• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    三株嗜盐古菌诱导形成白云石

    段勇 药彦辰 邱轩 王红梅

    段勇, 药彦辰, 邱轩, 王红梅, 2017. 三株嗜盐古菌诱导形成白云石. 地球科学, 42(3): 389-396. doi: 10.3799/dqkx.2017.029
    引用本文: 段勇, 药彦辰, 邱轩, 王红梅, 2017. 三株嗜盐古菌诱导形成白云石. 地球科学, 42(3): 389-396. doi: 10.3799/dqkx.2017.029
    Duan Yong, Yao Yanchen, Qiu Xuan, Wang Hongmei, 2017. Dolomite Formation Facilitated by Three Halophilic Archaea. Earth Science, 42(3): 389-396. doi: 10.3799/dqkx.2017.029
    Citation: Duan Yong, Yao Yanchen, Qiu Xuan, Wang Hongmei, 2017. Dolomite Formation Facilitated by Three Halophilic Archaea. Earth Science, 42(3): 389-396. doi: 10.3799/dqkx.2017.029

    三株嗜盐古菌诱导形成白云石

    doi: 10.3799/dqkx.2017.029
    基金项目: 

    国家自然科学基金项目 41502317

    国家自然科学基金项目 41572323

    国家自然科学基金项目 41130207

    详细信息
      作者简介:

      段勇 (1991-),男,硕士研究生,主要从事微生物与矿物相互作用研究.ORCID:0000-0002-6725-9258.E-mail:dang-you@163.com

      通讯作者:

      王红梅,ORCID:0000-0001-7621-7810.E-mail:hmwang@cug.edu.cn

    • 中图分类号: P571

    Dolomite Formation Facilitated by Three Halophilic Archaea

    • 摘要: 白云石成因问题是地质学上长期悬而未决的难题之一.近年来,微生物诱导白云石沉淀逐渐成为白云石成因的重要理论之一,但其中微生物的作用机理远未探明.现生白云石主要分布于高盐环境,该环境中的优势菌群为嗜盐菌,包括嗜盐细菌和嗜盐古菌.因而此次选取三株嗜盐古菌Natrinema sp.J7-1、Natrinema sp.J7-3和Natrinema sp.LJ7,研究其诱导白云石沉淀的能力,并对比不同细胞浓度对白云石沉淀的影响,以期更深入地了解微生物在白云石形成中的作用.通过X射线衍射 (XRD) 检测沉淀物的物相,利用扫描电子显微镜 (SEM) 观察所得矿物形态,同时辅以能量色散谱分析 (EDS) 分析矿物的元素组成.实验结果表明三株嗜盐古菌皆可诱导球型、哑铃型、花椰菜型以及球形聚集体等白云石的形成,且在较高细胞浓度下诱导形成的矿物中白云石含量增多.分析表明细胞浓度的增加会导致细胞表面羧基含量的增加,从而为白云石的沉淀提供更多的成核位点,有利于Mg进入矿物晶格,从而诱导白云石沉淀,本结果进一步提高了对微生物白云石成因机理的认识.

       

    • 图  1  嗜盐古菌J7-1、J7-3、LJ7生长曲线

      a,c,e分别为J7-1、J7-3和LJ7在200‰盐度下的生长曲线;b,d,f分别为J7-1、J7-3和LJ7在280‰盐度下的生长曲线

      Fig.  1.  Growth curves of halophilic archaea J7-1, J7-3 and LJ7

      图  2  三株嗜盐古菌诱导形成的矿物的XRD图谱

      ①,③,⑤分别表示J7-1,J7-3,LJ7在200‰盐度下诱导形成的矿物XRD图谱;②,④,⑥分别表示J7-1,J7-3,LJ7在280‰盐度下诱导形成的矿物XRD图谱.x1~5分别表示沉淀体系中菌液浓度 (OD600) 为2.5,2.0,1.5,1.0和0;x为a,b,c,d,e,f.XRD图谱上标注的M.单水合方解石,A.文石,D.白云石

      Fig.  2.  XRD spectra of the precipitates induced by three halophilic archaeal strains

      图  3  嗜盐古菌诱导形成的白云石的形态特征及元素组成

      a.J7-1-200-2.5体系中哑铃型白云石;b.J7-1-280-2.5体系中球型白云石;c.LJ7-200-2.5体系中花椰菜型白云石;d.J7-1-200-2.5体系中聚集体型白云石

