Zircon U-Pb Geochronology and Geochemistry of the Gneissic Granodiorite in Manite Area from East Kunlun, with Implications for Geodynamic Setting
-
摘要: 为确定东昆仑马尼特地区片麻状花岗闪长岩的形成时代、源区性质和构造背景,对其进行了锆石U-Pb年代学、地球化学和锆石Hf同位素研究.本次测试的片麻状花岗闪长岩锆石LA-ICP-MS(laser ablation inductively coupled plasma mass spectrometry) U-Pb加权平均年龄为495.6±1.1 Ma(MSWD=0.13),属于晚寒武世.马尼特片麻状花岗闪长岩SiO2含量为61.47%~63.99%,Na2O、K2O和CaO含量分别为2.91%~3.64%、0.93%~2.31%和4.29%~6.52%,全碱ALK=3.92%~5.69%,铝饱和指数A/CNK=0.83~0.97,属准铝质钙碱性系列岩石.岩石具有富集大离子亲石元素(Rb、K)和不相容元素(Th、U),相对亏损Nb、Ta、Zr、Ti高场强元素的特征,Nb/Ta、La/Nb、Th/Nb、Th/La等比值显示出岩石具有壳源特征.岩石具有高的εHf(t)值(12.2~15.0),Hf两阶段模式年龄在506~662 Ma范围内,其岩浆源区初始物质主要来源于新生地壳.岩石在微量元素Rb-(Y+Nb)构造判别图落入火山弧花岗岩区域,在R1-R2构造判别图落入板块碰撞前消减区花岗岩区域.结合岩石成岩年龄、地球化学特征以及区域构造演化,推测其应形成于原特提斯洋俯冲的构造环境,属于大洋洋壳向南俯冲的产物,即柴达木地块和万宝沟大洋玄武岩高原之间的洋壳同时向南、北发生双向俯冲消减.Abstract: In order to determine the formation time, magma source, and tectonic setting of the gneissic granodiorite in Manite area, East Kunlun, zircon U-Pb dating, Hf isotope data and geochemistry of the gneissic granodiorite are studied in this paper. The chronology indicates that the magmatic zircon LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometry) U-Pb weighted mean age of the Manite gneissic granodiorite in the East Kunlun is 495.6±1.1 Ma (MSWD=0.13), belonging to the Late Cambrian. The gneissic granodiorites have SiO2 of 61.47%-63.99%, Na2O of 2.91%~3.64%, K2O of 0.93%-2.31%, CaO of 4.29%-6.52%, ALK of 3.92%-5.69% and A/CNK=0.83~0.97. Chemically, they are metaluminous and belong to calc-alkaline rock series. The gneissic granodiorite is characterized by the enrichment of LILEs (Rb and K) and incompatible elements(Th and U), and depletion of HFSEs(Nb, Ta, Zr and Ti). The ratios of Nb/Ta, La/Nb, Th/Nb and Th/La show crustal characteristics. The εHf(t) values of zircons from the gneissic granodiorite range from 12.2-15.0, their Hf two-stage model ages vary from 506 to 662 Ma. The initial materials are mainly derived from the juvenile crust. The gneissic granodiorite falls into the volcano arc granite area with the determination of trace elements in Rb-(Y+Nb) tectonic discrimination diagram and falls into the zone of pre-plate collision with the characteristics of active continental margin before the collision. Combined with the geochronological data, geochemical characteristics and the regional tectonic evolution, it is concluded that the gneissic granodiorite in the Manite area was formed in the environment of Proto-Tethys Ocean crust subduction, presumably it belongs to the southward subduction of oceanic crust. The crust between the Qaidam massif and Wanbaogou oceanic plateau occurred bidirectional subduction to the south and the north.
-
Key words:
- gneissic granodiorite /
- geochemistry /
- zircon U-Pb dating /
- geochronology /
- Manite area /
- East Kunlun
-
东昆仑造山带位于柴达木盆地南缘,隶属于中国大陆中央造山带西段(姜春发等,1992;殷鸿福和张克信,1997;姜春发等,2000).大量的研究表明东昆仑造山带是个多期-多旋回的复合造山带(罗照华等,1999;莫宣学等,2007),岩浆活动始于元古宙,止于新生代,不同时期的岩石组合记录了东昆仑多旋回边缘造山演化历史.马尼特地区位于都兰县洪水川南侧,布青山山脉中段主脊一带(97°38′00″~97°40′00″E;35°28′00″~35°29′00″N).前人从不同角度对本区大地构造背景及动力学演化做了大量研究,并认为本区存在早古生代和晚古生代两期洋-陆相互转化的构造演化过程(边千韬等,1999;裴先治,2001;李王晔等,2007;刘战庆等,2011;李瑞保等,2015;刘金龙等,2015).但上述研究主要集中在晚古生代古特提斯洋演化,而对于本区更早阶段原特提斯洋的演化过程研究目前较为薄弱.孙雨(2010)通过对得力斯坦蛇绿岩(516 Ma)研究认为,该蛇绿岩代表了早古生代原特提斯洋洋壳残余体;
1. 地质背景
东昆仑造山带是中国中央造山带的重要组成部分之一.前人根据不同的构造演化观点,对东昆仑造山带提出了不同的划分方案(古凤宝,1994;许志琴等,1996;姜春发等,2000).孙丰月等(2003)以昆北、昆中、昆南和阿尼玛卿南缘4条断裂为界,将东昆仑造山带由北向南依次划为昆北加里东弧后裂陷带、昆中基底隆起花岗岩带、昆南复合拼贴带、阿尼玛卿蛇绿混杂岩带和北巴颜喀拉造山带.马尼特地区位于阿尼玛卿-布青山脉的北坡,大地构造位置处阿尼玛卿蛇绿混杂岩带内(图 1).
马尼特地区出露的地层较为单一,主要为一套浅海相碎屑岩沉积,属中二叠世布青山群马尔争组,其次为第四纪冰碛及冲、洪积砂砾石层.其中二叠世布青山群马尔争组下岩段地层是本区的主体地层,总体呈NW-SE向展布,与区域构造线方向一致,倾向向北或向南,其主要岩石类型为砂质板岩、绢云母板岩和绢云母千枚状板岩.区内断裂构造发育,以NW向为主,其次为NE向断裂构造.NW向断裂构造主要出露有F1、F2,NE向以F7为代表.区内岩浆活动强烈,以华力西期中酸性侵入岩为主,岩性较为单一,主要为花岗闪长岩及其派生的闪长玢岩脉,花岗闪长岩主要呈岩株状或宽脉状产出,在中北部大面积出露,呈灰-深灰色,微细粒状结构,块状构造.闪长玢岩多以小岩脉形式产出,呈NW-SE向展布,与构造展布方向基本一致,呈土黄色-灰绿色-青灰色-浅灰色,变余斑状-斑状结构,块状构造.
本次研究的片麻状花岗闪长岩在马尼特地区东南部出露,蚀变比较强烈,呈深灰色,细粒结构,片麻状构造.LA-ICP-MS(laser ablation inductively coupled plasma mass spectrometry)锆石U-Pb测年获得片麻状花岗闪长岩年龄为495.6±1.1 Ma,考虑到片麻状花岗闪长岩和围岩的地质时代,推测其与围岩为断层接触关系,应为阿尼玛卿构造带中的构造岩片.
2. 样品岩石学特征
本次测试的片麻状花岗闪长岩(35°28′11″N,97°39′39″E)为灰-深灰色,具有细粒结构和片麻状构造.显微镜下(图 2)显示组成岩石主要的矿物为斜长石(40%~45%)、角闪石(20%~25%)、石英(20%~25%)和碱性长石(10%~15%).斜长石呈板柱状,粒度0.3~0.6 mm,表面因蚀变而模糊,局部可见聚片双晶;角闪石主要呈长柱状,粒度为0.4~2.0 mm,正中突起,多色性明显,呈蓝绿色-绿色,可见闪石式解理;石英呈他形粒状,粒度0.05~3.20 mm,表面干净,一级灰-白干涉色,有轻微的波状消光现象;碱性长石呈板状,粒度为0.20~0.35 mm,表面因蚀变而模糊.镜下命名为片麻状细粒花岗闪长岩.
