• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    单斜辉石中石英出溶体的显微结构和成因机制

    徐海军 赵素涛 武云

    徐海军, 赵素涛, 武云, 2016. 单斜辉石中石英出溶体的显微结构和成因机制. 地球科学, 41(6): 948-970. doi: 10.3799/dqkx.2016.080
    引用本文: 徐海军, 赵素涛, 武云, 2016. 单斜辉石中石英出溶体的显微结构和成因机制. 地球科学, 41(6): 948-970. doi: 10.3799/dqkx.2016.080
    Xu Haijun, Zhao Sutao, Wu Yun, 2016. Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene. Earth Science, 41(6): 948-970. doi: 10.3799/dqkx.2016.080
    Citation: Xu Haijun, Zhao Sutao, Wu Yun, 2016. Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene. Earth Science, 41(6): 948-970. doi: 10.3799/dqkx.2016.080

    单斜辉石中石英出溶体的显微结构和成因机制

    doi: 10.3799/dqkx.2016.080
    基金项目: 

    国家自然科学基金项目 41172070

    国家自然科学基金项目 41272080

    国家自然科学基金项目 41204060

    高等学校博士学科点专项科研基金项目 20120145120003

    详细信息
      作者简介:

      徐海军(1978-),男,副教授,博士,主要从事显微构造和大陆深部构造研究.E-mail: hj_xu@sina.com

    • 中图分类号: P583; P588.34

    Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene

    • 摘要: 矿物出溶结构保存有早期母体矿物的物理化学条件信息,对其开展研究不仅有助于了解寄主岩石的来源深度,而且有助于研究减压折返的动力学演化过程.在世界许多高压-超高压带的榴辉岩和石榴辉石岩中,人们普遍发现单斜辉石中有定向排列的针状或棒状SiO2析出物,其矿物相主要为α石英,有时会伴生钙质角闪石等含水矿物.这些定向针状或棒状体通常平行于单斜辉石c[001]轴方向延伸,石英长轴可以为其c[0001]轴或a[1120]轴.电子背散射衍射(EBSD)测试结果表明,多数石英(96%)析出物与寄主单斜辉石具有结晶学取向关系:(1) 50%的石英c轴平行,并且[0001]Qz//[001]Cpx;(2)35%的石英至少有一个a轴平行,并且[1120]Qz//[001]Cpx;(3)11%的石英至少有一个s{1121}面平行,并且(1121)Qz//(100)Cpx.钙质角闪石析出物与寄主单斜辉石也具有密切结晶学取向关系:(100)Amp//(100)Cpx、[010]Amp//[010]Cpx、[001]Amp//[001]Cpx、[100]Amp∧[100]Cpx≈32°.上述定量显微构造证据表明,单斜辉石中定向石英析出物是由出溶作用所形成,并且多数石英出溶体形成于α石英稳定域.已有高温高压实验研究数据表明,单斜辉石中空位的形成和钙埃斯科拉组分(CaEs)的含量均受化学组成、压力、温度等多种因素综合影响:单斜辉石中CaEs含量对化学组成非常敏感,并受到共生矿物体系中自由SiO2相和蓝晶石的共同缓冲;相同化学组成和等压条件下,CaEs含量总体上随温度升高缓慢降低;相同化学组成和等温条件下,CaEs含量在<6 GPa区间随压力升高而增加,在>6 GPa区间随压力升高而降低.单斜辉石定向SiO2析出物的形成可能涉及多种因素,高压只是其中必要条件之一.榴辉岩质单斜辉石中“石英±角闪石”析出物很可能形成于开放体系,与熔流体活动密切相关,涉及多阶段物质扩散、晶体成核生长、重结晶、退变质反应等复杂作用过程.单斜辉石中定向SiO2析出物的显微结构特征并非超高压岩石的必要条件,这种特殊显微结构也不能作为证明超高压的充分条件.

       

    • 图  1  榴辉岩单斜辉石中石英出溶体显微照片

      a.新鲜榴辉岩矿物组合为石榴石+绿辉石+金红石,其中半自形绿辉石中含丰富石英棒状体;b.放大图像显示不同长度和宽度的石英棒状体呈定向排列,其长轴延长方向平行寄主单斜辉石c[001]方向;c.弱退变质榴辉岩矿物组合为石榴石+单斜辉石+金红石+石英+角闪石+斜长石,退变质角闪石沿着石榴子石与单斜辉石颗粒边界分布,单斜辉石中含有若干定向粗大石英棒状体和大量细小石英析出体;d.石英析出体截面呈柱状或不规则多边形状,部分石英析出体一侧伴生细小角闪石,注意角闪石+石英析出体常与粒内微裂隙相邻;e.单斜辉石内部含有大量石英±角闪石析出体和粒间与粒内微裂隙;f.放大图像显示较粗大角闪石紧邻粒内开放式裂隙.a,b来自南大别双河新鲜榴辉岩(RP-28);c,d,e,f来自苏鲁威海刘公岛弱退变质榴辉岩(WH08-4).a,b,c为光学显微镜单偏光图像;d,e,f为扫描电镜电子背散射图像;Amp.角闪石;Cpx.单斜辉石;Grt.石榴子石;Qz.石英;Rt.金红石

