EMPA Chemical U-Th-Pb Dating of Uraninite in Ziyunshan Granite, Centre Jiangxi Province
-
摘要: 紫云山岩体是赣中地区与钨铀成矿关系极为密切的过铝质花岗岩体,但目前该岩体的成岩时代尚不明确.通过偏光显微镜、扫描电镜、电子探针等手段,首次开展了紫云山花岗岩中赋存晶质铀矿的精细矿物学研究.结果表明:晶质铀矿主要赋存于黑云母之中,少数被黄铁矿包裹,部分晶质铀矿被不同程度溶蚀和交代,表明晶质铀矿是本区花岗岩型铀矿的主要铀源矿物之一.利用电子探针U-Th-Pb化学定年法测得蕉坑单元 (J3J)5颗晶质铀矿年龄为154.5~168.9 Ma,加权平均年龄为161.8±2.4 Ma (MSWD=0.26,n=26),庙前单元 (J3M) 三颗晶质铀矿年龄为152.8~164.7 Ma,加权平均年龄为159.7±3.2 Ma (MSWD=0.2,n=15).获得的年龄与南岭地区主要含钨花岗岩的侵入时间高度一致,对应华南中生代大规模岩浆活动的第二阶段.晶质铀矿年龄与华南含钨花岗岩锆石U-Pb年龄非常一致,验证了过铝质富铀花岗岩中晶质铀矿电子探针定年方法的可行性.Abstract: The Ziyunshan peraluminous granite, located in central Jiangxi Province is closely related to uranium and tungsten mineralization. In order to obtain the accurate age of this granite, the electron microscope, SEM and EMPA were firstly used to study uraninites in the Ziyunshan granite in this study. Results show that most of the uraninites are wrapped in biotite or muscovitized biotite, and only one is surrounded by pyrite. Some uraninite grains have been fractured or altered, which indicates uraninite is one of the most important uranium source minerals of granite type uranium deposits in this area. Five uraninite grains electron microprobe U-Th-Pb dating results in the Jiaokeng unit (J3J) are between 154.5 Ma and 168.9 Ma, the weighted average age is 161.8±2.4 Ma (MSWD=0.26, n=26). Chemical ages of three uraninite grains in the Miaoqian unit (J3M) are between 152.8 Ma and 164.7 Ma, the weighted average age is 159.7±3.2 Ma (MSWD=0.2, n=15). Chemical ages obtained here are very consistent with W-bearing granites in the South China. It is confirmed that uraninite EMPA chemical dating is a suitable method for U-fertile peraluminous granites.
-
Key words:
- uraninite /
- uranium-source minerals /
- EMPA chemical dating /
- Ziyunshan granite /
- central Jiangxi Province /
- mineralogy
-
紫云山岩体位于江西中部,是典型的既产铀又产钨的花岗质岩体,前人对紫云山岩体开展的研究工作不多 (李光来等, 2011; 刘颖, 2013; 唐傲等, 2015).李光来等 (2011)曾对紫云山岩体北部外接触带上发育的徐山钨铜矿开展过单颗粒白云母Rb-Sr测年工作,获得钨矿的成矿年龄为147.1±3.4 Ma;刘颖 (2013)对紫云山花岗岩进行了研究,测得锆石U-Pb年龄为153~158 Ma,但由于受到铀含量较高的影响,分析显示锆石中铀含量最高可达0.03,年龄协和度较差,误差也较大;唐傲等 (2015)对紫云山岩体的黑云母开展过详细研究,显示该花岗岩为典型的过铝质花岗岩.本文在前人研究的基础上,对紫云山花岗岩中的晶质铀矿开展了精细矿物学研究,在查明晶质铀矿赋存状态、形态特征以及次生变化的同时,尝试利用电子探针对晶质铀矿开展了原位U-Th-Pb化学定年,厘定了紫云山花岗岩的成岩年龄,介绍了花岗岩中晶质铀矿的寻找方法,探讨了过铝质富铀花岗岩 (uranium-fertile granite) 晶质铀矿电子探针测年的可行性.
1. 地质概况
如图 1所示,紫云山花岗岩大地构造位置处于华夏板块和扬子板块结合部位中东部 (于根生和肖柯才,1986),江南古陆南缘,华南加里东褶皱带武功山隆起东端 (Yan et al., 2003).区内出露地层以震旦系为主,其次为三叠系、白垩系及第四系.震旦系地层主要为浅海相沉积的泥岩、砂岩,具有地槽相复理石建造,经变质后主要以片岩、千枚岩、变质砂岩为主.褶皱、断裂构造发育,褶皱主要为倾伏的罗山复式背斜以及两翼发育的一系列褶皱,轴向北东,并向南西倾伏,紫云山岩体占据罗山复式背斜核部及倾伏端.断裂主要以北东向为主,倾向南东,少数倾向北西,多属于逆断层,断层规模较大,延伸较长.区内岩浆岩活动频繁,呈现出多期次多阶段性的特征.岩体不同部位发育有不同程度的蚀变,主要有绿泥石化、绢云母化、云英岩化、碳酸盐化.在岩体北部外接触带发育有大型的徐山钨铜矿,在岩体东侧还发育有卸元钨钼矿,在岩体西南侧发育有明溪铀矿.根据成分及岩石结构的差异,可将紫云山岩体划分为3种不同的相带,及外部带、过渡带、内部带,依次分别为庙前单元 (J3M)、焦坑单元 (J3J)、窑里单元 (J3Y),各单元之间呈脉动接触关系.
图 1 紫云山岩体地质简图1.第四系;2.白垩系;3.三叠系;4.震旦系;5.万源岩组;6.蕉坑单元花岗岩;7.庙前单元花岗岩;8.瑶里单元花岗岩;9.断层;10.构造边界;11.水库.图a据Yan et al.(2003)修改Fig. 1. Geological sketch of the Ziyunshan pluton2. 样品及分析方法
2.1 样品特征
本次试验样品取自3个单元较为新鲜的花岗岩.焦坑单元 (J3J) 岩性为二云母二长花岗岩,灰白色,块状构造,中粗粒花岗结构,主要由斜长石、微斜长石、石英、白云母、黑云母等矿物组成,黑云母发生白云母化、绿泥石化,斜长石发生一定程度的绢云母化和轻微粘土化,钾长石发生轻微的粘土化,副矿物主要为锆石、独居石、晶质铀矿;瑶里单元 (J3Y) 为中细粒白云母花岗岩,主要由白云母、石英、斜长石、微斜长石组成,斜长石发生绢云母化,副矿物主要有磷灰石、锆石、磷钇矿、铀钍石、独居石;庙前单元 (J3M) 为中粗粒黑云母花岗岩,主要由石英、黑云母、斜长石组成,斜长石发生轻微的粘土化,副矿物主要有磷灰石、锆石、磷钇矿、独居石、晶质铀矿、铀钍石.研究过程中,瑶里单元 (J3Y) 未发现晶质铀矿.