3. 样品分析方法
3.1 锆石U-Pb定年
锆石的挑选由河北省廊坊区域地质调查研究所实验室利用标准重矿物分离技术分选完成.经过双目镜下仔细挑选,将不同特征的锆石粘在双面胶上,并用无色透明的环氧树脂固定;待其固化之后,将表面抛光至锆石的中心.在测试前,通过反射光和阴极发光(cathodolominescence,CL)图像仔细研究锆石的晶体形态与内部结构特征,以选择最佳测试点.锆石制靶、反射光、阴极发光以及锆石U-Pb年龄测定和微量元素分析均在中国地质大学(武汉)地质过程与矿产资源国家重点实验室利用LA-ICP-MS同时分析完成.本次测试采用的激光剥蚀束斑直径为32 μm,激光剥蚀样品的深度为20~40 μm;实验中采用He作为剥蚀物质的载气.锆石年龄采用国际标准锆石91500作为外标,元素含量采用NIST SRM610作为外标,29Si作为内标元素,锆石中SiO2的质量百分含量为32.8%(袁洪林等,2003);普通铅校正采用Anderson(2002)推荐的方法(Andersen,2002);样品的同位素比值及元素含量计算采用ICP-MS-DATECAL程序(Liu et al., 2008, 2010),年龄计算及谐和图的绘制采用Isoplot(ver3.0) 程序(Ludwig,2003).
3.2 锆石Lu-Hf同位素测试
锆石Lu-Hf同位素测定在中国地质大学(武汉)地质过程与矿产资源国家重点实验室利用激光剥蚀多接收杯等离子体质谱(laser ablation multi-receiver inductively coupled plasma mass spectrometry,LA-MC-ICP-MS)完成.激光剥蚀系统为GeoLas 2005 (Lambda Physik,德国),多接收器等离子质谱仪(multi-receiver inductively coupled plasma mass spectrometry,MC-ICP-MS)为Neptune Plus(Thermo Fisher Scientific,德国).实验过程中采用He作为剥蚀物质的载气,单点剥蚀模式,斑束固定为44 μm.详细仪器操作条件和分析方法可参照见侯可军等(2007),分析过程中锆石标准GJ1的176Hf/177Hf测试加权平均值为0.282 011±24(2SD,n=13),与文献(Elhlou et al., 2006; 侯可军等,2007)报道的值在误差范围内完全一致.
3.3 岩石地球化学测试
样品的主量、微量和稀土元素测试均由广州澳实矿物实验室中心完成.首先将待测样品在65 ℃左右低温干燥24 h,之后破碎,经多次手工缩分出300 g均匀样品在振动研磨机上研磨至200目以备分析测试.主量元素由荷兰PANalytical生产的Axios仪器利用熔片X-射线荧光光谱法测定,并采用等离子光谱和化学法测定进行互相检测.微量元素和稀土元素采用美国PerkinElmer公司生产的Elan9000型电感耦合等离子质谱仪(inductively coupled plasma mass spectrometry,ICP-MS)测定.主量元素分析精度和准确度优于5%,微量和稀土元素分析精度和准确度优于10%.
4. 测试结果
4.1 锆石LA-ICP-MS年代学
样品(MNT-N4) 中锆石主要为长柱状,部分呈短柱状,长径约为80~200 μm.CL图像(图 3)显示,样品中大多数锆石的自形程度较好,具有均匀的韵律环带结构,显示其岩浆成因.样品中共有20个有效年龄数据,U和Th含量分别介于183×10-6~751×10-6和57.4×10-6~279.0×10-6,锆石的Th/U比值介于0.26~0.50,均>0.1,为岩浆成因锆石(Belousova et al., 2002;Hoskin and Schaltegger, 2003).其中19个锆石分析点比较集中, 均落在谐和线上及其附近,有一个偏离协和线,锆石U-Pb加权平均年龄为495.6±1.1 Ma(MSWD=0.130)(图 4)(测试数据见表 1),属于晚寒武世.
表 1 马尼特片麻状花岗闪长岩锆石LA-MC-ICP-MS U-Pb同位素定年数据Table Supplementary Table LA-MC-ICP-MS zircon U-Pb isotope dating results of the Manite gneissic granodiorite测点号 质量百分含量(10-6) Th/U 同位素比率 同位素年龄(Ma) Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ MNT-N4-1 43.9 92.1 275 0.33 0.056 8 0.002 0 0.626 6 0.021 3 0.079 5 0.000 8 483 81 494 13 493 5 MNT-N4-2 88.1 196.0 515 0.38 0.056 7 0.003 2 0.633 2 0.032 5 0.080 3 0.001 0 480 131 498 20 498 6 MNT-N4-3 39.8 79.9 276 0.29 0.057 1 0.001 8 0.622 9 0.019 2 0.079 0 0.000 8 494 70 492 12 490 5 MNT-N4-4 41.0 79.5 300 0.27 0.055 8 0.001 8 0.615 6 0.018 8 0.080 1 0.000 7 443 77 487 12 496 4 MNT-N4-5 27.9 57.4 183 0.31 0.054 3 0.002 4 0.621 0 0.028 5 0.082 1 0.001 0 383 98 490 18 509 6 MNT-N4-6 39.0 78.3 296 0.26 0.057 0 0.001 9 0.622 7 0.019 5 0.079 4 0.000 9 500 72 492 12 493 5 MNT-N4-7 58.4 122.0 378 0.32 0.056 7 0.001 5 0.627 8 0.019 9 0.080 0 0.001 2 480 61 495 12 496 7 MNT-N4-8 70.3 151.0 424 0.36 0.057 0 0.001 6 0.630 2 0.018 4 0.080 0 0.000 7 500 60 496 11 496 4 MNT-N4-9 39.0 73.2 272 0.27 0.056 9 0.001 9 0.626 6 0.021 0 0.079 8 0.000 8 487 74 494 13 495 5 MNT-N4-10 97.0 230.0 529 0.43 0.056 4 0.001 6 0.623 8 0.018 0 0.080 1 0.000 6 478 32 492 11 497 4 MNT-N4-11 43.7 98.1 315 0.31 0.056 9 0.001 9 0.631 3 0.022 4 0.080 1 0.001 1 487 77 497 14 497 7 MNT-N4-12 111.0 246.0 751 0.33 0.056 9 0.001 4 0.630 1 0.016 0 0.080 0 0.000 9 487 52 496 10 496 5 MNT-N4-13 90.0 210.0 577 0.36 0.057 3 0.001 4 0.631 2 0.015 1 0.079 5 0.000 6 502 52 497 9 493 4 MNT-N4-14 65.6 156.0 336 0.47 0.057 1 0.001 7 0.631 0 0.018 9 0.079 8 0.000 7 494 67 497 12 495 4 MNT-N4-15 113.0 279.0 560 0.50 0.056 2 0.001 6 0.622 3 0.016 9 0.080 1 0.000 7 457 63 491 11 496 4 MNT-N4-16 53.7 121.0 314 0.39 0.056 5 0.002 0 0.624 4 0.021 5 0.080 0 0.000 9 478 78 493 13 496 5 MNT-N4-17 42.0 93.8 233 0.40 0.057 1 0.002 3 0.630 2 0.024 7 0.079 7 0.000 8 494 61 496 15 494 5 MNT-N4-18 45.5 113.0 228 0.49 0.056 9 0.002 0 0.631 2 0.021 5 0.080 2 0.000 8 487 78 497 13 497 5 MNT-N4-19 59.2 121.0 435 0.28 0.057 3 0.001 6 0.630 8 0.017 5 0.079 3 0.000 9 502 61 497 11 492 5 MNT-N4-20 67.2 142.0 476 0.30 0.056 8 0.001 6 0.628 9 0.018 0 0.079 6 0.000 8 483 61 495 11 493 5 注:测试单位和测试时间:中国地质大学(武汉)地质过程与矿产资源国家重点实验室,2014. 4.2 Lu-Hf同位素分析结果
对上述锆石U-Pb年龄测定的样品进行Lu-Hf同位素测试,测试点尽量选择与U-Pb年龄测定位置相同或相近,结果见表 2.马尼特片麻状花岗闪长岩中锆石的176Lu/177Hf比值为0.000 916~0.002 090,fLu/Hf值为-0.97~-0.94,低于上地壳(176Lu/177Hf=0.009 3,fLu/Hf=-0.72) 的值(Vervoort and Patchett, 1996).锆石的176Hf/177Hf比值为0.282 821~0.282 898,利用206Pb/238U计算获得εHf(t)为12.2~15.0,二阶段Hf模式年龄(tDM2)为506~662 Ma,平均为575 Ma.