      Fig.  1.  Photographs showing parageneses and textures of clinopyroxene with quartz precipitations in eclogite

      图  2  天然榴辉岩单斜辉石中主量元素和端元组分对应关系

      a.单斜辉石中Na2O-Al2O3质量百分比对应关系;b.单斜辉石单位分子中Na-Si原子数对应关系;c.钙切尔马克(CaTs)分子与硬玉(Jd)分子对应关系;d.钙埃斯科拉(CaEs)分子与硬玉(Jd)分子对应关系.电子探针数据据Katayama et al.(2000)Tsai and Liou(2000)Dobrzhinetskaya et al.(2002)Page et al.(2005)梁金龙等(2006)Proyer et al.(2009)Xu et al.(2015)

      Fig.  2.  Relations for major element and end-number contents in clinopyroxene from natural eclogites

      图  3  威海榴辉岩(WH08-4) 电子背散射照片和Si、Na、Al、Mg、Ca元素面分布照片

      Fig.  3.  BSE image and Si, Na, Al, Mg and Ca mappings of eclogite (WH08-4) from Weihai, eastern China

      图  4  高温高压实验合成单斜辉石中CaEs和Si含量变化

      a.CaEs摩尔含量随压力变化;b.Si原子数随压力变化;c.CaEs摩尔含量随温度变化;d.Si原子数随温度变化;e.CaEs摩尔含量与总阳离子数对应关系;f.Si与Al原子数对应关系;g.CaEs摩尔含量与Si原子数对应关系;h.Si与Na+K原子数对应关系.数据引自Wood and Henderson(1978)Gasparik(1985, 1986)、Zhao et al.(2011)Kawasaki and Osanai(2015)

      Fig.  4.  Variation of CaEs component and Si cation per formula unit in clinopyroxene synthesized in high pressure and high temperature experiments

      图  5  石英和角闪石析出体与寄主单斜辉石结晶学取向对应关系

      a.单斜辉石中角闪石析出体结晶学取向上半球散点图;b.单斜辉石中石英析出体结晶学取向上半球散点图;c.石英析出体结晶学取向反极图.EBSD测量数据来自两块榴辉岩:南大别双河新鲜榴辉岩(RP-28,170 Qz in 17 Cpx)和苏鲁威海刘公岛弱退变质榴辉岩(WH08-4,53 Amp and 2 015 Qz in 35 Cpx).为获得统计对比分析结果,所有寄主单斜辉石均旋转到同一取向,石英和角闪石的结晶学取向则随寄主单斜辉石作协同旋转.单斜辉石的结晶学参考坐标已在上半球等角度散点图中标出,即[001]cpx位于南北方向,[010]cpx位于东西方向,(100)cpx位于圆心.石英反极图分别沿着//[010]cpx,//[001]cpx和⊥(100)cpx三个方向投影

      Fig.  5.  Diagnostic crystallographic topotactic relationships between quartz and amphibole precipitates and host clinopyroxene

      图  6  单斜辉石析出石英+角闪石的可能模式

      a.超高压环境条件下,在柯石英稳定域内,超硅单斜辉石可以含有过量硅和一定空位;b.随着压力降低,亚稳态超硅单斜辉石释放出少量硅,这些析出硅在单斜辉石核部结晶生长;c.随着压力和温度进一步降低,在α石英稳定域,单斜辉石在开放体系熔流体活动的促进下丢失Na等化学组分,同时伴有大量硅析出并在单斜辉石核部结晶生长出大量α石英微晶;d.在α石英稳定域,早期石英微晶重结晶形成较为粗大的定向棒状体,并伴随后续硅的析出和结晶形成微细石英针状体;e.在裂隙附近,单斜辉石和石英析出体受熔流体活动影响,发生退变质反应形成石英+角闪石特殊结构