      Fig.  3.  Morphology and elemental composition of dolomite induced by halophilic archaea

      表  1  嗜盐古菌沉淀白云石实验体系的组成

      Table  1.   The componentsof dolomite precipitation experiments with halophilic archaea

      组分 200‰沉淀体系 280‰沉淀体系
      细胞悬液 10.00 mL 10.00 mL
      1.00 mol/L MgCl2 2.00 mL 2.00 mL
      0.10 mol/L CaCl2 2.00 mL 2.00 mL
      0.20 mol/L Na2CO3 2.00 mL 2.00 mL
      NaCl 1.75 g 2.55 g
      超纯水 补至20.00 mL 补至20.00 mL
      下载: 导出CSV

      表  2  各沉淀体系中白云石特征峰的“d值”及2θ

      Table  2.   The"d valve" and 2θ of dolomite diffraction peaks in experiments with halophilic archaea

      沉淀体系 d104值 (A) 2θ值 (°) d113值 (A) 2θ值 (°)
      J7-1-200-2.5* 2.887 7 30.941
      J7-1-280-2.5 2.891 1 30.905 2.191 5 41.156
      J7-3-200-2.5 2.911 6 30.681
      J7-3-280-1.5 2.893 4 30.879 2.191 0 41.167
      J7-3-280-2.0 2.908 0 30.720 2.191 0 41.167
      J7-3-280-2.5 2.893 4 30.879 2.193 0 41.130
      LJ7-200-2.5 2.908 5 30.715 2.101 0 40.971
      LJ7-280-1.5 2.897 8 30.831 2.199 0 41.009
      LJ7-280-2.0 2.902 0 30.785 2.201 0 40.971
      LJ7-280-2.5 2.897 8 30.831 2.200 9 40.972
        注:*为J7-1-200-2.5:J7-1为菌株名称,200为沉淀体系的盐度 (‰),2.5为细胞浓度 (OD600) 为2.5.
      下载: 导出CSV
    • Adams, J.E., Rhodes, M.L., 1960.Dolomitization by Seepage Refluxion.AAPG Bulletin, 44(12):1912-1920.doi: 10.1306/0bda6263-16bd-11d7-8645000102c1865d
      Beveridge, T.J., Murray, R.G., 1980.Sites of Metal Deposition in the Cell Wall of Bacillus Subtilis.Journal of Bacteriology, 141(2):876-887.
      Bontognali, T.R.R., McKenzie, J.A., Warthmann, R.J., et al., 2014.Microbially Influenced Formation of Mg-Calcite and Ca-Dolomite in the Presence of Exopolymeric Substances Produced by Sulphate-Reducing Bacteria.Terra Nova, 26(1):72-77.doi: 10.1111/ter.12072
      Bontognali, T.R.R., Vasconcelos, C., Warthmann, R.J., et al., 2008.Microbes Produce Nanobacteria-Like Structures, Avoiding Cell Entombment.Geology, 36(8):663-666.doi: 10.1130/G24755A.1
      Bontognali, T.R.R., Vasconcelos, C., Warthmann, R.J., et al., 2012.Dolomite-Mediating Bacterium Isolated from the Sabkha of Abu Dhabi (UAE).Terra Nova, 24(3):248-254.doi: 10.1111/j.1365-3121.2012.01065.x
      Deng, S., Dong, H., Lü, G., et al., 2010.Microbial Dolomite Precipitation Using Sulfate Reducing and Halophilic Bacteria:Results From Qinghai Lake, Tibetan Plateau, NW China.Chemical Geology, 278(3):151-159.doi: 10.1016/j.chemgeo.2010.09.008
      Fortin, D., Ferris, F., Beveridge, T.J., 1997.Surface-Mediated Mineral Development by Bacteria.Reviews in Mineralogy and Geochemistry, 35(1):161-180.
      García-Del-Cura, M.Á., Sanz-Montero, M.E., De-Los-Ríos, M.A., et al., 2014.Microbial Dolomite in Fresh Water Carbonate Deposits.Sedimentology, 61(1):41-55.doi: 10.1111/sed.12047
      Hsü, K.J., Siegenthaler, C., 1969.Preliminary Experiments on Hydrodynamic Movement Induced by Evaporation and Their Bearing on the Dolomite Problem.Sedimentology, 12(1-2):11-25.doi: 10.1111/j.1365-3091.1969.tb00161.x
      Jiang, W.Y., Wu, H.B., Chu, G.Q., et al., 2010.Origin of Dolomite in Lake Bayanchagan, Inner Mongolia and Its Palaeoclimatic Implications.Quaternary Sciences, 30(6):1116-1120(in Chinese with English abstract).