表 2 马尼特片麻状花岗闪长岩锆石Lu-Hf同位素组成Table Supplementary Table Zircon Lu-Hf isotopic compositions of the Manite gneissic granodiorite测点号 176Hf/177Hf 2σ 176Lu/177Hf 2σ 176Yb/177Hf 2σ εHf(0) εHf(t) 2σ tDM1(Ma) tDM2(Ma) fLu/Hf MNT-N4-1 0.282 821 0.000 021 0.001 279 0.000 035 0.034 368 0.000 971 1.7 12.2 0.9 615 662 -0.96 MNT-N4-2 0.282 870 0.000 026 0.001 371 0.000 016 0.035 880 0.000 675 3.5 13.9 1.0 547 567 -0.96 MNT-N4-3 0.282 862 0.000 020 0.001 015 0.000 047 0.025 604 0.001 054 3.2 13.8 0.9 553 576 -0.97 MNT-N4-4 0.282 889 0.000 033 0.001 136 0.000 021 0.029 492 0.000 554 4.2 14.7 1.3 516 524 -0.97 MNT-N4-5 0.282 846 0.000 034 0.000 916 0.000 037 0.024 877 0.001 124 2.6 13.2 1.3 574 605 -0.97 MNT-N4-6 0.282 831 0.000 023 0.000 917 0.000 019 0.023 160 0.000 316 2.1 12.7 1.0 596 636 -0.97 MNT-N4-7 0.282 885 0.000 025 0.001 116 0.000 026 0.028 986 0.000 737 4.0 14.5 1.0 522 533 -0.97 MNT-N4-8 0.282 883 0.000 025 0.001 103 0.000 026 0.028 373 0.000 558 3.9 14.5 1.0 524 536 -0.97 MNT-N4-9 0.282 857 0.000 024 0.001 126 0.000 009 0.028 875 0.000 158 3.0 13.6 1.0 562 587 -0.97 MNT-N4-10 0.282 844 0.000 017 0.001 738 0.000 039 0.043 394 0.001 124 2.5 12.9 0.8 590 625 -0.95 MNT-N4-11 0.282 830 0.000 025 0.001 003 0.000 005 0.025 502 0.000 080 2.0 12.6 1.0 598 639 -0.97 MNT-N4-12 0.282 863 0.000 028 0.001 046 0.000 024 0.026 522 0.000 698 3.2 13.8 1.1 553 575 -0.97 MNT-N4-13 0.282 898 0.000 034 0.001 027 0.000 050 0.025 491 0.001 383 4.4 15.0 1.3 503 506 -0.97 MNT-N4-14 0.282 891 0.000 028 0.001 372 0.000 041 0.038 084 0.001 123 4.2 14.7 1.1 517 525 -0.96 MNT-N4-15 0.282 898 0.000 037 0.002 090 0.000 049 0.057 525 0.000 655 4.4 14.7 1.4 517 525 -0.94 4.3 主量元素
马尼特地区片麻状花岗闪长岩主量元素、微量元素和稀土元素含量及特征值见表 3.其中SiO2含量为61.47%~63.99%,Na2O、K2O和CaO含量分别为2.91%~3.64%、0.93%~2.31%和4.29%~6.52%,全碱ALK=3.92%~5.69%,Al2O3含量为14.64%~15.52%,铝饱和指数A/CNK=0.83~0.97.在图 5a中,样品落入闪长岩和花岗闪长岩区域,属亚碱性系列;在图 5b中,主要落入钙碱性区域;在图 5c中全部落入准铝质区域.主量元素显示岩石具有准铝质、钙碱性特征.
表 3 马尼特片麻状花岗闪长岩主量元素(%)、稀土元素及微量元素(10-6)分析结果Table Supplementary Table Major(%), REE and trace (10-6) element compositions of the Manite gneissic granodiorite样号 MNT-1 MNT-2 MNT-3 MNT-4 MNT-5 MNT-6 MNT-7 SiO2 62.64 61.67 61.80 63.28 63.19 61.47 63.99 TiO2 0.38 0.39 0.38 0.36 0.36 0.39 0.39 Al2O3 15.52 14.84 14.99 14.64 14.79 14.81 15.37 Fe2O3 6.39 7.36 7.22 6.56 6.42 7.28 5.96 MnO 0.16 0.16 0.15 0.14 0.14 0.15 0.14 MgO 2.71 3.60 3.55 3.12 3.40 3.64 2.04 CaO 4.67 6.28 6.04 5.87 5.38 6.52 4.29 Na2O 3.64 2.93 2.91 3.35 3.29 2.99 3.38 K2O 1.94 1.08 1.16 1.02 1.31 0.93 2.31 P2O5 0.11 0.09 0.09 0.10 0.10 0.09 0.11 LOI 1.74 1.52 1.62 1.49 1.55 1.65 1.94 Total 99.9 99.92 99.91 99.93 99.93 99.92 99.92 K2O/Na2O 0.53 0.37 0.40 0.30 0.40 0.31 0.68 A/CNK 0.93 0.85 0.88 0.85 0.89 0.83 0.97 A/NK 1.92 2.48 2.48 2.21 2.16 2.50 1.91 K2O+Na2O 5.58 4.01 4.07 4.37 4.60 3.92 5.69 V 140 162 161 148 143 172 123 Cr 31.0 62.1 57.4 50.9 65.0 62.6 13.5 Cs 1.080 0.796 0.839 0.757 1.080 0.726 1.20 Ga 11.50 9.94 10.00 9.49 10.50 9.86 9.97 Hf 1.27 1.22 1.24 1.26 1.39 1.09 1.15 Rb 73.9 24.5 29.2 27.8 42.4 20.4 77.6 Sr 268 269 282 269 292 259 234 Zr 32.5 25.7 32.3 28.6 35.6 24.0 30.3 Nb 3.37 2.63 2.85 3.13 3.63 2.73 2.93 Ba 598 426 464 299 385 292 626 Ta 0.32 0.27 0.25 0.29 0.30 0.26 0.27 Th 7.84 3.26 3.54 4.26 5.39 3.26 5.64 U 1.43 1.51 1.48 1.5 1.44 1.48 1.22 Y 13.6 11.9 11.7 11.1 12.1 12 10.3 La 21.7 11.8 10.9 14.0 15.0 11.4 14.2 Ce 36.9 21.1 21.1 24.4 27.5 20.6 24.9 Pr 4.03 2.45 2.40 2.78 3.11 2.38 2.77 Nd 14.70 9.64 9.51 10.50 11.90 9.69 10.10 Sm 2.83 2.02 2.13 2.06 2.51 2.06 1.96 Eu 0.77 0.58 0.53 0.53 0.64 0.59 0.61 Gd 2.91 2.09 2.19 2.28 2.78 2.10 1.85 Tb 0.47 0.40 0.35 0.42 0.41 0.34 0.32 Dy 2.47 2.09 2.09 1.95 2.26 2.16 1.75 Ho 0.52 0.44 0.44 0.40 0.46 0.43 0.36 Er 1.62 1.40 1.43 1.31 1.44 1.39 1.12 Tm 0.26 0.22 0.23 0.23 0.23 0.22 0.20 Yb 1.81 1.53 1.45 1.51 1.64 1.50 1.29 Lu 0.29 0.24 0.23 0.23 0.25 0.23 0.22 δEu 0.82 0.85 0.74 0.75 0.73 0.85 0.97 ΣREE 91.27 55.99 54.98 62.60 70.13 55.09 61.64 LREE 80.93 47.59 46.57 54.27 60.65 46.72 54.54 HREE 10.34 8.40 8.42 8.33 9.47 8.37 7.10 LREE/HREE 7.83 5.67 5.53 6.52 6.40 5.58 7.68 (La/Yb)N 8.08 5.20 5.07 6.25 6.17 5.12 7.42 Rb/Sr 0.28 0.09 0.10 0.10 0.15 0.08 0.33 Rb/Nb 21.93 9.32 10.25 8.88 11.68 7.47 26.48 Nb/Ta 10.60 9.85 11.26 10.98 12.14 10.71 10.89 La/Nb 6.44 4.49 3.82 4.47 4.13 4.18 4.85 Th/Nb 2.33 1.24 1.24 1.36 1.48 1.19 1.92 Th/La 0.36 0.28 0.32 0.30 0.36 0.29 0.40 注:LOI.烧失量;A/CNK=Al2O3/(CaO+Na2O+K2O)摩尔比;δEu=2×(Eu/0.0735)/(Gd/0.259+Sm/0.195);LREE=La+Ce+Pr+Nd+Sm+Eu;HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;(La/Yb)N=(La/0.310)/(Yb/0.209). 4.4 微量元素
片麻状花岗闪长岩的稀土总量较低,∑REE为54.98×10-6~91.27×10-6,不同样品具有相近的稀土元素配分曲线(图 6a),表明岩浆源区相同.配分曲线呈轻稀土元素弱富集的右倾式,岩石LREE为46.57×10-6~80.93×10-6,HREE为7.10×10-6~10.34×10-6,轻重稀土元素分馏较弱(La/Yb)N为5.07~8.08.岩石具有中等-微弱负铕异常(δEu=0.73~0.97,平均值为0.82),暗示岩石可能在形成过程中斜长石分离结晶作用较弱或源区斜长石残留较少.
图 6 马尼特片麻状花岗闪长岩稀土元素配分模式和微量元素蛛网图a.球粒陨石值据Boynton(1984);b.原始地幔值据Sun and McDonough(1989)Fig. 6. Chondrite-normalized REE patterns and primitive mantle-normalized trace element patterns for the Manite gneissic granodiorite图 6b显示,和原始地幔相比岩石富集大离子亲石元素(Rb、K)和不相容元素(Th、U),不同程度的亏损Nb、Ta、Zr、Ti.样品中反映岩石演化特征的元素比值Nb/Ta=9.85~12.14,La/Nb= 3.82~6.44,Th/Nb=1.19~2.32,Th/La=0.27~0.39,Rb/Sr=0.08~0.33,Rb/Nb=7.47~26.48.