      Fig.  6.  Possible quartz+amphibole precipitate formation model in clinopyroxene

    • Bakun-Czubarow, N., 1992.Quartz Pseudomorphs after Coesite and Quartz Exsolutions in Eclogitic Omphacites of the Zlote Mountains in the Sudetes (SW Poland).Archiwum Mineralogiczne, 48:3-25. doi: 10.1007/s12583-010-0130-0
      Boudeulle, M., 1994.Disproportionation in Mineral Solid Solutions:Symmetry Constraints on Precipitate Orientation and Morphology.Implications for the Study of Oriented Intergrowths.Journal of Applied Crystallography, 27(4):567-573.doi: 10.1107/S0021889894000750
      Bruno, M., Compagnoni, R., Hirajima, T., et al., 2002.Jadeite with the Ca-Eskola Molecule from an Ultra-High Pressure Metagranodiorite, Dora-Maira Massif, Western Alps.Contributions to Mineralogy and Petrology, 142(5):515-519.doi: 10.1007/s004100100307
      Chen, J., Xu, Z.Q., 2005.Pargasite and Ilmenite Exsolution Texture in Clinopyroxenes from the Hujialing Garnet-Pyroxenite, Su-Lu UHP Terrane, Central China:A Geodynamic Implication.European Journal of Mineralogy, 17(6):895-903.doi: 10.1127/0935-1221/2005/0017-0895
      Chopin, C., 1984.Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps:A First Record and Some Consequences.Contributions to Mineralogy and Petrology, 86(2):107-118.doi: 10.1007/BF00381838
      Day, H.W., Mulcahy, S.R., 2007.Excess Silica in Omphacite and the Formation of Free Silica in Eclogite.Journal of Metamorphic Geology, 25(1):37-50.doi: 10.1111/j.1525-1314.2006.00677.x
      Dobrzhinetskaya, L.F., Schweinehage, R., Massonne, H. J., et al., 2002.Silica Precipitates in Omphacite from Eclogite at Alpe Arami, Switzerland:Evidence of Deep Subduction.Journal of Metamorphic Geology, 20(5):481-492.doi: 10.1046/j.1525-1314.2002.00383.x
      Dobrzhinetskaya, L.F., Wirth, R., Rhede, D., et al., 2009.Phlogopite and Quartz Lamellae in Diamond-Bearing Diopside from Marbles of the Kokchetav Massif, Kazakhstan:Exsolution or Replacement Reaction?Journal of Metamorphic Geology, 27(9):607-620.doi: 10.1111/j.1525-1314.2009.00832.x
      Dobrzhinetskaya, L.F., Faryad, S.W., 2011.Frontiers of Ultrahigh-Pressure Metamorphism:View from Field and Laboratory.In:Dobrzhinetskaya, L.F., Faryad, S.W., Wallis, S., Cuthbert, S., eds., Ultrahigh-Pressure Metamorphism:25 Years After The Discovery of Coesite And Diamond.Elsevier, London, 1-39.doi:10.1016/B978-0-12-385144-4.00020-5
      Eskola, P., 1921.On the Eclogites of Norway.Videnskaps-selskapets i Kristiana Skrifter I.Matamatisk-Naturvi-denskabelig Klasse, 8:1-118.
      Franchi, S., 1902.Ueber Feldspath-Uralitisirung der Natron-thonerde-Pyroxene aus den eklogitischen Glimmerschiefern der Gebirge von Biella (Graiische Alpen).Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie, 1902:112-126 (in French). https://www.researchgate.net/publication/223579660_Eclogites_and_their_geodynamic_interpretation_A_history
      Gasparik, T., 1985.Experimental Study of Subsolidus Phase Relations and Mixing Properties of Pyroxene and Plagioclase in the System Na2O-CaO-Al2O3-SiO2.Contributions to Mineralogy and Petrology, 89(4):346-357.doi: 10.1007/BF00381556
      Gasparik, T., 1986.Experimental Study of Subsolidus Phase Relations and Mixing Properties of Clinopyroxene in the Silica-Saturated System CaO-MgO-Al2O3-SiO2.American Mineralogist, 71(5-6):686-693. https://www.researchgate.net/publication/282312774_Experimental_study_of_subsolidus_phase_relations_and_mixing_properties_of_clinopyroxene_in_the_silica-saturated_system_CaO-MgO-Al2O3-Si2O
      Gayk, T., Kleinschrodt, R., Langosch, A., et al., 1995.Quartz Exsolution in Clinopyroxene of High-Pressure Granulite from the Münchberg Massif.European Journal of Mineralogy, 7(5):1217-1220.doi: 10.1127/ejm/7/5/1217
      Green, H.W., Dobrzhinetskaya, L., Bozhilov, K.N., 2000.Mineralogical and Experimental Evidence for Very Deep Exhumation from Subduction Zones.Journal of Geodynamics, 30(1-2):61-76.doi: 10.1016/S0264-3707(99)00027-7