2.2 分析方法
矿物中的U、Th等元素可自发的产生放射性衰变,产生的α粒子及其他裂变产物会使得周边物质产生放射性损伤,因而富铀矿物周围常形成放射性晕圈 (Procházka et al., 2011; Ozha et al., 2015).晶质铀矿中U、Th含量极高,故其寄主矿物的放射性晕圈也最为明显.本次研究首先在显微镜下寻找放射性晕圈,并做好标记 (图 3),喷碳处理后在扫描电镜下详细研究放射性晕圈区域的微观结构及矿物共生组合关系.晶质铀矿的铀含量极高,其背散射图像要比其他的矿物亮出许多,据此特征可以轻易发现晶质铀矿.扫描电镜下详细观察晶质铀矿的形态、结构以及次生变化,拍摄背散射图像后以备进行电子探针化学测年工作.选择无裂痕、无包裹体、灰度均匀、无明显蚀变的区域布置探针测试点.晶质铀矿电子探针化学测年工作在东华理工大学核资源与环境教育部重点实验室测试完成,电子探针仪器型号为JXA-8100.仪器工作条件设定加速电压为15.0 kV,探针电流为2.0×10-8 A,束斑直径大小为1 μm.标样的选择上Y采用钇石榴石为标样,U、Th、Pb均采用沥青铀矿为标样,峰值计数时间U、Th、Y为120 s,Pb为180 s.由于Y和La会对PbMa峰产生叠加干扰, 故首先测定人工合成不含Pb的钇石榴石中YLa和PbMa的计数,计算出不含Pb的钇石榴石中的Y对PbMa的影响因子,采用仪器在线校正的方式校正PbMa计数,最后根据校正后的Pb含量参与年龄计算.根据U、Th放射性衰变原理,根据Suzuki and Adachi (1991)提出的化学年龄计算方法,将U、Th、Pb的原子数换算成对应的氧化物UO2、ThO2、PbO的质量分数,其方程式为:
w(PbO)M(PbO)=w(PbO2)M(PbO2)[exp(λ232t)−1]+w(UO2)M(UO2)×[exp(λ235t)+137.88λ238t138.88−1], 其中w(PbO)、w(ThO2)、w(UO2) 分别表示电子探针测得的U、Th、Pb的氧化物百分含量,而M(PbO)、M(ThO2)、M(UO2) 分别是PhO、ThO2、UO2的分子质量.利用郭国林等 (2012)编写的年龄计算程序,采用多次迭代的方法得到每一测点的表观年龄 (Bowles, 1990),利用Isoplot软件计算得到表观年龄的加权平均值 (Ludwig,1991),和许多研究者一样 (Cocherie and Albarede, 2001; Cocherie et al., 2005; Cocherie and Legendre, 2007; Cross et al., 2011),本文采用U、Th、Pb的测试误差为2%(2σ).
3. 晶质铀矿年龄
本次实验共发现晶质铀矿8颗,大小在5~40 μm之间,其中焦坑单元 (J3J) 的晶质铀矿5颗,图 4a,4b中的晶质铀矿晶体比较完整,基本无次生变化,图 4c、4d以及4e中的晶质铀矿则发生了不同程度的次生变化,溶蚀和破碎明显,晶质铀矿体积明显缩小,部分U明显已活化并被迁移.笔者在庙前单元 (J3M) 发现晶质铀矿3颗,图 4f中晶质铀矿明显被破碎并有被溶蚀的现象,图 4g、4h中的晶质铀矿晶型相对完好.总体上看,这些晶质铀矿尽管有被不同程度的改造,但矿物内部抛光面灰度一致,除了计算年龄必须测定的U、Th、Pb含量之外,本次试验以Ca、P等“杂质元素”含量评估晶质铀矿U-Th-Pb体系的封闭性,以La的含量推断轻稀土元素的含量,以Y的含量推断重稀土的含量.26个测试点的数据显示,蕉坑单元 (J3J)5颗晶质铀矿的UO2含量:82.63%~88.37%,ThO2含量:6.67%~9.94%,PbO含量:1.79%~2.05%,7个测试点的La2O3含量:0.01%~0.08%,其余点La2O3含量低于检测限,Y2O3含量:0.60%~0.97%,7个测试点的P2O5含量:0.01%~0.06%,其余测试点低于电子探针的检测限,2个测试点的CaO含量分别为0.07%与0.14%,其余测试点的钙含量也都小于检测限,计算得到焦坑单元 (J3J)5颗晶质铀矿年龄为154.5~168.9 Ma,加权平均年龄为161.8±2.4 Ma (MSWD=0.26,n=26).15个测试点的分析数据显示,庙前单元 (J3M)3颗晶质铀矿UO2含量:87.19%~93.54%,ThO2含量:2.17%~7.84%,PbO含量:1.85%~2.06%,3个分析点的La2O3含量:0.02%~0.06%,其余点La2O3含量低于检测限,Y2O3含量:0.04%~0.6%,7个测试点的P2O5含量:0.01%~0.07%,其余测试点低于电子探针的检测限,所有测试点的钙含量都小于检测限,计算得到的年龄为152.8~164.7 Ma,加权平均年龄为159.7±3.2 Ma (MSWD=0.2,n=15)(图 5).
表 1 紫云山花岗岩晶质铀矿电子探针数据 (%) 及年龄值Table Supplementary Table EPMA analyses results (%) and chemical ages of uraninites from Ziyunshan granite序号 测点号 Y2O3 ThO2 UO2 La2O3 PbO P2O5 CaO Total 年龄 (Ma) 2σ(Ma) 焦坑单元 (J3J) 1 13ZY-6-9 0.69 8.76 86.9 0 1.93 0 0 98.2 160.1 6.3 2 13ZY-6-11 0.97 8.15 82.6 0 1.87 0 0 93.6 163.2 6.4 3 14ZYS-3-2 0.70 7.16 88.4 0 1.91 0.02 0.14 98.3 156.9 6.2 4 14ZYS-3-3 0.72 6.67 88.2 0.04 1.93 0.06 0 97.6 159.2 6.3 5 14ZYS-3-4 0.65 8.05 86.5 0.02 1.95 0 0 97.2 163.2 6.4 6 14ZYS-3-5 0.67 7.73 88.2 0 2.05 0.06 0 98.7 168.5 6.6 7 14ZYS-3-6 0.65 8.05 87.1 0.08 1.93 0.06 0 97.9 160.5 6.3 8 13ZY-7-1 0.64 8.69 85.2 0 1.94 0 0 96.5 164.3 6.5 9 13ZY-7-2 0.65 8.36 85.3 0 1.88 0 0 96.2 159.4 6.3 10 13ZY-7-3 0.69 8.62 85.5 0 1.95 0.03 0 96.8 164.1 6.5 11 13ZY-7-4 0.69 8.20 85.6 0 1.88 0 0 96.4 158.3 6.2 12 13ZY-7-5 0.66 8.55 85.7 0 1.96 0.01 0 96.9 165.1 6.5 13 13ZY-7-6 0.68 8.49 85.7 0 1.94 0 0 96.8 163.6 6.4 14 13ZY-7-7 0.68 8.08 85.3 0 1.93 0 0 96.0 163.7 6.4 15 13ZY-7-8 0.75 7.98 86.0 0 1.93 0.03 0 96.7 162.3 6.4 16 13ZY-7-11 0.74 9.59 85.5 0.04 2.01 0.04 0 97.9 168.9 6.6 17 13ZY-7-12 0.60 9.69 84.7 0 1.89 0 0 96.9 160.5 6.3 18 13ZY-7-13 