5. 讨论
5.1 岩浆源区
马尼特地区片麻状花岗闪长岩具有较高的硅(61.47%~63.99%)、相对中等质量分数的铝(14.64%~15.52%)和全碱(3.92%~5.69%)以及准铝质等主量元素特征,岩石具有富集大离子亲石元素(Rb、K)和不相容元素(Th、U),相对亏损Nb、Ta、Zr、Ti高场强元素的特征,反映了其壳源特点(Mckenzie,1989).Ta、Nb以及Ti的亏损暗示岩浆不可能由软流圈部分熔融直接产生(Foley,1992),可能由于地壳的混染作用(Mckenzie,1989)或是源区经历了俯冲过程中的流体交代作用(Sun and McDonough, 1989).Nb和Ta由于性质相近,Nb/Ta比值在岩浆分异中不会造成较大的分异,可以指示岩浆源区特征及演化过程.通常幔源岩浆的Nb/Ta比值为17.5±2.0,壳源岩浆的Nb/Ta比值为11~12(Green,1995),7件片麻状花岗闪长岩样品中,Nb/Ta比值为9.85~12.14,可以反映出岩浆的壳源特点;La/Nb比值(3.82~6.44) 平均为4.63,高于大陆地壳平均值2.5,Th/Nb比值(1.19~2.32) 平均为1.54,远高于大陆地壳平均值0.7,Th/La比值(0.27~0.39) 平均为0.33,也高于大陆地壳平均值0.28(Rudnick and Gao, 2003).综上所述,马尼特地区片麻状花岗闪长岩的微量元素显示出壳源特点.
锆石具有较强的稳定性,在其形成后基本没有明显的放射性成因Hf的积累,因此成为目前示踪岩浆源区的非常重要的矿物(Ameilin et al., 2000;吴福元等,2007).在图 7中,数据点均落在亏损地幔Hf同位素演化线之下,具有高的εHf(t)值(12.2~15.0),Hf两阶段模式年龄在506~662 Ma范围内.对花岗质岩石而言,由于其主要来源于地壳岩石的部分熔融,所以其Hf模式年龄要远大于形成年龄.但若Hf模式年龄与其形成年龄相近,则表明其地壳源区是新生的(吴福元等,2007).马尼特片麻状花岗闪长岩测定的年龄495 Ma与Hf两阶段模式年龄(506~662 Ma)相近,说明新生地壳物质的部分熔融很可能是本区片麻状花岗闪长岩的重要形成机制.Vervoot et al.(2000)和Griffin et al.(2004)认为具有正εHf(t)值的花岗质岩石来自亏损地幔或从亏损地幔中新增生的年轻地壳物质的部分熔融,负εHf(t)值则表明地壳Hf同位素为主导.样品具有高εHf(t)锆石,表明亏损地幔中新增生的年轻地壳物质的部分熔融也参与到片麻状花岗闪长岩的形成.结合本次研究认为,马尼特片麻状花岗闪长岩的岩浆源区初始物质主要来源于新生地壳.
5.2 成岩年代
由于野外条件恶劣,地质关系复杂,对于本区片麻状花岗闪长岩的形成年代前人没有做过详细研究.本次作者采用锆石LA-ICP-MS U-Pb定年法对其进行了年代学的测定,所测定的年龄495.6±1.1 Ma代表了片麻状花岗闪长岩的侵位结晶年龄,为晚寒武世.研究表明东昆仑地区存在广泛的晚寒武世岩浆事件,如东昆仑南缘得利斯坦蛇绿岩的形成时代为516.0±6.3 Ma(刘战庆等,2011a),都兰可可沙石英闪长岩体的形成时代为515.2±4.4 Ma(张亚峰等,2010),东昆仑清水泉地区出露的中高压麻粒岩年龄为507.7±8.3 Ma(李怀坤等,2006),东昆仑南部阿尼玛卿地区出露的德尔尼闪长岩形成时代为493±6 Ma(李王晔等,2007),昆南沟里地区的花岗闪长岩形成时代为491.4±7.2 Ma(刘成东,2008),祁漫塔格山鸭子泉岛弧闪长岩形成时代为480±3 Ma(崔美慧等,2011),祁漫塔格地区乌兰乌珠尔铜矿中酸性侵入岩的形成时代为475.3±2.0 Ma(许庆林,2014),东昆仑早古生代纳赤台岩群变火山岩形成时代为474±7.9 Ma(陈有炘等,2013).上述的年龄数据表明,东昆仑地区在晚寒武世存在有构造-热事件并导致广泛的变质和深熔作用发生.
5.3 构造背景
马尼特片麻状花岗闪长岩在微量元素Rb-(Y+Nb)构造判别图解(图 8a)中,样品全部落入火山弧花岗岩区域.岩石不同程度的亏损Nb、Ta、Zr和Ti,表明了与火山弧构造环境的亲缘性.La/Nb比值(3.82~6.44) 平均为4.63,这也与Salters and Hart(1991)认为在活动大陆边缘区的La/Nb比值(>2) 是相符的.在图 8b中,样品主要落入板块碰撞前消减区花岗岩区域,相当于活动板块边缘.区域上,东昆南阿尼玛卿地区德尔尼闪长岩锆石U-Pb年龄为493±6 Ma(李王晔等,2007),具有富集大离子亲石元素Rb、Th、U,相对亏损高场强元素Nb、Ta、Ti的特性,被认为形成于岛弧环境.马尼特片麻状花岗闪长岩与它相比,在矿物组合以及微量元素特征等方面基本相似,较近的空间关系,相近岩体的形成时代495±1.1 Ma,推测其形成于洋壳俯冲背景下.
东昆仑地区在加里东期一直处于持续挤压造山的构造背景(潘裕生,1990;Sengor and Okurogullan, 1991;潘裕生等,1994).孙丰月等(2003)通过研究东昆仑成矿带成矿规律,认为东昆仑加里东早期花岗岩大多数为碰撞前和同碰撞花岗岩,说明在加里东期东昆仑地区已经从被动大陆边缘转化为存在洋壳俯冲的活动大陆边缘.拜永山等(2001)通过对东昆仑东段加里东期造山旋回侵入岩特征研究,认为该区早奥陶世弧花岗岩应形成于俯冲环境.莫宣学等(2007)认为东昆仑东部在早寒武世为洋盆形成及扩张阶段,中寒武世开始进入俯冲阶段,持续到晚奥陶世.张亚峰等(2010)通过对东昆仑造山带都兰可可沙石英闪长岩体年代学研究,认为其形成年龄515.2±4.4 Ma代表了洋盆俯冲开始的时间.李王晔等(2007)测得东昆仑南部的德尔尼岛弧闪长岩年代为493±6 Ma,认为其形成于洋壳消减的时代.崔美慧等(2011)测得祁漫塔格鸭子泉地区的早奥陶世岛弧型闪长岩年龄为480±3 Ma,认为形成于洋壳俯冲环境下.许庆林(2014)测得祁漫塔格地区乌兰乌珠尔铜矿片麻状花岗岩时代为475.3±2.0 Ma,认为乌兰乌珠尔中酸性侵入岩形成的构造环境应为原特提斯洋俯冲的活动大陆边缘环境.上述资料表明东昆仑地区在加里东早期存在一次重要的俯冲事件,结合本次研究认为,马尼特片麻状花岗闪长岩形成的构造环境应为加里东早期原特提斯洋壳俯冲的活动大陆边缘环境,原特提斯洋俯冲到柴达木地块之下造成陆壳加厚,新生的陆壳部分熔融形成马尼特片麻状花岗闪长岩.
孙丰月等(2003)通过研究纳赤台群火山岩认为在昆中俯冲带以南存在另一个岛弧环境,并提出了在加里东期,柴达木地块和万宝沟大洋玄武岩高原之间的洋壳同时向南、北发生双向俯冲消减.王晓霞等(2012)通过研究柴达木盆地南缘晚奥陶世万宝沟花岗岩,认为如果加里东期在昆南构造带发育有弧花岗岩的话,应该是昆中缝合带向南俯冲的产物或者是阿尼玛卿缝合带向北俯冲的产物.马尼特片麻状花岗闪长岩位于昆南断裂以南,与纳赤台群火山岩和万宝沟群火山岩具有密切的空间关系,推测其应该属于大洋洋壳向南俯冲的产物,即柴达木地块和万宝沟大洋玄武岩高原之间的洋壳同时向南、北发生双向俯冲消减.