      Harlow, G.E., 1999.Interpretation of Kcpx and CaEs Components in Clinopyroxene from Diamond Inclusions and Mantle Samples.In:Gurney J.J., Gurney J.L., Pascoe M.D., Richardson S.H., eds., Proceedings of the Seventh International Kimberlite Conference.Red Roof Design, Cape Town, 321-331.
      Hermann, J., 2002.Experimental Constraints on Phase Relations in Subducted Continental Crust.Contributions to Mineralogy and Petrology, 143(2):219-235.doi: 10.1007/s00410-001-0336-3
      Hill, T.R., Konishi, H., Xu, H.F., 2013.Natural Occurrence of Keatite Precipitates in UHP Clinopyroxene from the Kokchetav Massif:A TEM Investigation.American Mineralogist, 98(1):187-196.doi: 10.2138/am.2013.4170
      Irifune, T., Sekine, T., Ringwood, A.E., et al., 1986.The Eclogite-Garnetite Transformation at High Pressure and Some Geophysical Implication.Earth and Planetary Science Letters, 77(2):245-256.doi: 10.1016/0012-821X(86)90165-2
      Isaacs, A.M., Brown, P.E., Valley, J.W., et al., 1981.An Analytical Electron Microscopic Study of A Pyroxene-Amphibole Intergrowth.Contributions to Mineralogy and Petrology, 77(2):115-120.doi: 10.1007/BF00636515
      Janák, M., Froitzheim, N., Lupták, B., et al., 2004.First Evidence for Ultrahigh-Pressure Metamorphism of Eclogites in Pohorje, Slovenia:Tracing Deep Continental Subduction in the Eastern Alps.Tectonics, 23, TC5014, doi: 10.1029/2004TC001641
      Katayama, I., Parkinson, C.D., Okamoto, K., et al., 2000.Supersilicic Clinopyroxene and Silica Exsolution in UHPM Eclogite and Pelitic Gneiss from the Kokchetav Massif, Kazakhstan.American Mineralogist, 85(10):1368-1374.doi: 10.2138/am-2000-1004
      Kawasaki, T., Osanai, Y., 2015.Experimental Evidence of Bulk Chemistry Constraint on SiO2 Solubility in Clinopyroxene at High-Pressure Conditions.Lithos, 226:4-16.doi: 10.1016/j.lithos.2015.01.025
      Khanukhova, L.T., Zharikov, V.A., Ishbuatov, R.A., et al., 1976.Excess silica in Solid-Solution of High-Pressure Clinopyroxenes as Shown by Experimental Study of the System CaMgSi2O6-CaAl2SiO6 at 35 Kilobars and 1 200 ℃.Trans.Doklady Akademii Nauk SSSR, Earth Sciences Section, 229:170-172. http://www.sciencedirect.com/science/article/pii/S002449371500033X
      Kihle, J., Harlov, D.E., Frigaard, ∅., et al., 2010.Epitaxial Quartz Inclusions in Corundum from A Sapphirine-Garnet Boudin, Bamble Sector, SE Norway:SiO2-Al2O3 Miscibility at High P-T Dry Granulite Facies Conditions.Journal of Metamorphic Geology, 28(7):769-784.doi: 10.1111/j.1525-1314.2010.00891.x
      Klemd, R., 2003.Ultrahigh-Pressure Metamorphism in Eclogites from the Western Tianshan High-Pressure Belt (Xinjiang, Western China)—Comment.American Mineralogist, 88(7):1153-1156. https://www.researchgate.net/publication/216831987_Ultrahigh-pressure_metamorphism_in_eclogites_from_the_western_Tianshan_high-pressure_belt_Xinjiang_western_China-Comment
      Knapp, N., Woodland, A.B., Klimm, K., 2013.Experimental Constraints in the CMAS System on the Ca-Eskola Content of Eclogitic Clinopyroxene.European Journal of Mineralogy, 25(4):579-596.doi: 10.1127/0935-1221/2013/0025-2326
      Konzett, J., Frost, D.J., Proyer, A., et al., 2008a.The Ca-Eskola Component in Eclogitic Clinopyroxene as a Function of Pressure, Temperature and Bulk Composition:An Experimental Study to 15 GPa with Possible Implications for the Formation of Oriented SiO2-Inclusions in Omphacite.Contributions to Mineralogy and Petrology, 155(2):215-228.doi: 10.1007/s00410-007-0238-0
      Konzett, J., Libowitzky, E., Hejny, C., et al., 2008b.Oriented Quartz+Calcic Amphibole Inclusions in Omphacite from the Saualpe and Pohorje Mountain Eclogites, Eastern Alps—An Assessment of Possible Formation Mechanisms based on IR-and Mineral Chemical Data and Water Storage in Eastern Alpine Eclogites.Lithos, 106(3-4):336-350.doi: 10.1016/j.lithos.2008.09.002