0.70 9.33 84.6 0 1.94 0.03 0 96.6 164.6 6.5 19 13ZY-7-14 0.68 9.79 84.8 0.01 1.88 0 0 97.2 158.9 6.3 20 13ZY-7-15 0.66 9.88 83.6 0.03 1.80 0 0 96.0 154.5 6.1 21 13ZY-7-16 0.85 9.9 83.5 0 1.85 0 0 96.1 159.0 6.3 22 13ZY-7-17 0.97 9.94 82.6 0 1.88 0 0 95.4 163.2 6.4 23 13ZY-7-18 0.75 9.09 86.0 0 1.95 0 0 97.8 162.9 6.4 24 13ZY-7-19 0.85 9.74 83.2 0 1.89 0 0 95.7 163.4 6.4 25 13ZY-7-20 0.83 9.79 83.2 0 1.87 0 0 95.7 161.1 6.3 26 13ZY-7-21 0.68 9.01 79.5 0.03 1.79 0 0.07 91.1 161.5 6.4 庙前单元 (J3M) 27 13ZY-9-1 0.10 3.65 90.2 0.03 1.96 0.02 0 95.9 159.4 6.3 28 13ZY-9-2 0.11 4.03 88.8 0.02 1.92 0 0 94.8 158.9 6.3 29 13ZY-9-3 0.22 3.52 91.2 0 1.99 0.01 0 97.0 160.8 6.3 30 13ZY-9-4 0.07 2.55 89.9 0 2.01 0 0 94.5 164.7 6.5 31 13ZY-9-5 0.07 2.99 91.3 0 1.99 0 0 96.3 160.5 6.3 32 13ZY-9-6 0.04 2.44 93.5 0 2.06 0.01 0 98.1 162.5 6.4 33 13ZY-9-7 0.07 2.17 87.7 0 1.87 0 0 91.8 157.7 6.2 34 13ZY-9-11 0.21 6.38 88.4 0 1.94 0.07 0 97.0 159.8 6.3 35 13ZY-9-12 0.19 6.50 88.0 0 1.85 0.06 0 96.6 152.8 6 36 13ZY-9-13 0.52 7.84 87.2 0.06 1.93 0.02 0 97.6 160.3 6.3 37 13ZY-9-14 0.42 5.52 91.5 0 1.97 0.07 0 99.5 157.3 6.2 38 13ZY-9-15 0.41 6.31 89.8 0 1.96 0 0 98.5 158.7 6.2 39 13ZY-9-16 0.54 7.34 87.5 0 1.94 0 0 97.4 161.0 6.3 40 13ZY-9-17 0.38 6.69 88.1 0 1.93 0 0 97.1 159.1 6.3 41 13ZY-9-18 0.60 7.47 88.4 0 2.00 0 0 98.5 163.6 6.4 4. 讨论
4.1 高铀锆石U-Pb同位素定年的争议
锆石 (ZrSiO4) 由于具有结构稳定,富含铀、钍放射性元素,普通铅含量低等特性,被广泛运用于各类岩石U-Pb同位素定年当中.目前用于锆石U-Pb定年的方法主要有3种:(1) 同位素稀释-热电离质谱法 (ID-TIMS);(2) 激光剥蚀—等离子体质谱法 (LA-ICP-MS);(3) 二次离子质谱法 (SIMS).ID-TIMS方法分析测试锆石U-Pb年龄,该方法通常需要在矿物溶解前加入定量的205Pb-235U或者208Pb-235U混合稀释剂,矿物溶解后,需用离子交换柱将U和Pb分别从样品溶液中分离出来,然后在TRITON热电离质谱上进行U和Pb同位素测定,经计算得到矿物的U-Pb同位素年龄,技术难度要求高、耗时长 (李献华等,2015).SIMS和LA-ICP-MS锆石原位U-Pb定年方法已广泛运用于岩浆、变质以及热液锆石的年代学研究 (Nemchin et al., 2013).然而由于高含量铀的存在,锆石的晶体结构常因辐照损伤而蜕晶化 (如:Chakoumakos et al., 1987; Deer et al., 1992; Ewing, 1994; Weber and Ewing, 2002).由于高铀锆石的蜕晶化,使得锆石SIMS定年结果往往不可靠 (White and Ireland, 2012),所得的年龄数据是分散的 (Li et al., 2013).Williams and Hergt (2000)研究发现,运用SIMS对锆石定年,当U含量大于0.002 5时,所获得的U-Pb年龄比实际年龄偏大,许多学者也发现了同样的问题 (Butera et al., 2001; White and Ireland, 2012; Gao et al., 2014).但在运用LA-ICP-MS对锆石进行U-Pb定年分析时,这种基质效应的影响不是很明显 (Horn et al., 2000; Tiepolo, 2003).White and Ireland (2012)提出对于年轻的锆石,即使锆石中的U含量大于0.01,这种基质效应对年龄影响也不明显,同时指出辐射损伤需要时间的累积.Zhao et al.(2014)指出LA-ICP-MS适合用于高铀锆石U-Pb定年.但是无论如何,高铀锆石U-Pb定年的争议是存在的.最近有研究显示,在澳大利亚的蒙特艾萨矿区,锆石是该区铀矿的主要铀源矿物,并且使得该区的矿床极度富集Zr和稀土 (Matthew et al., 2015),高铀锆石更容易被打开晶格参与热液蚀变似乎是不争的事实.
4.2 晶质铀矿电子探针化学定年的可行性和优越性
电子探针U-Th-Pb化学定年在锆石、独居石、磷灰石原位定年中普遍应用 (如:Suzuki and Adachi, 1991; Suzuki et al., 1991; Montel et al., 1996; 周剑雄等, 2002; 李学军等, 2003; 张文兰等, 2003; 陈能松等, 2007).在U、Th、Pb含量高的晶质铀矿、沥青铀矿等矿物中的应用也有很多 (Cameron-Schiman, 1962; Bowles et al., 1990; Kotzer and Kyser, 1993; Fayek et al., 1997; Kempe, 2003; 彭松柏等, 2004; Votyakov et al., 2011; Förster et al., 2012; 赵慧博等, 2014; Luo et al., 2015).作为花岗岩中常见的副矿物之一,从矿物学的角度,晶质铀矿也适合用作电子探针测年的对象 (葛祥坤等,2011).电子探针化学定年的基本要求有两条:首先矿物在形成以后要保持稳定,不能与外界环境之间进行“U-Th-Pb”成分交换;其次,矿物形成时捕获的普通铅应低至可忽略不计.如图 4所示,晶质铀矿事实上并不是理想的稳定矿物,极易在氧化性流体作用下产生次生变化,但是扫描电镜照片可以清晰的辨认这种次生变化而加以排除,而电子探针的优势在于可以开展极小束斑的测试工作,除此之外晶质铀矿中CaO等成分的含量也可以帮助判别是否发生了次生交代作用;Pb在晶质铀矿中是极度不相容的,因此晶质铀矿形成时普通铅的含量极低.且晶质铀矿中U、Th含量很高,在相同的年龄条件下,由U、Th转变而成的Pb含量相对较多,这相对提高了测年的准确性,确保了测年精度 (Kempe,2003).