      Kenward, P.A., Fowle, D.A., Goldstein, R.H., et al., 2013.Ordered Low-Temperature Dolomite Mediated by Carboxyl-Group Density of Microbial Cell Walls.AAPG Bulletin, 97(11):2113-2125.doi: 10.1306/05171312168
      Kenward, P.A., Goldstein, R.H., González, L.A., et al., 2009.Precipitation of Low-Temperature Dolomite from an Anaerobic Microbial Consortium:The Role of Methanogenic Archaea.Geobiology, 7(5):556-565.doi: 10.1111/j.1472-4669.2009.00210.x
      Land, L.S., 1998.Failure to Precipitate Dolomite at 25 ℃ from Dilute Solution Despite 1 000-Fold Oversaturation after 32 Years.Aquatic Geochemistry, 4(3):361-368.doi: 10.1023/A:1009688315854
      Last, F.M., Last, W.M., Halden, N.M., 2012.Modern and Late Holocene Dolomite Formation:Manito Lake, Saskatchewan, Canada.Sedimentary Geology, 281:222-237.doi: 10.1016/j.sedgeo.2012.09.012
      Liu, S.G., Huang, W.M., Zhang, C.J., et al., 2008.Research Status of Dolomite Genesis and Its Problemsin Sichuan Basin.Lithologic Reservoirs, 20(2):6-15(in Chinese with English abstract).
      Mei, M.X., 2012.Brief Introduction of "Dolostone Problem" in Sedimentology According to Three Scientific Ideas.Journal of Paleogeography, 14(1):1-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX201201003.htm
      Nan, J.X., Yang, Y.H., 2001.Diagenesis and Trap of the Dolomite Rock Reservoir in Changqing Gas Field.China Petroleum Exploration, 6(4):44-49 (in Chinese with English abstract).
      Oren, A., 2013.Life at High Salt Concentrations.In:Dworkin, M., Falkow, S., Rosenberg, E., eds., The Prokaryotes.Springer, Berlin, 421-440.
      Patterson, R.J., Kinsman, D.J.J., 1982.Formation of Diagenetic Dolomite in Coastal Sabkha along Arabian (Persian) Gulf.AAPG Bulletin, 66(1):28-43. https://www.researchgate.net/publication/255532481_Formation_of_diagenetic_dolomite_in_Coastal_Sabkha_along_Arabian_Persian_Gulf
      Peterson, M.N.A., Bien, G.S., Berner, R.A., 1963.Radiocarbon Studies of Recent Dolomite from Deep Spring Lake, California.Journal of Geophysical Research, 68(24):6493-6505.doi: 10.1029/JZ068i024p06493
      Qiu, X., 2014.Microbial Organics and Water Hydrochemical Conditions Intergrately Affect the Formation of Mg-CaCO3(Dissertation).China University of Geosciences, Wuhan, 45-50 (in Chinese with English abstract).
      Roberts, J.A., Kenward, P.A., Fowle, D.A., et al., 2013.Surface Chemistry Allows for Abiotic Precipitation of Dolomite at Low Temperature.Proceedings of the National Academy of Sciences, 110(36):14540-14545. doi: 10.1073/pnas.1305403110
      Sánchez-Román, M., McKenzie, J.A., Wagener, A.L.R., et al., 2009.Presence of Sulfate does not Inhibit Low-Temperature Dolomite Precipitation.Earth and Planetary Science Letters, 285(1-2):131-139.doi: 10.1016/j.epsl.2009.06.003
      Sánchez-Román, M., Vasconcelos, C., Schmid, T., et al., 2008.Aerobic Microbial Dolomite at the Nanometer Scale:Implications for the Geologic Record.Geology, 36(11):879-882.doi: 10.1130/G25013A.1