      Kushiro, I., 1969.Clinopyroxene Solid Solutions Formed by Reactions between Diopside and Plagioclase at High Pressures.Mineralogical Society of America, Special Publication, 2:179-191. doi: 10.1134/S0016702907060055
      Leake, B.E., 1997.Nomenclature of Amphiboles:Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names.American Mineralogist, 82(9-10):1019-1037. http://www.canmin.org/content/41/6/1355.abstract
      Liang, J.L., Sun, X.M., Xu, L., et al., 2006.Quartz Exsolution in Omphacite of Ultrahigh Pressure Metamorphic Rocks from CCSD.Acta Geologica Sinica, 80(12):1904-1910 (in Chinese with English abstract). doi: 10.1080/00206819909465184
      Liati, A., Gebauer, D., Wysoczanski, R., 2002.U-Pb SHRIMP-Dating of Zircon Domains from UHP Garnet-Rich Mafic Rocks and Late Pegmatoids in the Rhodope Zone (N Greece):Evidence for Early Cretaceous Crystallization and Late Cretaceous Metamorphism.Chemical Geology, 184(3-4):281-299.doi: 10.1016/S0009-2541(01)00367-9
      Liou, J.G., Zhang, R.Y., Ernst, W.G., et al., 1998.High-Pressure Minerals from Deeply Subducted Metamorphic Rocks.Reviews in Mineralogy and Geochemistry, 37(1):33-96. http://cat.inist.fr/?aModele=afficheN&cpsidt=9898504
      Liu, L., Zhang, J.F., Green, H.W., et al., 2007.Evidence of Former Stishovite in Metamorphosed Sediments, Implying Subduction to > 350 km.Earth and Planetary Science Letters, 263(3-4):180-191.doi: 10.1016/j.epsl.2007.08.010
      Liu, L., Yang, J.X., Zhang, J.F., et al., 2009.Exsolution Microstructures in Ultrahigh-Pressure Rocks:Progress, Controversies and Challenges.Chinese Science Bulletin, 54(10):1387-1400 (in Chinese). doi: 10.1007/s11434-009-0204-5
      Liu, X.W., Jin, Z.M., 2008.Amphibole and Albite Exsolution in Omphacite of Eclogite from Raobazhai.Bulletin of Mineralogy, Petrology and Geochemistry, 27:379-380 (in Chinese). https://www.researchgate.net/publication/292769927_The_exsolution_of_clinoenstatite_and_quartz_in_diopside_from_garnet_pyroxenite_in_northern_Dabie
      Liu, Y.C., Gu, X.F., Chen, Z.Y., 2009.Breakdown Textures and Ultrahigh Pressure Metamorphism of the Eclogites from the Luotian Dome in the North Dabie Complex.Chinese Journal of Geology, 44(1):202-212 (in Chinese with English abstract). https://www.researchgate.net/publication/288738680_Breakdown_textures_and_ultrahigh-pressure_metamorphism_of_the_eclogites_from_the_Luotian_Dome_in_the_North_Dabie_Complex
      Liu, Y.C., Gu, X.F., Rolfo, F., et al., 2011.Ultrahigh-Pressure Metamorphism and Multistage Exhumation of Eclogite of the Luotian Dome, North Dabie Complex Zone (Central China):Evidence from Mineral Inclusions and Decompression Textures.Journal of Asian Earth Sciences, 42(4):607-617.doi: 10.1016/j.jseaes.2010.10.016
      Mao, H.K., 1971.The System Jadeite (NaAlSi2O6)-Anorthite (CaAl2Si2O8) at High Pressures.Year book-Carnegie Institution of Washington, 69:163-168. https://www.researchgate.net/publication/286316481_Pressure_dependence_of_self-diffusion_in_NaAlSi3O8_melt_A_molecular_dynamics_study
      McCormick, T.C., 1986.Crystal-Chemical Aspects of Nonstoichiometric Pyroxenes.American Mineralogist, 71(11-12):1434-1440. https://www.researchgate.net/publication/279559395_Crystal-chemical_aspects_of_nonstoichiometric_pyroxenes
      McNamara, D.D., Wheeler, J., Pearce, M., et al., 2012.Fabrics Produced Mimetically during Static Metamorphism in Retrogressed Eclogites from the Zermatt-Saas Zone, Western Italian Alps.Journal of Structural Geology, 44:167-178.doi: 10.1016/j.jsg.2012.08.006
      Milholland, C.S., Presnall, D.C., 1998.Liquidus Phase Relations in the CaO-MgO-Al2O3-SiO2 System at 3.0 GPa:The Aluminous Pyroxene Thermal Divide and High-Pressure Fractionation of Picritic and Komatiitic Magmas.Journal of Petrology, 39(1):3-27.doi: 10.1093/petroj/39.1.3
