitard System.Water Resources Research, 35(6):1751-1760. doi: 10.1029/1999WR900046 Hendry, M.J., Woodbury, A.D..2007.Clay Aquitards as Archives of Holocene Paleoclimate:δ18O and Thermal Profiling.Ground Water-November-December, 45(6):683-691. doi: 10.1111/gwat.2007.45.issue-6 Huang, T.M., Nie, Z.Q., Yuan, L.J., 2008.Temperature and Geographical Effects of Hydrogen and Oxygen Isotopes in Precipitation in West of China.Journal of Arid Land Resources and Environment, 22(8):76-81 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GHZH200808015.htm Husain, M.M., Cherry, J.A., Frape, S.K., 2004.The Persistence of a Large Stagnation Zone in a Developed Regional Aquifer, Southwestern Ontario.Canadian Geotechnical Journal, 41(5):943-958.doi: 10.1139/t04-040 Lei, K., Meng, W., Zheng, B.H., et al., 2006.Grain Size Distributions of Sediments in the Intertidal Zone on the West Coast of the Bohai Bay.Marine Science Bulletin, 25(1):54-61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-hutb200601008.htm Li, Q.H., 2003.Application of Deposit's Size to Reconstruction of Ancient Environment.Journal of Chaohu College, (3):26-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CHXY200303007.htm Liu, C.F., Wang, P.Y., 1997 The Environment Significance of H, O, C and Cl Isotopic Composition in Groundwater of Hebei Plain.Earth Science Frontiers, 4(2):267-274 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY7Z1.042.htm Northern Shanxi Team of Chengdu College of Geology, 1978.Sedimentary Rocks (Sediments) Size Analysis and Its Applications.Geological Publishing House, Beijing (in Chinese). Reeburgh, W.S., 1967.An Improved Interstitial Water Sampler.Limnology and Oceanography, 12(1):163-165.doi: 10.4319/lo.1967.12.1.0163 Remenda, V.H., Cherry, J.A., Edwards, T.W.D., 1994.Isotopic Composition of Old Ground Water from Lake Agassiz:Implications for Late Pleistocene Climate.Science, 266(5193):1975-1978.doi: 10.1126/science.266.5193.1975 Sacchi, E., Michelot, J.L., Pitsch, H., et al., 2001.Extraction of Water and Solutes from Argillaceous Rocks for Geochemical Characterisation:Methods, Processes and Current Understanding.Hydrogeology Journal, 9(1):17-33.doi: 10.1007/s100400000113 Shen, Z.L., Zhu, W.H., 1993.Hydrogeochemical Foundation.Geological Publishing House, Beijing (in Chinese). Shi, K., Dai, X.R., Shi, Y.X., et al., 2009.Grain-Size Characterstics and their Paleoenvironmental Significance of SC7 Core Sediments in Lake Chenghu, Jiangsu Province, China.Journal of Lake Sciences, 21(5):741-748 (in Chinese with English abstract). doi: 10.18307/2009.0520 State Oceanic Administration, 1975.Area of Marine Survey (Fourth Volumes-Marine Geological Survey).Ocean Press, Beijing, 9-88 (in Chinese). Sun, Y.C., Li, H.S., 1986.Sedimentary Facies and Depositional environment of Clastic Rocks.Geological Publishing House, Beijing (in Chinese). Wang, H.Y., Shi, Y.C., Yu, P.T., et al., 2002.Alluviums of the Early and Middle Holocene in the Quzhou Area, the Southern Hebei Plain and Palaeoenvironment Inferences.Quaternary Sciences, 22(4):381-393 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200204010.htm Wang, J.B., Zhu, L.P., 2002.Grain-Size Characteristics and their Paleo-Environmental Significance of Chen Co Lake Sediments in Southern Tibet.Progress in Geography, 21(5):459-467 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DLKJ200205006.htm