随着新元古代末期Rodinia超大陆的裂解,东昆仑地区演化也进入非常活跃的时期.在早寒武世之前,原特提斯洋打开和扩张(Yang et al., 1996;陆松年等,2002).加里东早期,原特提斯洋向南北两侧开始俯冲(图 9).柴达木地块南缘由被动陆缘转换成活动陆缘,形成昆北、昆中的构造格局.随俯冲作用的进行,在昆中一带演化成活动陆缘弧,而昆北一带形成弧后裂陷,同时形成一系列双峰式火山岩组合、镁铁质深成侵入岩和基性脉岩(任军虎等,2009;王秉璋,2011;刘彬等,2013).此时昆中断裂以南的大洋环境主要为万宝沟群大洋玄武岩高原(阿成业等,2003;王国灿等,2007),随着万宝沟大洋高原沿昆中断裂的位置拼贴到柴达木地块之上,致使东昆仑造山带内广泛发生深熔作用,形成很多与俯冲消减作用相关的岛弧型岩浆岩,如阿尼玛卿的德尔尼岛弧型闪长岩(李王晔等,2007)、布青山的白日切特花岗闪长岩(刘战庆等,2011)、亿可哈拉尔花岗闪长岩(边千韬等,1999),推测马尼特片麻状花岗闪长岩也是由万宝沟玄武岩高原俯冲形成的.到中志留世早期原特提斯洋最终关闭(陈能松等,2002;曹世泰等,2011;刘彬等,2013),此时东昆仑南北三分的格局基本形成.
6. 结论
(1) 马尼特片麻状花岗闪长岩岩浆锆石LA-ICP-MS U-Pb加权平均年龄为495.6±1.1 Ma,属于晚寒武世.(2) 马尼特片麻状花岗闪长岩属准铝质钙碱性系列岩石,岩石具有富集大离子亲石元素(Rb、K)和不相容元素(Th、U),相对亏损Nb、Ta、Zr、Ti高场强元素的特征,Nb/Ta、La/Nb、Th/Nb、Th/La比值等显示出岩石具有壳源特征.马尼特片麻状花岗闪长岩εHf(t)值为12.2~15.0,Hf两阶段模式年龄在506~662 Ma范围内,其岩浆源区初始物质主要来源于新生地壳.(3) 马尼特片麻状花岗闪长岩在微量元素Rb-(Y+Nb)构造判别图落入火山弧花岗岩区域,在R1-R2构造判别图落入板块碰撞前消减区花岗岩区域.综合岩石组合及地球化学特征认为其构造环境应为加里东早期原特提斯洋壳俯冲的活动大陆边缘环境洋壳俯冲环境,推测其应该属于大洋洋壳向南俯冲的产物,即柴达木地块和万宝沟大洋玄武岩高原之间的洋壳同时向南、北发生双向俯冲消减.
-
图 5 马尼特片麻状花岗闪长岩TAS、SiO2-K2O和A/CNK-A/NK
a.据Irvine and Baragar(1971);b.据Peccerillo and Taylor(1976);c.据Maniar and Piccoli(1989)
Fig. 5. Total alkali versus SiO2, SiO2 versus K2O and A/CNK versus A/NK diagrams for the Manite gneissic granodiorite
图 6 马尼特片麻状花岗闪长岩稀土元素配分模式和微量元素蛛网图
a.球粒陨石值据Boynton(1984);b.原始地幔值据Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns and primitive mantle-normalized trace element patterns for the Manite gneissic granodiorite
图 7 马尼特片麻状花岗闪长岩锆石的εHf(t)-t图解
Fig. 7. εHf(t) versus t diagram of the Manite gneissic granodiorite
图 8 马尼特片麻状闪长岩构造环境判别图解
a.据Harris et al.(1986);b.据Pearce(1996)
Fig. 8. Tectonic setting discrimination diagrams of the Manite gneissic granodiorite
图 9 柴达木地块和万宝沟大洋玄武岩高原之间的洋壳同时向南、北发生双向俯冲消减
Fig. 9. The crust between the Qaidam massif and Wanbaogou oceanic plateau occurred bidirectional subduction to the south and the north
表 1 马尼特片麻状花岗闪长岩锆石LA-MC-ICP-MS U-Pb同位素定年数据
Table 1. LA-MC-ICP-MS zircon U-Pb isotope dating results of the Manite gneissic granodiorite
测点号 质量百分含量(10-6) Th/U 同位素比率 同位素年龄(Ma) Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ MNT-N4-1 43.9 92.1 275 0.33 0.056 8 0.002 0 0.626 6 0.021 3 0.079 5 0.000 8 483 81 494 13 493 5 MNT-N4-2 88.1 196.0 515 0.38 0.056 7 0.003 2 0.633 2 0.032 5 0.080 3 0.001 0 480 131 498 20 498 6 MNT-N4-3 39.8 79.9 276 0.29 0.057 1 0.001 8 0.622 9 0.019 2 0.079 0 0.000 8 494 70 492 12 490 5 MNT-N4-4 41.0 79.5 300 0.27 0.055 8 0.001 8 0.615 6 0.018 8 0.080 1 0.000 7 443 77 487 12 496 4 MNT-N4-5 27.9 57.4 183 0.31 0.054 3 0.002 4 0.621 0 0.028 5 0.082 1 0.001 0 383 98 490 18 509 6 MNT-N4-6 39.0 78.3 296 0.26 0.057 0 0.001 9 0.622 7 0.019 5 0.079 4 0.000 9 500 72 492 12 493 5 MNT-N4-7 58.4 122.0 378 0.32 0.056 7 0.001 5 0.627 8 0.019 9 0.080 0 0.001 2 480 61 495 12 496 7 MNT-N4-8 70.3 151.0 424 0.36 0.057 0 0.001 6 0.630 2 0.018 4 0.080 0 0.000 7 500 60 496 11 496 4 MNT-N4-9 39.0 73.2 272 0.27 0.056 9 0.001 9 0.626 6 0.021 0 0.079 8 0.000 8 487 74 494 13 495 5 MNT-N4-10 97.0 230.0 529 0.43 0.056 4 0.001 6 0.623 8 0.018 0 0.080 1 0.000 6 478 32 492 11 497 4 MNT-N4-11 43.7 98.1 315 0.31 0.056 9 0.001 9 0.631 3 0.022 4 0.080 1 0.001 1 487 77 497 14 497 7 MNT-N4-12 111.0 246.0 751 0.33 0.056 9 0.001 4 0.630 1 0.016 0 0.080 0 0.000 9 487 52 496 10 496 5 MNT-N4-13 90.0 210.0 577 0.36 0.057 3 0.001 4 0.631 2 0.015 1 0.079 5 0.000 6 502 52 497 9 493 4 MNT-N4-14 65.6 156.0 336 0.47 0.057 1 0.001 7 0.631 0 0.018 9 0.079 8 0.000 7 494 67 497 12 495 4 MNT-N4-15 113.0 279.0 560 0.50 0.056 2 0.001 6 0.622 3 0.016 9 0.080 1 0.000 7 457 63 491 11 496 4 MNT-N4-16 53.7 121.0 314 0.39 0.056 5 0.002 0 0.624 4 0.021 5 0.080 0 0.000 9 478 78 493 13 496 5 MNT-N4-17 42.0 93.8 233 0.40 0.057 1 0.002 3 0.630 2 0.024 7 0.079 7 0.000 8 494 61 496 15 494 5 MNT-N4-18 45.5 113.0 228 0.49 0.056 9 0.002 0 0.631 2 0.021 5 0.080 2 0.000 8 487 78 497 13 497 5 MNT-N4-19 59.2 121.0 435 0.28 0.057 3 0.001 6 0.630 8 0.017 5 0.079 3 0.000 9 502 61 497 11 492 5 MNT-N4-20 67.2 142.0 476 0.30 0.056 8 0.001 6 0.628 9 0.018 0 0.079 6 0.000 8 483 61 495 11 493 5 注:测试单位和测试时间:中国地质大学(武汉)地质过程与矿产资源国家重点实验室,2014. 表 2 马尼特片麻状花岗闪长岩锆石Lu-Hf同位素组成
Table 2. Zircon Lu-Hf isotopic compositions of the Manite gneissic granodiorite
测点号 176Hf/177Hf 2σ 176Lu/177Hf 2σ 176Yb/177Hf 2σ εHf(0) εHf(t) 2σ tDM1(Ma) tDM2(Ma) fLu/Hf MNT-N4-1 0.282 821 0.000 021 0.001 279 0.000 035 0.034 368 0.000 971 1.7 12.2 0.9 615 662 -0.96 MNT-N4-2 0.282 870 0.000 026 0.001 371 0.000 016 0.035 880 0.000 675 3.5 13.9 1.0 547 567 -0.96 MNT-N4-3 0.282 862 0.000 020 0.001 015 0.000 047 0.025 604 0.001 054 3.2 13.8 0.9 553 576 -0.97 MNT-N4-4 0.282 889 0.000 033 0.001 136 0.000 021 0.029 492 0.000 554 4.2 14.7 1.3 516 524 -0.97 MNT-N4-5 0.282 846 0.000 034 0.000 916 0.000 037 0.024 877 0.001 124 2.6 13.2 1.3 574 605 -0.97 MNT-N4-6 0.282 831 0.000 023 0.000 917 0.000 019 0.023 160 0.000 316 2.1 12.7 1.0 596 636 -0.97 MNT-N4-7 0.282 885 0.000 025 0.001 116 0.000 026 0.028 986 0.000 737 4.0 14.5 1.0 522 533 -0.97 MNT-N4-8 0.282 883 0.000 025 0.001 103 0.000 026 0.028 373 0.000 558 3.9 14.5 1.0 524 536 -0.97 MNT-N4-9 0.282 857 0.000 024 0.001 126 0.000 009 0.028 875 0.000 158 3.0 13.6 1.0 562 587 -0.97 MNT-N4-10 0.282 844 0.000 017 0.001 738 0.000 039 0.043 394 0.001 124 2.5 12.9 0.8 590 625 -0.95 MNT-N4-11 0.282 830 0.000 025 0.001 003 0.000 005 0.025 502 0.000 080 2.0 12.6 1.0 598 639 -0.97 MNT-N4-12 0.282 863 0.000 028 0.001 046 0.000 024 0.026 522 0.000 698 3.2 13.8 1.1 553 575 -0.97 MNT-N4-13 0.282 898 0.000 034 0.001 027 0.000 050 0.025 491 0.001 383 4.4 15.0 1.3 503 506 -0.97 MNT-N4-14 0.282 891 0.000 028 0.001 372 0.000 041 0.038 084 0.001 123 4.2 14.7 1.1 517 525 -0.96 MNT-N4-15 0.282 898 0.000 037 0.002 090 0.000 049 0.057 525 0.000 655 4.4 14.7 1.4 517 525 -0.94 表 3 马尼特片麻状花岗闪长岩主量元素(%)、稀土元素及微量元素(10-6)分析结果
Table 3. Major(%), REE and trace (10-6) element compositions of the Manite gneissic granodiorite