      Miller, C., Mundil, R., Thöni, M., et al., 2005.Refining the Timing of Eclogite Metamorphism:A Geochemical, Petrological, Sm-Nd and U-Pb Case Study from the Pohorje Mountains, Slovenia (Eastern Alps).Contributions to Mineralogy and Petrology, 150(1):70-84.doi: 10.1007/s00410-005-0004-0
      Mori, T., Green, D.H., 1976.Subsolidus Equilibria between Pyroxenes in the CaO-MgO-SiO2 System at High Pressures and Temperatures.American Mineralogist, 61:616-625. https://www.researchgate.net/profile/David_Green11/publication/236383966_Subsolidus_equilibria_between_pyroxenes_in_the_CaO-MgO-SiO2_system_at_high_pressures_and_temperatures/links/00b7d52531d4e9bc68000000.pdf?origin=publication_detail
      Ono, S., Yasuda, A., 1996.Compositional Change of Majoritic Garnet in a MORB Composition from 7 to 17 GPa and 1 400 to 1 600 ℃.Physics of the Earth and Planetary Interiors, 96(2-3):171-179.doi: 10.1016/0031-9201(96)03149-4
      Page, F.Z., Essene, E.J., Mukasa, S.B., 2003.Prograde and Retrograde History of Eclogites from the Eastern Blue Ridge, North Carolina, USA.Journal of Metamorphic Geology, 21(7):685-698.doi: 10.1046/j.1525-1314.2003.00479.x
      Page, F.Z., Essene, E.J., Mukasa, S.B., 2005.Quartz Exsolution in Clinopyroxene Is Not Proof of Ultrahigh Pressures:Evidence from Eclogites from the Eastern Blue Ridge, Southern Appalachians, U.S.A.American Mineralogist, 90(7):1092-1099.doi: 10.2138/am.2005.1761
      Papike, J.J., Ross, M., Clark, J.R., 1969.Crystal Chemical Characterization of Amphiboles based on Five New Structure Determinations.Mineralogical Society of America Special Paper, 2:117-136. http://www.sciencedirect.com/science/article/pii/0024493773900868
      Prior, D.J., Boyle, A.P., Brenker, F., et al., 1999.The Application of Electron Backscatter Diffraction and Orientation Contrast Imaging in the SEM to Textural Problems in Rocks.American Mineralogist, 84(11-12):1741-1759. doi: 10.2138/am-1999-11-1204
      Proyer, A., Habler, G., Abart, R., et al., 2013.TiO2 Exsolution from Garnet by Open-System Precipitation:Evidence from Crystallographic and Shape Preferred Orientation of Rutile Inclusions.Contributions to Mineralogy and Petrology, 166(1):211-234.doi: 10.1007/s00410-013-0872-7
      Proyer, A., Krenn, K., Hoinkes, G., 2009.Oriented Precipitates of Quartz and Amphibole in Clinopyroxene of Metabasites from the Greek Rhodope:A Product of Open System Precipitation during Eclogite-Granulite-Amphibolite Transition.Journal of Metamorphic Geology, 27(9):639-654.doi: 10.1111/j.1525-1314.2009.00844.x
      Proyer, A., McCammon, C., Dachs, E., 2004.Pitfalls in Geothermobarometry of Eclogites:Fe3+ and Changes in the Mineral Chemistry of Omphacite at Ultrahigh Pressures.Contributions to Mineralogy and Petrology, 147(3):305-318.doi: 10.1007/s00410-004-0554-6
      Safonov, O.G., Perchuk, L.L., Litvin, Y.A., et al., 2005.Phase Relations in the CaMgSi2O6-KAlSi3O8 Join at 6 and 3.5 GPa as a Model for Formation of Some Potassium-Bearing Deep-Seated Mineral Assemblages.Contributions to Mineralogy and Petrology, 149(3):316-337.doi: 10.1007/s00410-005-0651-1
      Shau, Y. H., Tsai, H. C., Liu, Y. H., et al., 2005.Transmission Electron Microscopic Study of Quartz Rods with Intergrown Amphibole within Omphacite in Eclogites from the Sulu Ultrahigh-Pressure Metamorphic Terrane, Eastern China.7th International Eclogite Conference, Leibnitz, 150:139.
      Smith, D.C., 1984.Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics.Nature, 310(5979):641-644.doi: 10.1038/310641a0
      Smith, D.C., 1988.A Review of the Peculiar Mineralogy of the "Norwegian Coesite-Eclogite Province", with Crystal-Chemical, Petrological, Geochemical and Geodynamical Notes and an Extensive Bibliography.In:Smith, D.C., ed., Eclogites and Eclogite-Facies Rocks, Developments in Petrology.Elsevier, Amsterdam.
      Smith, D.C., 2006.The SHAND Quaternary System for Evaluating the Supersilicic or Subsilicic Crystal-Chemistry of Eclogite Minerals, and Potential New UHPM Pyroxene and Garnet End-Members.Mineralogy and Petrology, 88(1-2):87-122.doi: 10.1007/s00710-006-0151-7