Wang, Q., Li, F.L., 1983.The Changes of Marine-Continental Conditions in the West Coast of the Bohai Gulf during Quaternary.Marine Geology & Quaternary Geology, 3(4):83-89 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ198304012.htm Wang, S.M., Wu, R.J., Jiang, X.H., 1990.Environment Evolution and Paleoclimate of Daihai Lake, Inner Mongolia since the last Glaciation.Quaternary Sciences, 10(3):223-232 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ199003003.htm Wang, X.Y., Wu, L., Zhang, G.S., et al., 2008.Characteristics and Environmental Significance of Magnetic Susceptibility and Grain Size of Lake Sediments since Holocene in Chaohu Lake, Anhui Province.Scientia Geographica Sinica, 28(4):548-553 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLKX200804015.htm Xiao, C.X., Li, Z.Z., 2006.The Research Summary of Grain Size Analysis and Its Application in the Sedimentation.Journal of Xinjiang Normal University, 25(3):118-123 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJSZ200603034.htm Yang, G.F., Wu, F.D., Chen, Z.H., et al., 2015.n-Alkane Distribution and Their Palaeoenvironmental Implications in Fluvial-Lacustrine Sediments in Dengkou, Inner Mongolia.Earth Science, 40(2):327-333 (in Chinese with English abstract). Yu, G., Liu, J., Xue, B., et al., 2007.Dynamical Palaeoclimate Simulations.Higher Education Press, Beijing, 137-139 (in Chinese). Zhang, C.S., Zhang, Y.C., Hu, J.J., 1995.Evolution of Geological Environment in North Huabel Plain in Historic Times.Journal of Geological Hazards and Enveronment Preservation, 6(2):12-19 (in Chinese with English abstract). Zhang, G.H., Fei, Y.H., Yang, L.Z., et al., 2010.Variation Characteristics and Mechanisms of Exploitation Yield Formation in the Region with Confined-Groundwater Depression Cone.Advances in Water Science, 21(3):370-376 (in Chinese with English abstract). Zhang, J.X., Shen, Z.J., Gu, H.B., et al., 2007.Quaternary Environmental Geochemistry of Dongting Lake Area.Geological Publishing House, Beijing, 124-127 (in Chinese). Zhang, R.Q., Liang, X., Jin, M.G., 2013.The Evolution of Groundwater Flow Systems in the Quaternary of Hebei Plain since the last Glacial Maximum.Earth Science Frontiers, 20(3):217-226 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201303026.htm Zhang, S.E., Li, Z.J., Sun, X.F., et al., 2010.Impact of Invasion of Salty Groundwater into Fresh Groundwater in Hebei Province.Journal of Geological Hazards and Environment Preservation, 21(1):26-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZHB201001009.htm Zhang, Z.H., Shi, D.H., Ren, H.F., 1997.Evolution of the Quaternary groundwater system of the North China Plain.Scientia Sinica Terrae, 27(2):168-173 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxg199703007&dbname=CJFD&dbcode=CJFQ Zhou, L., Liu, C.F., Wang, P.Y., 1998.Isotopic Composition of Saline Water in Quaternary Aquifers of Hebei Plain.Hydrogeology and Engineering Geology, 25(3):6-10 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG803.001.htm 安芷生, 吴锡浩, 汪品先, 等, 1991a.最近130 ka中国的古季风-Ⅰ.古季风记录.中国科学B辑:化学, (10): 1076-1081. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199110010.htm 安芷生, 吴锡浩, 汪品先, 等, 1991b.最近130 ka中国的古季风-Ⅱ.古季风变迁.中国科学B辑:化学, (11): 1. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199111012.htm 曹建廷, 王苏民, 沈吉, 等, 2000.近千年来内蒙古岱海气候环境演变的湖泊沉积记录.地理科学, 20(5): 391-396. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200005000.htm 陈浩, 王贵玲, 张薇, 等, 2005.河北平原地下水水化学演化.地球与环境, 33(z1): 620-623. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200509002130.htm 陈诗越, 王苏民, 吴艳宏, 2006.西藏错鄂湖沉积旋回与古环境变迁.地球学报, 27(4): 315-322. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200604005.htm 陈宗宇, 皓洪强, 卫文, 等, 2009.华北平原深层地下水的更新与资源属性.资源科学, 31(3): 388-393. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY200903010.htm 成都地质学院陕北队, 1978.沉积岩(物)粒度分析及其应用.北京:地质出版社. 郜洪强, 费宇红, 雒国忠, 等, 2010.河北平原地下咸水资源利用的效应分析.南水北调与水利科技, 8(2): 53-56. http://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201002022.htm 高业新, 2008. 华北平原典型地区大规摸开采条件下不同层位含水组地下水互动关系研究(博士毕业论文). 北京: 中国地质科学院. http://cdmd.cnki.com.cn/Article/CDMD-82501-2008177389.htm 国家海洋局, 1975.海洋调查范围(第四分册—海洋地质调查).北京:海洋出版社, 9-88. 何华春, 丁海燕, 张振克, 等, 2005.淮河中下游洪泽湖湖泊沉积物粒度特征及其沉积环境意义.地理科学, 25(5): 80-86. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200505012.htm 黄天明, 聂中青, 袁利娟, 2008.西部降水氢氧稳定同位素温度及地理效应.干旱区资源与环境, 22(8): 76-81. http://www.cnki.com.cn/Article/CJFDTOTAL-GHZH200808015.htm 雷坤, 孟伟, 郑丙辉, 等, 2006.渤海湾西岸潮间带沉积物粒度分布特征.海洋通报, 25(1): 54-61. http://cdmd.cnki.com.cn/Article/CDMD-10183-2007093311.htm 李其华, 2003.沉积物粒度在古环境重建中的应用.巢湖学院学报, (3): 26-28. http://www.cnki.com.cn/Article/CJFDTOTAL-CHXY200303007.htm 刘存富, 王佩仪, 1997.河北平原地下水氢, 氧, 碳, 氯同位素组成的环境意义.地学前缘, 4(2): 267-274. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY7Z1.042.htm 沈照理, 朱宛华, 1993.水文地球化学基础.北京:地质出版社. 史凯, 戴雪荣, 师育新, 等, 2009.苏州澄湖SC7孔沉积物粒度特征及其古环境意义.湖泊科学, 21(5): 741-748. http://www.cnki.com.cn/Article/CJFDTOTAL-FLKX200905022.htm 孙永传, 李惠生, 1986.碎屑岩沉积相和沉积环境.北京:地质出版社. 王红亚, 石元春, 于澎涛, 等, 2002.河北平原南部曲周地区早、中全新世冲积物的分析及古环境状况的推测.第四纪研究, 22(4): 381-393. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200204010.htm 王君波, 朱立平, 2002.藏南沉错沉积物的粒度特征及其古环境意义.地理科学进展, 21(5): 459-467. doi: 10.11820/dlkxjz.2002.05.007 王强, 李凤林, 1983.渤海湾西岸第四纪海陆变迁.海洋地质与第四纪地质, 3(4): 83-89. http://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ198304012.htm 王苏民, 吴瑞金, 蒋新禾, 1990.内蒙古岱海末次冰期以来的环境变迁与古气候.第四纪研究, 10(3): 223-232. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ199003003.htm 王心源, 吴立, 张广胜, 等, 2008.安徽巢湖全新世湖泊沉积物磁化率与粒度组合的变化特征及其环境意义.地理科学, 28(4): 548-553. http://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200804015.htm 肖晨曦, 李志忠, 2006.粒度分析及其在沉积学中应用研究.新疆师范大学学报(自然科学版), 25(3): 118-123. http://www.cnki.com.cn/Article/CJFDTOTAL-XJSZ200603034.htm 杨桂芳, 武法东, 陈正洪, 等, 2015.内蒙古磴口河湖相沉积物正构烷烃分布特征及其环境意义.地球科学, 40(2): 327-333. http://earth-science.net/WebPage/Article.aspx?id=3056 于革, 刘健, 薛滨, 等, 2007.古气候动力模拟.北京:高等教育出版社, 137-139. 张春山, 张业成, 胡景江, 1995.华北平原北部历史时期地质环境演化.地质灾害与环境保护, 6(2): 12-19. http://www.cnki.com.cn/Article/CJFDTOTAL-DZHB502.001.htm 张光辉, 费宇红, 杨丽芝, 等, 2010.深层水漏斗区开采量组成变化特征与机制.水科学进展, 21(3): 370-376. http://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201003013.htm 张建新, 申志军, 顾海滨, 等, 2007.洞庭湖区第四纪环境地球化学.北京:地质出版社:124-127. 张人权, 梁杏, 靳孟贵, 2013.末次盛冰期以来河北平原第四系地下水流系统的演变.地学前缘, 20(3): 217-226. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201303026.htm 张素娥, 李志军, 孙先锋, 等, 2010.河北省地下咸水对地下淡水资源入侵影响分析.地质灾害与环境保护, 21(1): 26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201001009.htm 张宗祜, 施德鸿, 任福弘, 等, 1997.论华北平原第四系地下水系统之演化.中国科学D辑:地球科学, (2): 168-173. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199702012.htm 周炼, 刘存富, 王佩仪, 1998.河北平原第四系咸水同位素组成.水文地质工程地质, 25(3): 6-10. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDG803.001.htm -