电子探针测年与传统的离子探针测年和同位素稀释法相比具有独特的优势:(1) 电子探针作为地质研究中最为广泛的分析仪器之一,早已被广大地质工作者熟悉,操作简单、分析快速、费用也较低;(2) 电子探针可以真正实现对样品无损伤测年.传统的同位素分析方法都是将样品熔化.即便是锆石LA-ICP-MS也无法做到真正的无损伤测试,电子探针具有高精度以及高分辨率的优势,借助背散射图像,可以精确的选择U-Th-Pb封闭的区域进行测试.对于具有环带的矿物,可以精确对每个环带进行分析测试;(3) 电子探针测年,可以在一个晶质铀矿颗粒上获得多个年龄数据,构建晶质铀矿等时线年龄,准确获得晶质铀矿年龄值.
4.3 晶质铀矿定年结果
赣中地区位于华夏板块和扬子板块的结合部位,在构造地质背景上与赣南地区较为相似 (李光来等,2011).前人对南岭地区典型的含钨花岗岩成岩年龄有过诸多研究,张文兰等 (2009)对漂塘钨矿花岗岩进行U-Pb定年,得到漂塘本区花岗岩年龄为161.8±1.0 Ma,木梓园成矿花岗岩的年龄153.3±1.9 Ma;郭春丽等 (2007)分析测试了淘锡坑含钨花岗岩锆石U-Pb年龄分别为158.7±3.9 Ma和157.6±3.5 Ma;李华芹等 (2006)测得骑田岭岩体锆石U-Pb年龄为155.0±6.0 Ma,此外,李金冬等 (2005)对骑田岭花岗岩锆石定年得到156.7±1.7 Ma的年龄值; 黄沙坪含钨花岗岩成岩年龄为161.6±2.0 Ma (姚军明等,2005),赣中武功山地区浒坑含钨花岗岩锆石U-Pb年龄为151.6±2.6 Ma (刘琚等,2008);此外,笔者对紫云山花岗岩庙前单元低铀锆石进行了LA-ICP-MS定年,测得锆石U-Pb年龄为155.2±2.3 Ma (唐傲,2016).这些年龄成果与本次电子探针定年获得的紫云山花岗岩年龄161.8±2.4 Ma,159.7±3.2 Ma高度一致,显示了电子探针定年非常可靠.本次所得岩石年龄较赣西北含铜斑岩的成岩年龄144.3~148.7 Ma要早 (杨堂礼和蒋少涌,2015),而本区徐山钨矿成矿年龄稍与赣南钨矿年龄较为一致 (郭春丽等,2007;李光来等,2011;李光来等,2014),相比而言,紫云山花岗岩成岩年龄更接近赣南地区含钨花岗岩.紫云山花岗岩成岩年龄与本区含钨岩体成岩年龄基本一致,因此,赣中地区也是华南大规模成矿的一部分.
华南中生代岩浆作用十分强烈,岩浆活动频繁,形成了大批的有色金属和稀有金属矿床.研究显示华南中生代成矿作用最大特点是几乎所有矿床的形成都与花岗岩岩浆活动密切相关 (毛景文等,2004).华仁民等 (2005)研究认为,南岭地区大规模出现的陆壳重熔型花岗岩形成时间主要集中在170~150 Ma,并指出该阶段陆壳重熔型花岗岩是在岩石圈全面伸展-减薄条件下形成的.正是因为岩石圈发生了强烈裂解,诱发了大规模的岩浆活动,为丰富的矿产资源的形成提供了有利条件 (陈培荣等,2002; 华仁民等,2005).赣中地区为华南大规模成岩成矿作用的一部分,由此可见,紫云山花岗岩也是在岩石圈伸展—减薄的环境下形成的.
5. 结论
(1) 对于富铀的过铝质花岗岩来说,晶质铀矿的电子探针U-Th-Pb化学定年方法可靠,值得尝试.
(2) 赣中紫云山花岗岩其中蕉坑单元 (J3J) 年龄为161.8±2.4 Ma,庙前单元 (J3M) 年龄为159.7±3.2 Ma,成岩年龄与本区含钨花岗岩成岩年龄高度一致.
致谢: 在野外调查过程中,得到了江西省有色地质勘查局、徐山钨矿、松聚源钨矿等单位的大力支持,在此表示诚挚谢意!同时,对各位评审专家提出宝贵意见表示感谢! -
图 1 紫云山岩体地质简图
1.第四系;2.白垩系;3.三叠系;4.震旦系;5.万源岩组;6.蕉坑单元花岗岩;7.庙前单元花岗岩;8.瑶里单元花岗岩;9.断层;10.构造边界;11.水库.图a据Yan et al.(2003)修改
Fig. 1. Geological sketch of the Ziyunshan pluton
表 1 紫云山花岗岩晶质铀矿电子探针数据 (%) 及年龄值
Table 1. EPMA analyses results (%) and chemical ages of uraninites from Ziyunshan granite
序号 测点号 Y2O3 ThO2 UO2 La2O3 PbO P2O5 CaO Total 年龄 (Ma) 2σ(Ma) 焦坑单元 (J3J) 1 13ZY-6-9 0.69 8.76 86.9 0 1.93 0 0 98.2 160.1 6.3 2 13ZY-6-11 0.97 8.15 82.6 0 1.87 0 0 93.6 163.2 6.4 3 14ZYS-3-2 0.70 7.16 88.4 0 1.91 0.02 0.14 98.3 156.9 6.2 4 14ZYS-3-3 0.72 6.67 88.2 0.04 1.93 0.06 0 97.6 159.2 6.3 5 14ZYS-3-4 0.65 8.05 86.5 0.02 1.95 0 0 97.2 163.2 6.4 6 14ZYS-3-5 0.67 7.73 88.2 0 2.05 0.06 0 98.7 168.5 6.6 7 14ZYS-3-6 0.65 8.05 87.1 0.08 1.93 0.06 0 97.9 160.5 6.3 8 13ZY-7-1 0.64 8.69 85.2 0 1.94 0 0 96.5 164.3 6.5 9 13ZY-7-2 0.65 8.36 85.3 0 1.88 0 0 96.2 159.4 6.3 10 13ZY-7-3 0.69 8.62 85.5 0 1.95 0.03 0 96.8 164.1 6.5 11 13ZY-7-4 0.69 8.20 85.6 0 1.88 0 0 96.4 158.3 6.2 12 13ZY-7-5 0.66 8.55 85.7 0 1.96 0.01 0 96.9 165.1 6.5 13 13ZY-7-6 0.68 8.49 85.7 0 1.94 0 0 96.8 163.6 6.4 14 13ZY-7-7 0.68 8.08 85.3 0 1.93 0 0 96.0 163.7 6.4 15 13ZY-7-8 0.75 7.98 86.0 0 1.93 0.03 0 96.7 162.3 6.4 16 13ZY-7-11 0.74 9.59 85.5 0.04 2.01 0.04 0 97.9 168.9 6.6 17 13ZY-7-12 0.60 9.69 84.7 0 1.89 0 0 96.9 160.5 6.3 18 13ZY-7-13 0.70 9.33 84.6 0 1.94 0.03 0 96.6 164.6 6.5 19 13ZY-7-14 0.68 9.79 84.8 0.01 1.88 0 0 97.2 158.9 6.3 20 13ZY-7-15 0.66 9.88 83.6 0.03 1.80 0 0 96.0 154.5 6.1 21 13ZY-7-16 0.85 9.9 83.5 0 1.85 0 0 96.1 159.0 6.3 22 13ZY-7-17 0.97 9.94 82.6 0 1.88 0 0 95.4 163.2 6.4 23 13ZY-7-18 0.75 9.09 86.0 0 1.95 0 0 97.8 162.9 6.4 24 13ZY-7-19 0.85 9.74 83.2 0 1.89 0 0 95.7 163.4 6.4 25 13ZY-7-20 0.83 9.79 83.2 0 1.87 0 0 95.7 161.1 6.3 26 13ZY-7-21 0.68 9.01 79.5 0.03 1.79 0 0.07 91.1 161.5 6.4 庙前单元 (J3M) 27 13ZY-9-1 0.10 3.65 90.2 0.03 1.96 0.02 0 95.9 159.4 6.3 28 13ZY-9-2 0.11 4.03 88.8 0.02 1.92 0 0 94.8 158.9 6.3 29 13ZY-9-3 0.22 3.52 91.2 0 1.99 0.01 0 97.0 160.8 6.3 30 13ZY-9-4 0.07 2.55 89.9 0 2.01 0 0 94.5 164.7 6.5 31 13ZY-9-5 0.07 2.99 91.3 0 1.99 0 0 96.3 160.5 6.3 32 13ZY-9-6 0.04 2.44 93.5 0 2.06 0.01 0 98.1 162.5 6.4 33 13ZY-9-7 0.07 2.17 87.7 0 1.87 0 0 91.8 157.7 6.2 34 13ZY-9-11 0.21 6.38 88.4 0 1.94 0.07 0 97.0 159.8 6.3 35 13ZY-9-12 0.19 6.50 88.0 0 1.85 0.06 0 96.6 152.8 6 36 13ZY-9-13 0.52 7.84 87.2 0.06 1.93 0.02 0 97.6 160.3 6.3 37 13ZY-9-14 0.42 5.52 91.5 0 1.97 0.07 0 99.5 157.3 6.2 38 13ZY-9-15 0.41 6.31 89.8 0 1.96 0 0 98.5 158.7 6.2 39 13ZY-9-16 0.54 7.34 87.5 0 1.94 0 0 97.4 161.0 6.3 40 13ZY-9-17 0.38 6.69 88.1 0 1.93 0 0 97.1 159.1 6.3 41 13ZY-9-18 0.60 7.47 88.4 0 2.00 0 0 98.5 163.6 6.4 -