      Smith, D.C., Cheeney, R.F., 1980.Oriented Needles of Quartz in Clinopyroxene:Evidence for Exsolution of SiO2 from a Non-Stoichiometric Supersilicic "Clinopyroxene".26th International Geological Congress, Paris.
      Smith, P.P.K., 1977.An Electron Microscopic Study of Amphibole Lamellae in Augite.Contributions to Mineralogy and Petrology, 59(3):317-322.doi: 10.1007/BF00374560
      Smyth, J.R., 1980.Cation Vacancies and the Crystal Chemistry of Breakdown Reactions in Kimberlitic Omphacite.American Mineralogist, 65(11-12):1185-1191. http://www.osti.gov/scitech/biblio/6636513
      Sobolev, N.V., Kuznetsova, I.K., Zyuzin, N.I., 1968.The Petrology of Grospydite Xenoliths from Zagodochnaya Kimberlite Pipe in Yakutia.Journal of Petrology, 9(2):253-280.doi: 10.1093/petrology/9.2.253
      Sobolev, N.V., Shatsky, V.S., 1990.Diamond Inclusions in Garnets from Metamorphic Rocks:A New Environment for Diamond Formation.Nature, 343(6260):742-746.doi: 10.1038/343742a0
      Su, W., You, Z.D., Wang, R.C., et al., 2001.Quartz and Clinoenstatite Exsolutions in Clinopyroxene of Garnet-Pyroxenolite from the North Dabie Mountains, Eastern China.Chinese Science Bulletin, 46(10):850-853 (in Chinese). doi: 10.1007/BF02900437
      Terry, M.P., Robinson, P., 2001.Evidence for Supersilicic Pyroxene in an UHP Kyanite Eclogite, Western Gneiss Region, Norway.Eleventh Annual V.M.Goldschmidt Conference, Hot Springs. https://www.researchgate.net/publication/216831880_Evidence_for_supersilicic_pyroxene_in_an_UHP_kyanite_eclogite_Western_Gneiss_Region_Norway
      Tsai, C.H., Liou, J.G., 2000.Eclogite-Facies Relics and Inferred Ultrahigh-Pressure Metamorphism in the North Dabie Complex, Central-Eastern China.American Mineralogist, 85(1):1-8.doi: 10.2138/am-2000-0101
      Tsai, H.C., 2005.Mineral Precipitates in Eclogites from Donghai in the Sulu Ultrahigh-Pressure Province, Eastern China (Dissertation).National Sun Yat-sen University, Gaoxiong:46-103 (in Chinese with English abstract). http://www.openthesis.org/documents/Mineral-precipitates-in-eclogites-from-232203.html
      Vogel, D.E., 1966.Nature and Chemistry of the Formation of Clinopyroxene-Plagioclase Symplectite from Omphacite.Neues Jahrbuch für Mineralogie-Monatshefte, 6:185-189. doi: 10.1007/BF01829368
      Wang, L., Jin, Z.M., He, M.C., 2003.Raman Spectrum Study on Quartz Exsolution in Omphacite from Eclogite and Its Tectonic Significances.Earth Science, 28(2):143-150 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zddy200302002&dbname=CJFD&dbcode=CJFQ
      Wenk, H.R., Chen, K., Smith, R., 2011.Morphology and Microstructure of Magnetite and Ilmenite Inclusions in Plagioclase from Adirondack Anorthositic Gneiss.American Mineralogist, 96(8-9):1316-1324.doi: 10.2138/am.2011.3760
      Wood, B.J., Henderson, C.M.B., 1978.Composition and Unit-Cell Parameters of Synthetic Non-Stoichiometric Tschermakitic Clinopyroxenes.American Mineralogist, 63(1-2):66-72. http://ammin.geoscienceworld.org/content/63/1-2/66
      Xu, H.J., Jin, S.Y., Zheng, B.R., 2007.New Technique of Petrofabric:Electron Backscatter Diffraction (EBSD).Geoscience, 21(2):213-225 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200702006.htm
      Xu, H.J., Zhang, J.F., Zong, K.Q., et al., 2015.Quartz Exsolution Topotaxy in Clinopyroxene from the UHP Eclogite of Weihai, China.Lithos, 226:17-30.doi: 10.1016/j.lithos.2015.02.010
      Xu, S.T., Su, W., Liu, Y.C., et al., 1992.Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting.Science, 256(5053):80-82.doi: 10.1126/science.256.5053.80
      Yamaguchi, Y., Akai, J., Tomita, K., 1978.Clinoamphibole Lamellae in Diopside of Garnet Lherzolite from Alpe Arami, Bellinzona, Switzerland.Contributions to Mineralogy and Petrology, 66(3):263-270.doi: 10.1007/BF00373410