样号 MNT-1 MNT-2 MNT-3 MNT-4 MNT-5 MNT-6 MNT-7 SiO2 62.64 61.67 61.80 63.28 63.19 61.47 63.99 TiO2 0.38 0.39 0.38 0.36 0.36 0.39 0.39 Al2O3 15.52 14.84 14.99 14.64 14.79 14.81 15.37 Fe2O3 6.39 7.36 7.22 6.56 6.42 7.28 5.96 MnO 0.16 0.16 0.15 0.14 0.14 0.15 0.14 MgO 2.71 3.60 3.55 3.12 3.40 3.64 2.04 CaO 4.67 6.28 6.04 5.87 5.38 6.52 4.29 Na2O 3.64 2.93 2.91 3.35 3.29 2.99 3.38 K2O 1.94 1.08 1.16 1.02 1.31 0.93 2.31 P2O5 0.11 0.09 0.09 0.10 0.10 0.09 0.11 LOI 1.74 1.52 1.62 1.49 1.55 1.65 1.94 Total 99.9 99.92 99.91 99.93 99.93 99.92 99.92 K2O/Na2O 0.53 0.37 0.40 0.30 0.40 0.31 0.68 A/CNK 0.93 0.85 0.88 0.85 0.89 0.83 0.97 A/NK 1.92 2.48 2.48 2.21 2.16 2.50 1.91 K2O+Na2O 5.58 4.01 4.07 4.37 4.60 3.92 5.69 V 140 162 161 148 143 172 123 Cr 31.0 62.1 57.4 50.9 65.0 62.6 13.5 Cs 1.080 0.796 0.839 0.757 1.080 0.726 1.20 Ga 11.50 9.94 10.00 9.49 10.50 9.86 9.97 Hf 1.27 1.22 1.24 1.26 1.39 1.09 1.15 Rb 73.9 24.5 29.2 27.8 42.4 20.4 77.6 Sr 268 269 282 269 292 259 234 Zr 32.5 25.7 32.3 28.6 35.6 24.0 30.3 Nb 3.37 2.63 2.85 3.13 3.63 2.73 2.93 Ba 598 426 464 299 385 292 626 Ta 0.32 0.27 0.25 0.29 0.30 0.26 0.27 Th 7.84 3.26 3.54 4.26 5.39 3.26 5.64 U 1.43 1.51 1.48 1.5 1.44 1.48 1.22 Y 13.6 11.9 11.7 11.1 12.1 12 10.3 La 21.7 11.8 10.9 14.0 15.0 11.4 14.2 Ce 36.9 21.1 21.1 24.4 27.5 20.6 24.9 Pr 4.03 2.45 2.40 2.78 3.11 2.38 2.77 Nd 14.70 9.64 9.51 10.50 11.90 9.69 10.10 Sm 2.83 2.02 2.13 2.06 2.51 2.06 1.96 Eu 0.77 0.58 0.53 0.53 0.64 0.59 0.61 Gd 2.91 2.09 2.19 2.28 2.78 2.10 1.85 Tb 0.47 0.40 0.35 0.42 0.41 0.34 0.32 Dy 2.47 2.09 2.09 1.95 2.26 2.16 1.75 Ho 0.52 0.44 0.44 0.40 0.46 0.43 0.36 Er 1.62 1.40 1.43 1.31 1.44 1.39 1.12 Tm 0.26 0.22 0.23 0.23 0.23 0.22 0.20 Yb 1.81 1.53 1.45 1.51 1.64 1.50 1.29 Lu 0.29 0.24 0.23 0.23 0.25 0.23 0.22 δEu 0.82 0.85 0.74 0.75 0.73 0.85 0.97 ΣREE 91.27 55.99 54.98 62.60 70.13 55.09 61.64 LREE 80.93 47.59 46.57 54.27 60.65 46.72 54.54 HREE 10.34 8.40 8.42 8.33 9.47 8.37 7.10 LREE/HREE 7.83 5.67 5.53 6.52 6.40 5.58 7.68 (La/Yb)N 8.08 5.20 5.07 6.25 6.17 5.12 7.42 Rb/Sr 0.28 0.09 0.10 0.10 0.15 0.08 0.33 Rb/Nb 21.93 9.32 10.25 8.88 11.68 7.47 26.48 Nb/Ta 10.60 9.85 11.26 10.98 12.14 10.71 10.89 La/Nb 6.44 4.49 3.82 4.47 4.13 4.18 4.85 Th/Nb 2.33 1.24 1.24 1.36 1.48 1.19 1.92 Th/La 0.36 0.28 0.32 0.30 0.36 0.29 0.40 注:LOI.烧失量;A/CNK=Al2O3/(CaO+Na2O+K2O)摩尔比;δEu=2×(Eu/0.0735)/(Gd/0.259+Sm/0.195);LREE=La+Ce+Pr+Nd+Sm+Eu;HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;(La/Yb)N=(La/0.310)/(Yb/0.209). -
A, C.Y., Wang Y.Z., Ren J.Q., et al.2003.Disintegration of the Wanbaogou Group and Discovery of Early Cambrian Strata in the East Kunlun Area.Geology in China, 30(2):199-206(in Chinese with English abstract). https://www.researchgate.net/publication/289805174_Geological_characteristics_and_evolution_of_the_Kunlun_Mountains_region_during_the_early_Paleozoic Ameilin Y., Lee D.C., Halliday A.N.2000.Early-Middle Archean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircons Grains.Geochimica et Cosmochimica Acta, 64:4205-4225. doi: 10.1016/S0016-7037(00)00493-2 Andersen T.2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. doi: 10.1016/S0009-2541(02)00195-X Bai Y.S., Chang G.H., Tan S.X., et al.2001.Study on the Features of Caledonian Intrusive Rocks in the Eastern Sector of East Kunlun.Qinghai Geology, 9(Suppl.):28-35(in Chinese with English abstract). Belousova E.A., Griffin W.L., O'Reilly S.Y., et al.2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622. doi: 10.1007/s00410-002-0364-7 Bian Q.T., Luo X.Q., Chen H.H., et al.1999.Discovery of Early Paleozoic and Early Carboniferous-Early Permian Cophiolites in the A'nyemaqen Qinghai Province China.Scientia Geologica Sinica, 34(4):420-426(in Chinese with English abstract). https://www.researchgate.net/publication/293092779_Discovery_of_early_Paleozoic_and_early_Carboniferous-early_Permian_ophiolites_in_the_A%27nyemaqen_Qinghai_province_China Boynton W.V.1984.Geochemistry of the Rare Earth Elements:Meteorite Studies.In:Henderson P., ed., Rare Earth Element Geochemistry.Elsevier Amsterdam, 63-114. http://www.scirp.org/reference/ReferencesPapers.aspx?ReferenceID=1849732 Cao S.T., Liu X.K., Ma Y.S., et al.2011.Qimantage Area Silurian Intrusive Rocks and Its Geological Significance.Qinghai Science and Technology, 17(5):26-30(in Chinese). Chen N.S., He L., Sun M., et al.2002.Early Paleozoic Metamorphic Peak Precisely Defined and Thrusting Tectonic Deformation Era in East Kunlun Orgen Belt.Chinese Science Bulletin, 47(8):628-631(in Chinese). Chen Y.X., Pei X.Z., Li R.B., et al.2013.Zircon U-Pb Age Geochemical Characteristics and Tectonic Significance of Metavolcanic Rocks from Naij Tal Group East Section of East Kunlun.Earth Science Frontiers, 20(6):240-254(in Chinese with English abstract). https://www.researchgate.net/publication/286176966_Zircon_U-Pb_age_geochemical_characteristics_and_tectonic_significance_of_meta-volcanic_rocks_from_Naij_Tal_Group_east_section_of_East_Kunlun Cui M.H., Meng F.C., Wu X.K.2011.Early Ordovician Island Arc of Qimantag Mountain Eastern Kunlun:Evidences from Geochemistry Sm-Nd Isotope and Geochronology of Intermediate-Basic Igneous Rocks.Acta Pertrologica Sinica, 27(11):3365-3379(in Chinese with English abstract). Elhlou S., Belousova E., Griffin W.L.2006.Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation.Geochimica et Cosmochimica Acta, 70(18):A158. https://www.researchgate.net/publication/248431967_Trace_element_and_isotopic_composition_of_GJ_red_zircon_standard_by_Laser_Ablation Foley S.1992.Vein-Plus-Wall-Rock Melting Mechanisms in the Lithosphere and the Origin of Potassic Alkaline Magmas.Lithos, 28(3-6):435-453. doi: 10.1016/0024-4937(92)90018-T Green T.H.1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359. doi: 10.1016/0009-2541(94)00145-X Griffin W.L., Belousova E.A., Shee S.R.2004.Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons.Precambrian Research, 131(3-4):231-282. doi: 10.1016/j.precamres.2003.12.011 Gu F.B.1994.Geological Characteristics of East Kunlun and Tectonic Evolution in Late Palaeozoic-Mesozoic Era.Qinghai Geology, 2(1):4-14(in Chinese with English abstract). Harris N.B.W., Pearce J.A., Tindle A.G.1986.Geochemical Characteristics of Collision-Zone Magmatism.Geological Society London Special Publication, 19(5):67-81. https://www.researchgate.net/publication/42796892_Geochemical_characteristics_of_collision_zone_magmatism Hoskin P.W.O., Schaltegger U.2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. doi: 10.2113/0530027 Hou K.J., Li Y.H., Zou T.R., et al.2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604(in Chinese with English abstract). http://www.oalib.com/paper/1472292 Irvine T.N., Baragar W.R.A.1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548. doi: 10.1139/e71-055 Jiang C.F., Wang Z.Q., Li J.Y., et al.2000.Tectonics of the Central Orogenic Belt.Geological Publishing House Beijing, 154(in Chinese). Jiang C.F., Yang J.S., Feng B.G., et al.1992.Opening-Closing Patterns in Kunlun.Geological Publishing House Beijing, 224(in Chinese). Li H.K., Lu S.N., Xiang Z.Q., et al.2006.SHRIMP U-Pb Zircon Age of the Granulite from the Qingshuiquan Area Central Eastern Kunlun Suture Zone.Earth Science Frontiers, 13(6):311-321(in Chinese with English abstract). Li R.B., Pei X.Z., Li Z.C., et al.2015.Geological and Geochenmical Features of Delisitannan Basalts and Their Petrogenesis in Buqingshan Tectonic Mélange Belt Southern Margin of East Kunlun Orogen.Earth Science, 40(7):1148-1162(in Chinese with English abstract). https://www.researchgate.net/publication/287573739_Geochemical_characteristics_and_geological_implications_of_haerguole_basalt_in_Buqingshan_area_on_the_southern_margin_of_East_Kunlun_Mountains Li W.Y., Li S.G., Guo.A.L., et al.2007.East Kunlun Tectonic Belt Oliver Gabbro and Diorite Dur'ngoi Zircon SHRIMP U-Pb Age and Trace Element Geochemistry—On "Qi-Cai-Kun" Late Neoproterozoic-Early Ordovician More Ocean Island's Southern Boundary Constraints Qinghai.Science in China:Earth Sciences, 11(S1):288-294(in Chinese). Liu B., Ma C.Q., Guo P., et al.2013.Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications.Earth Science, 38(5):947-962(in Chinese with English abstract). https://www.researchgate.net/publication/287527260_Discovery_of_the_Middle_Devonian_A-type_granite_from_the_Eastern_Kunlun_Orogen_and_its_tectonic_implications Liu C.D.2008.The Granite Magma Mixing in East Kunlun Orgen Belt.Geological Publishing House Beijing, 142(in Chinese). Liu J.L., Sun F.Y., Li L., et al.2015.Geochronology Geochemistry and Hf Isotopes of Gerizhuotuo Complex Intrusion in West of Anyemaqen Suture Zone.Earth Science, 40(6):965-981(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201506003.htm Liu Y.S., Gao S., Hu Z.C., et al.2010.Continental and Oceanic Crust Recycling-Induced Melt-Periotite Interactions in the Trans-North China Orogen:U-Pb Dating Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. doi: 10.1093/petrology/egp082 Liu Y.S., Hu Z.C., Gao S., et al.2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1/2):34-43. https://www.researchgate.net/profile/Yongsheng_Liu5/publication/222034389_In_situ_analysis_of_major_and_trace_elements_of_anhydrous_minerals_by_LA-ICP-MSLA-ICP-MS_without_applying_an_internal_standard/links/54067d610cf2c48563b2536f/In-situ-analysis-of-major-and-trace-elements-of-anhydrous-minerals-by-LA-ICP-MSLA-ICP-MS-without-applying-an-internal-standard.pdf Liu Z.Q., Pei X.Z., Li R.B., et al.2011a.Early Paleozoic Intermediate-Acid Magmatic Activity in Bairiqiete Area along the Buqingshan Tectonic Mélange Belt on the Southern Margin of East Kunlun:Constraints from Zircon U-Pb Dating and Geochemistry.Geology in China, 38(5):1150-1167(in Chinese with English abstract). Liu Z.Q., Pei X.Z., Li R.B., et al.2011b.LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A'nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication.Acta Geologica Sinica, 85(2):185-194(in Chinese with English abstract). Lu S.N., Yu H.F., Zhao F.Q., et al.2002.Geological Exploration of the Cambrian in the Northern Part of the Qinghai Tibet Plateau.Geological Publishing House Beijing, 125(in Chinese). Ludwig K.R.2003.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel.Geochronology Center Berkeley. http://www.oalib.com/references/17344292 Luo Z.H., Deng J.F., Cao Y.Q., et al.1999.On Late Paleozoic-Early Mesozoic Volcanism and Regional Tectonic Evolution of Eastern Kunlun Qinghai Province.Geoscience, 13(1):51-56(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ901.007.htm Maniar P.D., Piccoli P.M.1989.Tectonic Discrimination of Granitoids.Geological Society of American Bulletin, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 Mckenzie D.P.1989.Some Remarks on the Movement of Small Melt Fractions in the Mantle.Earth and Planetary Science Letters, 95(1):53-72. https://www.researchgate.net/publication/222197669_Some_remarks_on_the_movement_of_small_melt_fractions_in_the_mantle Mo X.X., Luo Z.H., Deng J.F., et al.2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414(in Chinese with English abstract). https://www.researchgate.net/publication/258466449_Granitoids_and_Crustal_Growth_in_the_East-Kunlun_Orogenic_BeltJ Pan Y.S.1990.Tectonic Features and Evolution of the Western Kunlun Mountain Region.Scientia Geologica Sinica, 25(3):224-232(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX199003002.htm Pan Y.S., Wang Y., Matte P.H., et al.1994.Tectonic Evolution along the Geotraverse from Yecheng to Shiquanhe.Acta Geologica Sinica, 68(4):295-307(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE199404000.htm Pearce J.A.1996.Sources and Settings of Granitic Rocks.Episodes, 19(4):120-125. http://www.docin.com/p-1933801410.html Peccerillo A., Taylor A.R.1976.Geochemistry of Eocene Calc-Alkaline Volcanin Rocks from the Kastamonu Area Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. doi: 10.1007/BF00384745 Pei X.Z.2001.Geological Evolution and Dynamics of the Mianlue-A'nyemaqen Tectonic Zone Central China.