      VanLith, Y., Warthmann, R.J., Vasconcelos, C., et al., 2003.Sulphate-Reducing Bacteria Induce Low-Temperature Ca-Dolomite and High Mg-Calcite Formation.Geobiology, 1(1):71-79.doi: 10.1046/j.1472-4669.2003.00003.x
      Vasconcelos, C., McKenzie, J.A., 1997.Microbial Mediation of Modern Dolomite Precipitation and Diagenesis Under Anoxic Conditions (Lagoa Vermelha, Rio de Janeiro, Brazil).Journal of Sedimentary Research, 67(3):378-390.
      Vasconcelos, C., McKenzia, J.A., Bernasconi, S., et al., 1995.Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures.Nature, 377(6546):220-222.doi: 10.1038/377220a0
      Voegerl, R.S., 2014.Quantifying the Carboxyl Group Density of Microbial Cell Surfaces as a Function of Salinity:Insights into Microbial Precipitation of Low-Temperature Dolomite (Dissertation).University of Kansas, Kansas, 8-12.
      Wang, D., Wallace, A.F., de Yoreo, J.J., et al., 2009.Carboxylated Molecules Regulate Magnesium Content of Amorphous Calcium Carbonates During Calcification.Proceedings of the National Academy of Sciences, 106(51):21511-21516. doi: 10.1073/pnas.0906741106
      Wang, H.M., Liu, S., Liu, D., 2015.Comparison between Reductive Dissolution of Jarosite by Sulfate Reducing Bacteria and Dissimilatory Iron Reducing Bacteria.Earth Science, 40(2):305-316.doi: 10.3799/dqkx.2015.023(in Chinese with English abstract)
      Yu, B.S., Dong, H.L., Jiang, H.C., et al., 2007.Discovery of Spheric Dolomite Aggregations in Sediments from the Bottom of Qinghai Lake and Its Significance for Dolomite Problem.Geoscience, 21(1):66-70(in Chinese with English abstract).
      Zhang, F., Xu, H., Shelobolina, E.S., et al., 2015.The Catalytic Effect of Bound Extracellular Polymeric Substances Excreted by Anaerobic Microorganisms on Ca-Mg Carbonate Precipitation:Implications for the "Dolomite Problem".American Mineralogist, 100(2-3):483-494. doi: 10.2138/am-2015-4999
      Zhang, Z.Q., Liu, Y., Wang, S., et al., 2012.Temperate Membrane-Containing Halophilic Archaeal Virus SNJ1 Has a Circular dsDNA Genome Identical to that of Plasmid PHH205.Virology, 434(2):233-241.doi: 10.1016/j.virol.2012.05.036
      姜文英, 吴海斌, 储国强, 等, 2010.内蒙古巴彦查干湖白云石的成因及其环境意义.第四纪研究, 30(6):1116-1120. http://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201006006.htm
      刘树根, 黄文明, 张长俊, 等, 2008.四川盆地白云岩成因的研究现状及存在问题.岩性油气藏, 20(2):6-15. http://www.cnki.com.cn/Article/CJFDTOTAL-YANX200802003.htm
      梅冥相, 2012.从3个科学理念简论沉积学中的"白云岩问题".古地理学报, 14(1):1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201201003.htm
      南君祥, 杨奕华, 2001.长庆气田白云岩储层的成岩作用与成岩圈闭.中国石油勘探, 6(4):44-49. http://www.cnki.com.cn/Article/CJFDTOTAL-KTSY200104006.htm
      邱轩, 2014. 微生物有机质与水化学条件协同影响碳酸钙镁矿物沉淀 (博士学位论文). 武汉: 中国地质大学, 45-50.
      王红梅, 刘烁, 刘邓, 2015.硫酸盐还原菌及异化铁还原菌对黄钾铁矾还原作用的对比.地球科学, 40(2):305-316. http://www.earth-science.net/WebPage/Article.aspx?id=3180
      于炳松, 董海良, 蒋宏忱, 等, 2007.青海湖底沉积物中球状白云石集合体的发现及其地质意义.现代地质, 21(1):66-70. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200701006.htm
    • 加载中
    图(3) / 表(2)
    计量
    • 文章访问数:  6339
    • HTML全文浏览量:  2076
    • PDF下载量:  24
    • 被引次数: 0
    出版历程
    • 收稿日期:  2016-11-01
    • 刊出日期:  2017-03-15

    目录

      /

      返回文章
      返回