Bowles, J.F.W., 1990.Age Dating of Individual Grains of Uraninite in Rocks from Electron Microprobe Analyses.Chemical Geology, 83(S1-2):47-53.doi: 10.1016/0009-2541(90)90139-X Butera, K.M., Williams, I.S., Blevin, P.L., et al., 2001.Zircon U-Pb Dating of Early Palaeozoic Monzonitic Intrusives from the Goonumbla Area, New South Wales.Australian.Journal of Earth Science, 48(3):457-464.doi: 10.1046/j.1440-0952.2001.00870.x Cameron-Schimann, M., 1962.Electron Microprobe Study of Uranium Minerals and It's Application to Some Canadian Deposits [Microform].Journal of Electroanalytical Chemistry, 4(1):51-58. doi: 10.1016/0022-0728(62)80027-8 Chakoumakos, B.C., Murakami, T., Lumpkin, G.R., et al., 1987.Alpha-Decay-Induced Fracturing in Zircon:The Transition from the Crystalline to the Metamict State.Science, 236(4808):1556-1559.doi: 10.1126/science.236.4808.1556 Chen, N.S., Sun, M., Wang, Q.Y., et al., 2007.EMP Chemical Ages of Monazites from Central Zone of the Eastern Kunlun Orogen:Records of Multi-Tectonometamorphic Events.Chinese Science Bulletin, 52(16):2252-2263(in Chinese). doi: 10.1007/s11434-007-0299-5 Chen, P.R., Hua, R.M., Zhang, B.T.et al., 2002.Early Yanshanian Post-Orogenic Granitoids in the Nanling Region-Petrological Constraints and Geodynamic Settings.Science in China (Series D), 32(4):279-287 (in Chinese). Cocherie, A., Albarede, F., 2001.An Improved U-Th-Pb Age Calculation for Electron Microprobe Dating of Monazite.Geochimica et Cosmochimica Acta, 65(65):4509-4522.doi: 10.1016/S0016-7037(01)00753-0 Cocherie, A., Be., M.E., Legendre, O., et al., 2005.Electron Microprobe Dating as a Tool for Determining the Closure of Th-U-Pb Systems in Migmatitic Monazites.American Mineralogist, 90(4):607-618. doi: 10.2138/am.2005.1303 Cocherie, A., Legender, O., 2007.Potential Minerals for Determining U-Th-Pb Chemical Age Using Electron Microprobe.Lithos, 93(93):288-309.doi: 10.1016/j.lithos.2006.03.069 Cross, A., Jaireth, S., Rapp, R., 2011.Reconnaissance-Style EPMA Chemical U-Th-Pb Dating of Uraninite.Australian Journal of Earth Sciences, 58(6):675-683.doi: 10.1080/08120099.2011.598190 Deer, W.A., Howie, R.A., Zussman, J., 1992.An Introduction to the Rock-Forming Minerals.Longman Scientific and Technical, Essex, 696. Ewing, R.C., 1994.The Metamict State:1993—The Centennial.Nuclear Instruments & Methods in Physics Research, 91(1-4):22-29.doi:10.1016/0168-583X (94)96186-7 Fayek, M., Janeczek, J., Ewing, R.C., 1997.Mineral Chemistry and Oxygen Isotopic Aanalyses of Uraninite, Pitchblende and Uranium Alteration Minerals from the Cigar Lake Deposit, Saskatchewan, Canada.Applied Geochemistry, 12(5):549-565.doi:10.1016/S0883-2927 (97)00032-2 Förster, H.J., Rhede, D., Stein, H.J., et al., 2012.Paired Uraninite and Molybdenite Dating of the Königshain Granite:Implications for the Onset of Late-Variscan Magmatism in the Lausitz Block.International Journal of Earth Sciences, 101(1):57-67.doi: 10.1007/s00531-010-0631-1 Gao, Y.Y., Li, X.H., Griffin, W.L., et al., 2014.Screening Criteria for Reliable U-Pb Geochronology and Oxygen Isotope Analysis in Uranium-Rich Zircons:A Case Study from the Suzhou A-Type Granites, SE China.Lithos, 192(4):180-191. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201501003009.htm Ge, X.K., Qin, M.K., Fan, G., 2011.Review on the Application of Electron Microprobe Chemical Dating Method in the Age Research of Uraninite/Pitchblende.World Nuclear Geoscience, 28(1):55-62 (in Chinese with English abstract). Guo, C.L., Wang, D.H., Chen, Y.C., et al., 2007.Precise Zircon SHRIMP U-Pb and Quartz Vein Rb-Sr Dating of Mesozoic Taoxikeng Tungsten Polymetal Lic Deposit in Southern Jiangxi.Mineral Deposits, 26(4):432-442 (in Chinese with English abstract). Guo, G.L., Zhang, Z.S., Liu, X.D., et al., 2012.EPMA Chemical U-Th-Pb Dating of Uraninite in Guangshigou Uranium Deposit.Journal of East China Institute of Technology, 35(4):309-314 (in Chinese with English abstract). Horn, I., Rudnick, R.L, McDonough, W.F., 2000.Precise Elemental and Isotope Ratio Determination by Simultaneous Solution Nebulization and Laser Ablation-ICP-MS:Application to U-Pb Geochronology.Chemical.Geology, 167(3):281-301.doi:10.1016/S0009-2541(99) 00168-0 Hua, R.M., Chen, P.R., Zhang, W.L., et al., 2005.Metallogeneses and Their Geodynamic Settings Related to Mesozoic Granitoids in the Nan Ling Range.Geological Journal of China Universities, 11(3):291-304 (in Chinese with English abstract). Kempe, U., 2003.Precise Electron Microprobe Age Determination in Altered Uraninite:Consequences on the Intrusion Age and the Metallogenic Significance of the Kirchberg Granite (Erzgebirge, Germany).Contributions to Mineralogy and Petrology, 145(1):107-118.doi: 10.1007/s00410-002-0439-5 Kotzer, T.G., Kyser, T.K., 1993.O, U, and Pb Isotopic and Chemical Variations in Uraninite:Implications for Setermining the Temporal and Fluid History of Ancient Terrains.American Mineralogist, 