      You, Z.D., Zhong, Z.Q., Suo, S.T., 2007.The Mineralogical Criteria for Ultra-High Pressure Metamorphism.Geoscience, 21(2):195-202 (in Chinese with English abstract). https://en.wikipedia.org/wiki/Ultra-high-pressure_metamorphism
      Zhang, J.F., Xu, H.J., Liu, Q., et al., 2011a.Pyroxene Exsolution Topotaxy in Majoritic Garnet from 250 to 300 km Depth.Journal of Metamorphic Geology, 29(7):741-751.doi: 10.1111/j.1525-1314.2011.00939.x
      Zhang, Z.M., Shen, K., Liou, J.G., et al., 2011b.Fluid-Rock Interactions during UHP Metamorphism:A Review of the Dabie-Sulu Orogen, East-Central China.Journal of Asian Earth Sciences, 42(3):316-329.doi: 10.1016/j.jseaes.2011.02.002
      Zhang, L.F., Ellis, D.J., Jiang, W.B., 2002.Ultrahigh-Pressure Metamorphism in Western Tianshan, China:Part Ⅰ.Evidence from Inclusions of Coesite Pseudomorphs in Garnet and from Quartz Exsolution Lamellae in Omphacite in Eclogites.American Mineralogist, 87(7):853-860.doi: 10.2138/am-2002-0707
      Zhang, L.F., Song, S.G., Liou, J.G., et al., 2005.Relict Coesite Exsolution in Omphacite from Western Tianshan Eclogites, China.American Mineralogist, 90(1):181-186.doi: 10.2138/am.2005.1587
      Zhang, R.Y., Liou, J.G., 1999.Exolution Lamellae in Minerals from Ultrahigh-Pressure Rocks.International Geology Review, 41:981-993.doi: 10.1080/00206819909465184
      Zhang, Z.M., Shen, K., Liou, J.G., et al., 2007.Fluid Inclusions Associated with Exsolved Quartz Needles in Omphacite of UHP Eclogites, Chinese Continental Scientific Drilling Main Drill Hole.International Geology Review, 49(5):479-486.doi: 10.2747/0020-6814.49.5.479
      Zhao, S.T, Nee, P., Green, H.W., et al., 2011.Ca-Eskola Component in Clinopyroxene:Experimental Studies at High Pressures and High Temperatures in Multianvil Apparatus.Earth and Planetary Science Letters, 307(3-4):517-524.doi: 10.1016/j.epsl.2011.05.026
      Zharikov, V.A., Ishbulatov, R.A., Chudinovskikh, L.T., 1984.High Pressure Clinopyroxenes and the Eclogite Barrier.Soviet Geology and Geophysics, 25:53-61. https://www.mindat.org/min-7630.html
      Zheng, Y.F., Zhang, L.L., Liu, L., et al., 2013.Progress in the Study of Continental Deep Subduction and Ultrahigh Pressure Metamorphism.Bulletin of Mineralogy, Petrology and Geochemistry, 32(2):135-158 (in Chinese with English abstract). http://www.eurekalert.org/pub_releases/2013-09/scp-scp091113.php
      Zhu, Y.F., Ogasawara, Y., 2002.Phlogopite and Coesite Exsolution from Super-Silicic Clinopyroxene.International Geology Review, 44(9):831-836.doi: 10.2747/0020-6814.44.9.831
      梁金龙, 孙晓明, 徐莉, 等, 2006.CCSD超高压变质岩绿辉石中的石英出溶体及其大陆动力学意义.地质学报, 80(12): 1904-1910. doi: 10.3321/j.issn:0001-5717.2006.12.013
      刘良, 杨家喜, 章军锋, 等, 2009.超高压岩石中矿物显微出溶结构研究进展、面临问题与挑战.科学通报, 54(10): 1387-1400. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200910011.htm
      刘祥文, 金振民, 2008.饶拔寨榴辉岩绿辉石中镁铁闪石及单斜钠长石出溶体.矿物岩石地球化学通报, 27: 379-380. doi: 10.3969/j.issn.1007-2802.2008.z1.203
      刘贻灿, 古晓锋, 陈振宇, 2009.北大别罗田榴辉岩的减压出溶结构与超高压变质作用.地质科学, 44(1): 202-212. http://cdmd.cnki.com.cn/Article/CDMD-10358-1013178601.htm
      苏文, 游振东, 王汝成, 等, 2001.大别山北部石榴辉石岩透辉石中石英和单斜顽火辉石的出溶.科学通报, 46(10): 850-853. doi: 10.3321/j.issn:0023-074X.2001.10.015
      蔡宪璋, 2005. 中国苏鲁超高压变质带东海地区榴辉岩之矿物析出物研究(硕士学位论文). 高雄: 国立中山大学, 46-103.
      王璐, 金振民, 何谋春, 2003.榴辉岩中石英出溶体的拉曼光谱学研究及其构造意义.地球科学, 28(2): 143-150. http://earth-science.net/WebPage/Article.aspx?id=1227
      徐海军, 金淑燕, 郑伯让, 2007.岩石组构学研究的最新技术——电子背散射衍射(EBSD).现代地质, 21(2): 213-225. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702006.htm
      游振东, 钟増球, 索书田, 2007.论超高压变质的矿物学标志.现代地质, 21(2): 195-202. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200702004.htm
      郑永飞, 张立飞, 刘良, 等, 2013.大陆深俯冲与超高压变质研究进展.矿物岩石地球化学通报, 32(2): 135-158. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201302001.htm
    • 加载中
    图(6)
    计量
    • 文章访问数:  5703
    • HTML全文浏览量:  2280
    • PDF下载量:  39
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-01-25
    • 刊出日期:  2016-06-15

    目录

      /

      返回文章
      返回