78:1262-1274. https://www.researchgate.net/publication/235999500_O_U_and_Pb_Isotopic_and_Chemical_Variations_in_Uraninite_-_Implications_for_Determining_the_Temporal_and_Fluid_History_of_Ancient_Terrains Li, G.L., Hua, R.M., Wei, X.L., et al., 2014.Re-Os Isotopic Ages of Two Types of Molybdenite from Zhangdongkeng Tungsten Deposit in Southern Jiangxi Province and Their Geologic Implications.Earth Science, 39(2):165-173 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201402005.htm Li, G.L., Hua, R.M., Wei, X.L., et al., 2011.Rb-Sr Isochron Age of Single-Grain Muscovite in the Xu Shan W-Cu Deposit, Central Jiang Xi, and Its Geological Signficence.Earth Science, 36(2):382-388 (in Chinese with English abstract). Li, H.Q., Lu, Y.F., Wan, G., Deng, H., et al., 2006.Dating of the Rock-Forming and Ore Forming Ages and Their Geological Significances in the Furong Ore-Field, Qitian Mountain, Hunan.Geological Review, 52(1):113-121 (in Chinese with English abstract). Li, J.D., Bai, D.Y., Wu, G.Y., et al., 2005.Zircon SHRIMP Dating of the Qitianling Granite, Chenzhou, Southern, Hunan, and Its Geological Significance.Geological Billetin of China, 24(5):411-414 (in Chinese with English abstract). Li, Q.L., Li, X.H., Lan, Z.W., et al., 2013.Monazite and Xenotime U-Th-Pb Geochronology by Ionmicroprobe:Dating Highly Fractionated Granites at Xihuashan Tungsten Mine, SE China.Contributions to Mineralogy and Petrology, 166(1):65-80.doi: 10.1007/s00410-013-0865-6 Li, X.H., Liu, X.M., Liu, Y.S., et al., 2015., Accuracy of LA-ICPMS Zircon U-Pb Age Determination:An Inter-Laboratory Comparison.Science in China (Series D), 45(9):1294-1303 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201510004.htm Li, X.J., Guo, T., Wang, Q.F., 2003.Electron Microprobe Chemical Dating Technique.Earth Science Frontiers, 10(2):411-414 (in Chinese with English abstract). Liu, J., Mao, J.W., Ye, H.S., et al., 2008.Zircon LA-ICPMS U-Pb Dating of Hukeng Granite in Wugongshan Area, Jiangxi Province and Its Geochemical Characteristics.Acta Perologica Sinica, 24(8):1813-1822 (in Chinese with English abstract). https://www.researchgate.net/publication/283778992_Zircon_LA-ICPMS_U-Pb_dating_of_Hukeng_granite_in_Wugongshan_area_Jiangxi_Province_and_its_geoehemical_characteristics Liu, Y., 2013.Geochronology and Geochemical of Ziyunshan Pluton at Yuhuashan Area in Jiangxi and Its Geological Significance (Dissertation).East China University of Technology, Nanchang, 25-32(in Chinese with English abstract). Ludwig, K.R., 1991.ISOPLOT; A Plotting and Regression Program for Radiogenic-Isotope Data; Version 2.53.Open-File Report.U.S.Geological Survey, Denver. Luo, J.C., Hu, R.Z., Shi, S.H., 2015.Timing of Uranium Mineralization and GeologicalImplications of Shazijiang Granite-Hosted Uranium Deposit in Guangxi, South China:New Constraint from Chemical U-Pb Age.Journal of Earth Science, 26(6):911-919.doi: 10.1007/s12583-015-0542-y Mao, J.W., Xie, G.Q., Li, X.F., et al., 2004.Mesozoic Large Scale Mineralization and Multiple Lithospheric Extension in South China.Earth Science Frontiers, 11(1):45-55(in Chinese with English abstract). https://www.researchgate.net/publication/230474119_Mesozoic_Large-scale_Mineralization_and_Multiple_Lithospheric_Extensions_in_South_China Matthew, V.M., Andrew, G.T., Gordon, P.W., et al., 2015.Release of Uranium from Highly Radiogenic Zircon Through Metamictization:The Source of Orogenic Uranium Ores.Geology, 44(1).doi: 10.1130/G37238.1 Montel, J.M., Foret, S., Veschambre, M., et al., 1996.Electron Microprobe Dating of Monazite.Chemical Geology, 131(1-4):37-53.doi: 10.1016/0009-2541(96)00024-1 Nemchin, A.A., Horstwood, M.S.A., Whitehouse, M.J., 2013.High-Spatial-Resolution Geochronology.Elements, 9(1):31-37.doi: 10.2113/gselements.9.1.31 Ozha, M.K., Mishra, B., Singh, G., 2015.Reaction Aureoles within Biotite and Albite Surrounding Uraninite and Possible Mobilization of Radio-Centres:An Example from Rajasthan, India.Mineral Resources in a Sustainable World, 1863-1866. Peng, S.B., Zhu, J.P., Li, Z.C., et al., 2004.U-Th-Pb Dating by Electron Microprobe and Its Application in Structural Analysis.Rock & Mineral Analysis, 23(11):44-51(in Chinese with English abstract). Procházka, V., Seydoux-Guillaume, A.M., Trojek, T., et al., 2011.Alteration Halos around Radioactive Minerals in Plutonic and Metamorphic Rocks of Northern Moldanubian Area, Bohemian Massif.European Journal of Mineralogy, 23(4):551-566.doi: 10.1127/0935-1221/2011/0023-2108 Suzuki, K., Adachi, M., 1991.Precambrian Provenance and Silurian Metamorphism of the Tsubonosawa Paragneiss in the South Kitakami Terrane, Northeast Japan, Revealed by the Chemical Th-U-Total Pb Isochron Ages of Monazite, Zircon and Xenotime.Geochemical Journal, 25(5):357-376.doi: 10.2343/geochemj.25.357 Suzuki, K., Adachi, M., Tanaka, T., 1991.Middle Precambrian Provenance of Jurassic Sandstone in the Mino Terrane, Central Japan:T-U-Total Pb Evidence from an Electron Microprobe Monazite Study.Sedimentary Geology, 75(S1-2):141-147.doi:10.1016/0037-0738 (91)90055-I Tang, A., 2016.Study on Chronology, Rock Geochemistry, Uranium Bearing Mineral of Ziyunshan Peraluminous Granite, Centre JiangXi (Dissertation).East China Institute of Technology, 25-37(in Chinese with English abstract). Tang, A., Li, G.l., Zhou, L.Q., 2015.Compositional Characteristics of Biotite in Ziyunshan Ore Bearing Granite, Central Jiangxi:Implications for Petrogenesis and Mineralization.Journal of Mineralogy and Petrology, 35(3):29-34 (in Chinese with English abstract). http://or.nsfc.gov.cn/handle/00001903-5/259954 Tiepolo, M., 2003.A Laser Probe Coupled with ICP-Double-Focusing Sectorfield Mass Spectrometer for in Situ Analysis of Geological Samples and U.Canadian Mineralogist, 41(5):259-272.doi: 10.2113/gscanmin.41.2.259 Votyakov, S.L., Ivanov, K.S., Khiller, V.V., 2011.Chemical Microprobe Th-U-Pb Age Dating of Monazite and Uraninite Grains from Granites of the Yamal Crystalline Basement.Doklady Earth Sciences, 439(1):994-997.doi: 10.1134/S1028334X1107018X Weber, W.J., Ewing, R.C., 2002.Radiation Effects in Crystalline Oxide Host Phases for the Immobilization of Actinides.MRS Proceedings, 713.dio:10.1557/PROC-713-JJ3.1 White, L.T., Ireland, T.R., 2012.High-Uranium Matrix Effect in Zircon and Its Implications for SHRIMP U-Pb Age Determinations.Chemical Geology, 306-307(19):78-91.doi: 10.1016/j.chemgeo.2012.02.025 Williams, I.S., Hergt, J.M., 2000.U-Pb Dating of Tasmanian Dolerites:A Cautionary Tale of SHRIMP Analysis of High-U Zircons.In:Woodhead, J.D., Hergt, J.M., Noble, W.P.eds., Beyond 2000:New Frontiers in Isotope Geoscience.The University of Melbourne, Lorne, 185-188. Yan, D.P., Zhou, M.F., Song, H.L., et al., 2003.Origin and Tectonic Significance of a Mesozoic Multi-Layer Over-Thrust System Within the Yangtze Block (South China).Tectonophysics, 361(3-4):239-254.doi: 10.1016/S0040-1951(02)00646-7 Yang, T.L., Jiang, S.Y.2015.Petrogenesis of Intermediate-Felsic Intrusive Rocks and Mafic Microgranular Enclaves (MMEs) from Dongleiwan Deposit in Jiurui Ore District, Jiangxi Province:Evidence from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotope.Earth Science, 40(12):2002-2020 (in Chinese with English abstract). http://d.g.wanfangdata.com.cn/Periodical_dqkx201512005.aspx Yao, J.M., Hua, R.M., Lin, J.F., 2005.Zircon LA-ICPMS U-Pb Dating and Geological Characteristics of Huangshaping Granite in Southeast Hunan Province, China.Acta Petrologica Sinica, 21(3):688-686 (in Chinese with English abstract). https://www.researchgate.net/publication/280687801_Zircon_LA-ICPMS_U-Pb_dating_and_geochemical_characteristics_of_Huangshaping_granite_in_southeast_Hunan_province_China Yu, G.S., Xiao, K.C., 1986.Basic Characteristics of an Ancient Ophiolite Belt and Plate Tectonics in Northeastern Jinagxi.Regional Geology of China, (4):369-362(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD198604010.htm Zhang, W.L., Hua, R.M., Wang, R.C., et al., 2009.New Dating of the Piaotang Granite and Related Tungsten Mineralization in Southern Jiangxi.Acta Petrologica Sinica, 83(5):659-670 (in Chinese with English abstract). https://www.researchgate.net/publication/279717533_New_dating_of_the_Dajishan_granite_and_related_tungsten_mineralization_in_Southern_Jiangxi Zhang, W.L., Wang, R.C., Hua, R.M., et al., 2003.Chemical Th-U-Total Pb Isochron of Dating Accessary Minerals:Principle and Application to Zircon from the Piaotang Muscovite Granite in the Xihuashan Complex, South China.Geological Review, 49(3):263-260 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200303005.htm Zhao, H.B., Liu, Y.F., Yang, S., et al., 2014.The Application of Electron Microprobe Dating Method on a Genetic Type of Uraninite.Rock & Mineral Analysis, 33(1):102-109 (in Chinese with English abstract). Zhao, K, D., Jiang, S.Y., Ling, H.F., et al., 2014.Reliability of LA-ICP-MS U-Pb Dating of Zircons with High U Concentrations:A Case Study from the U-Bearing Douzhashan Granite in South China.Chemical Geology, 389:110-121.doi:10.1016/j.chemgeo.201 4.09.018 Zhou, J.X., Chen, Z.Y., Rui, Z.Y., 2002.Th-U-TPb Chemical Dating of Monazite by Electron Probe.Rock & Mineral Analysis, 21(4):241-246 (in Chinese with English abstract). 陈能松, 孙敏, 王勤燕, 等, 2007.东昆仑造山带昆中带的独居石电子探针化学年龄:多期构造变质事件记录.科学通报, 52(11):1297-1306. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200711015.htm 陈培荣, 华仁民, 章邦桐, 2002.南岭燕山早期后造山花岗岩类:岩石学制约和地球动力学背景.中国科学 (D辑), 32(4):279-289. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200204002.htm 葛祥坤, 秦明宽, 范光, 2011.电子探针化学测年法在晶质铀矿/沥青铀矿定年研究中的应用现状.世界核地质科学, 28(1):55-62. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYD201101012.htm 郭春丽, 王登红, 陈毓川, 等, 2007.赣南中生代淘锡坑钨矿区花岗岩锆石SHRIMP年龄及石英脉Rb-Sr年龄测定.矿床地质, 26(4):432-442. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200704008.htm 郭国林, 张展适, 刘晓东, 等, 2012.光石沟铀矿床晶质铀矿电子探针化学定年研究.东华理工大学学报:自然科学版, 35(4):309-314. http://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ201204004.htm 华仁民, 陈培荣, 张文兰, 等, 2005.南岭与中生代花岗岩类有关的成矿作用及其大地构造背景.高校地质学报, 11(3):291-304. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503002.htm 李光来, 华仁民, 韦星林, 等, 2011.江西中部徐山钨铜矿床单颗粒白云母Rb-Sr等时线定年及其地质意义.地球科学, 36(2):382-388. http://www.earth-science.net/WebPage/Article.aspx?id=2091 李光来, 华仁民, 韦星林, 等, 2014.赣南樟东坑钨矿两类矿化中辉钼矿的Re-Os同位素定年及其地质意义.地球科学, 39(2):165-173. http://www.earth-science.net/WebPage/Article.aspx?id=2816 李华芹, 路远发, 王登红, 等, 2006.湖南骑田岭芙蓉矿田成岩成矿时代的厘定及其地质意义.地质论评, 52(1):113-121. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200601018.htm 李金冬, 柏道远, 伍光英, 等, 2005.湘南郴州地区骑田岭花岗岩锆石SHRIMP定年及其地质意义.地质通报, 24(5):411-414. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200505003.htm 李献华, 柳小明, 刘勇胜, 等, 2015.LA-ICPMS锆石U-Pb定年的准确度:多实验室对比分析.中国科学 (D辑), 45(9):1294-1303. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201509004.htm 李学军, 郭涛, 王庆飞, 2003.电子探针化学测年方法.地学前缘, 10(2):411-414. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200302026.htm 刘珺, 毛景文, 叶会寿, 等, 2008.江西省武功山地区浒坑花岗岩的锆石U-Pb定年及元素地球化学特征.岩石学报, 24(8):1813-1822. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200808013.htm 刘颖, 2013. 江西省玉华山地区紫云山岩体年代学、地球化学特征及地质意义 (硕士学位论文). 南昌: 东华理工大学, 25-32. 毛景文, 谢桂青, 李晓峰, 等, 2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘, 11(1):45-55. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401002.htm 彭松柏, 朱家平, 李志昌, 等, 2004.国外电子探针铀-钍-铅定年方法及其在构造分析中的应用前景.岩矿测试, 23(11):44-51. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200401011.htm 唐傲, 2016. 赣中紫云山过铝质花岗岩年代学、岩石地球化学及载铀矿物特征研究 (硕士学位论文). 南昌: 东华理工大学, 25-37. 唐傲, 李光来, 周龙全, 等, 2015.赣中紫云山岩体含矿花岗岩黑云母成分特征及其成岩成矿意义.矿物岩石, 35(3):29-34. http://www.cnki.com.cn/Article/CJFDTOTAL-KWYS201503005.htm 姚军明, 华仁民, 林锦富, 2005.湘东南黄沙坪花岗岩LA-ICPS锆石U-Pb定年及岩石地球化学特征.岩石学报, 21(3):688-686. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503011.htm 杨堂礼, 蒋少涌, 2015.江西九瑞矿集区东雷湾矿区中酸性侵入岩及其铁镁质包体的成因:锆石U-Pb年代学、地球化学与Sr-Nd-Pb-Hf同位素制约.地球科学, 40(12):2002-2020. http://www.earth-science.net/WebPage/Article.aspx?id=3205 于根生, 肖柯才, 1986.赣东北古蛇绿岩带及板块构造基本特征.中国区域地质, (4):369-362. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD198604010.htm 张文兰, 王汝成, 华仁民, 等, 2003.副矿物的电子探针化学定年方法原理及应用.地质论评, 49(3):263-260. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200303005.htm 张文兰, 华仁民, 王汝成, 等, 2009.赣南漂塘钨矿花岗岩成岩年龄与成矿年龄的精确测定.地质学报, 83(5):659-670. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200905007.htm 赵慧博, 刘亚非, 阳珊, 等, 2014.电子探针测年方法应用于晶质铀矿的成因类型探讨.岩矿测试, 33(1):102-109. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201401018.htm 周剑雄, 陈振宇, 芮宗瑶, 2002.独居石的电子探针钍-铀-铅化学测年.岩矿测试, 21(4):241-246. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200204001.htm 期刊类型引用(12)
1. 谷勇,王珂,范鹏飞,刘传东,黄宏业,欧阳平宁,王前林. 湘东明月峰地区金管冲铀矿床沥青铀矿电子探针U-Th-Pb化学定年及其地质意义. 东华理工大学学报(自然科学版). 2024(03): 258-266 . 百度学术
2. 文思博,朱强,程银行. 鄂尔多斯盆地砂岩型铀矿成矿时代及铀富集时空规律. 华北地质. 2023(03): 1-11+34 . 百度学术
3. 陈旭,刘晓东,覃金宁,姜必广,南小龙. 诸广三九矿田石壁窝矿区主要铀矿物电子探针定年. 铀矿地质. 2022(02): 247-256 . 百度学术
4. 李晓峰,韦星林,朱艺婷,李祖福,邓宣驰. 华南稀有金属矿床:类型、特点、时空分布与背景. 岩石学报. 2021(12): 3591-3614 . 百度学术
5. 郭春影,秦明宽,徐浩,任忠宝,邹明亮,白芸,赵宇霆. 广西苗儿山铀矿田张家铀矿床成矿时代:沥青铀矿微区原位测定. 地球科学. 2020(01): 72-89 . 本站查看
6. 武勇,秦明宽,郭冬发,蔡煜琦,王凤岗,吴玉,郭国林,刘章月. 康滇地轴中南段牟定1101铀矿区沥青铀矿成矿时代及成因. 地球科学. 2020(02): 419-433 . 本站查看
7. 黄卉,潘家永,洪斌跃,康清清,钟福军. 陕西华阳川铀-多金属矿床晶质铀矿电子探针U-Th-Pb化学定年及其地质意义. 矿床地质. 2020(02): 351-368 . 百度学术
8. 王伟,王生云,刘涛,李天石,陈云杰,马骊,赵如意,宋振涛. 甘肃红石泉伟晶岩型铀矿床地质、地球化学特征及成因探讨. 现代地质. 2020(02): 244-253 . 百度学术
9. 戚佳伟,张树明,杨春四,蓝德初,王利玲. 甘肃红石泉地区伟晶状白岗岩LA-ICP-MS锆石U-Pb年龄与铀成矿关系. 地质通报. 2019(04): 562-572 . 百度学术
10. 黎广荣,郭福生,金腾瑞,张炜强,张运涛,杨庆坤,陈留勤,周万蓬,于玉帅. 江西省峡江-广丰地区白垩纪红盆-火山盆地对铀成矿的制约探讨. 大地构造与成矿学. 2019(03): 542-557 . 百度学术
11. 高龙刚,陈佑纬,毕献武,胡瑞忠,高成,董少花,骆金诚. 陕西华阳川铀铌矿床中铀矿物的年代学与矿物化学研究及其对铀成矿的启示. 地质学报. 2019(09): 2273-2291 . 百度学术
12. Wenbin Ning,Junpeng Wang,Deng Xiao,Fenfang Li,Bo Huang,Dong Fu. Electron Probe Microanalysis of Monazite and Its Applications to U-Th-Pb Dating of Geological Samples. Journal of Earth Science. 2019(05): 952-963 . 必应学术
其他类型引用(8)
-