(Dissertation).Northwest University Xi'an, 155(in Chinese with English abstract). Ren J.H., Liu Y.Q., Feng Q., et al.2009.LA-ICP-MS U-Pb Zircon Dating and Geochemical Characteristics of Diabase-Dykes from the Qingshuiquan Area Eastern Kunlun Orogenic Belt.Acta Petrologica Sinica, 25(5):1135-1145 (in Chinese with English abstract). Rundick R.I., Gao S.2003.Composition of the Continental Crust.Treatise Geochem., (3):1-64. http://www.doc88.com/p-997974791387.html Salters V.J.M., Hart S.R.1991.The Mantle Sources of Ocean Ridges Island Arcs:The Hf-Isotope Connection.Earth and Planetary Science Letters, 104(2):364-380. https://www.researchgate.net/publication/223410657_The_mantle_sources_of_ocean_ridges_islands_and_arcs_The_Hf-isotope_connection Sengor A.M.C., Okurogullari A.H.1991.The Role of Accretionary Wedges in the Growth of Conitinents:Asiatic Examples from Argand to Plate Tectonics.Eclogae Geological Helvetiae, 84(3):539-597. https://www.researchgate.net/publication/267305979_The_role_of_accretionary_wedges_in_the_growth_of_continents_Asiatic_examples_from_ARDAND_to_plate_tectonics Sun F.Y., Chen G.H., Chi X.G., et al.2003.Study of Metallogenic Regularity and Prospecting Direction in the East Kunlun Metallogenic Belt in Xinjiang-Qinghai Geological Survey Project.Research Report of China Geological Survey Changchun (in Chinese). Sun S.S., McDonough W.F.1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.In:Sauders A.D., Norry M.J., eds., Magmatism in the Ocean Basins.Geological Society Special Publications, (42):313-345. Sun Y.2010.The Geological Characteristics Age and Tectonic Environment Studies about Delishitan Ophiolites in Buqingshan South of East Kunlun Mountains(Dissertation).Changan University Xi'an, 60(in Chinese with English abstract). Vervoot J.D., Pachelt P.J., Albarède F., et al.2000.Hf-Nd Isotopic Evolution of the Lower Crust.Earth and Planetary Science Letters, 181(1):115-129. https://www.researchgate.net/publication/221952508_Hf-Nd_isotopic_evolution_of_the_lower_crust Wang B.Z.2011.The Study and Investigation on the Assembly and Coupling Petrotectonic Assemblage during Paleozoic-Mesozoic Period at Qimantage Geological Corridor Domain(Dissertation).China University of Geosciences Beijing (in Chinese with English abstract). Wang G.C., Wei Q.R., Jia C.X., et al.2007.Some Ideas of Precambrian Geology in the East Kunlun China.Geological Bulletin of China, 26(8):929-937(in Chinese with English abstract). Wang X.X., Hu N.G., Wang T., et al.2012.Late Ordovician Wanbaogou Granitoid Pluton from the Southern Margin of the Qaidam Basin:Zircon SHRIMP U-Pb Age Hf Isotope and Geochemistry.Acta Petrologica Sinica, 28(9):2950-2962 (in Chinese with English abstract). https://www.researchgate.net/publication/296762460_Late_Ordovician_Wanbaogou_granitoid_pluton_from_the_southern_margin_of_the_Qaidam_basin_Zircon_SHRIMP_U-Pb_age_Hf_isotope_and_geochemistry Wu F.Y., Li.X.H., Zheng Y.F., et al.2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Pertrologica Sinica, 23(2):185-220(in Chinese with English abstract). http://www.oalib.com/paper/1492671 Xu Q.L.2014.Study on Metallogenesis of Porphyry Deposits in Eastern Kunlun Orogenic Belt Qinghai Province(Dissertation).Jilin University Changchun, 195 (in Chinese with English abstract). Xu Z.Q., Yang J.S., Chen F.Y.1996.The A'nyemaqen Suture Belt and the Dynamics in Subduction and Collision.In:Zhang Q., ed., Ophiolite and Earth Dynamics Research.Geological Publishing House Beijing, 185-189(in Chinese). Yang J.H., Wu F.Y., Shao J.A., et al.2006.Constrains on the Timing of Uplift of the Yanshan Fold and Thrust Belt North China.Earth and Planetary Science Letters, 246(3-4):336-352. doi: 10.1016/j.epsl.2006.04.029 Yang J.S..Robinson P.T., Jiang C.F., et al.1996.Ophiolites of the Kunlun Mountains China and Their Tectonic Implications.Tectonophysics, 258(1):215-231. https://www.researchgate.net/profile/Jingsui_Yang2/publication/223231336_Ophiolites_of_the_Kunlun_Mountains_China_and_their_tectonic_implications/links/57fd748208ae406ad1f3d1e2.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail Yin H.F., Zhang K.X.1997.Characteristics of the East Kunlun Orogenic Belt.Earth Science, 22(4):339-342(in Chinese with English abstract). Yuan H.L., Wu.F.Y., Gao.S., et al.2003.Determination of U-Pb Age and Trace Element of Zircon of Cenozoic Intrusion in NE China by Laser-Ablation Inductively Couple Plasma Mass Spectronmetry.Chinese Science Bulletin, 48(14):1511-1520(in Chinese). https://www.researchgate.net/publication/272263177_The_zircon_%27matrix_effect%27_Evidence_for_an_ablation_rate_control_on_the_accuracy_of_U-Pb_age_determinations_by_LA-ICP-MS Zhang Y.F., Pei X.Z., Ding S.P., et al.2010.LA-ICP-MS Zircon U-Pb Age of Quartz Diorite at the Kekesha Area of Dulan County Eastern Section of the East Kunlun Orogenic Belt China and Its Significance.Geological Bulltin of China, 29(1):79-85(in Chinese with English abstract). 阿成业, 王毅智, 任晋祁, 等. 2003.东昆仑地区万宝沟群的解体及早寒武世地层的新发现.中国地质, 30(2):199-206. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200302013.htm 拜永山, 常革红, 谈生祥, 等. 2001.东昆仑东段加里东造山旋回侵入岩特征研究.青海地质, 9(增刊1):28-35. http://www.cnki.com.cn/Article/CJFDTOTAL-GTJL2001S1005.htm 边千韬, 罗小全, 陈海泓, 等. 1999.阿尼玛卿蛇绿岩带花岗-英云闪长岩锆石U-Pb同位素定年及大地构造意义.地质科学, 34(4):420-426. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199904002.htm 曹世泰, 刘晓康, 马永胜, 等. 2011.祁漫塔格地区早志留世侵入岩的发现及其地质意义.青海科技, 17(5):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-QKKJ201105008.htm 陈能松, 何蕾, 孙敏, 等. 2002.东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定.科学通报, 47(8):628-631. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200208016.htm 陈有炘, 裴先治, 李瑞保, 等. 2013.东昆仑东段纳赤台岩群变火山岩锆石U-Pb年龄、地球化学特征及其构造意义.地学前缘, 20(6):240-254. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201306032.htm 崔美慧, 孟繁聪, 吴祥珂, 2011.东昆仑祁漫塔格早奥陶世岛弧:中基性火成岩地球化学、Sm-Nd同位素及年代学证据.岩石学报, 27(11):3365-3379. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111017.htm 古凤宝, 1994.东昆仑地质特征及晚古生代-中生代构造演化.青海地质, 2(1):4-14. http://www.cnki.com.cn/Article/CJFDTOTAL-GTJL199401001.htm 侯可军, 李延河, 邹天人, 等. 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 姜春发, 王宗起, 李锦轶, 等. 2000.中央造山带开合构造.北京:地质出版社, 154. 姜春发, 杨经绥, 冯秉贵, 等. 1992.昆仑开合构造.北京:地质出版社, 224. 李怀坤, 陆松年, 相振群, 等. 2006.东昆仑中部缝合带清水泉麻粒岩锆石SHRIMP U-Pb年代学研究.地学前缘, 13(6):311-321. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200606039.htm 李瑞保, 裴先治, 李佐臣, 等. 2015.东昆仑南缘布青山构造混杂带得力斯坦南MOR型玄武岩地质、地球化学特征及岩石成因.地球科学, 40(7):1148-1162. http://www.earth-science.net/WebPage/Article.aspx?id=3118 李王晔, 李曙光, 郭安林, 等. 2007.青海东昆南构造带苦海辉长岩和德尔尼闪长岩的锆石SHRIMP U-Pb年龄及痕量元素地球化学——对"祁-柴-昆"晚新元古代-早奥陶世多岛洋南界的制约.中国科学:地球科学, 11(增刊1):288-294. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2007S1030.htm 刘彬, 马昌前, 郭盼, 等. 2013.东昆仑中泥盆世A型花岗岩的确定及其构造意义.地球科学, 38(5):947-962. http://www.earth-science.net/WebPage/Article.aspx?id=2780 刘成东, 2008.东昆仑造山带东段花岗岩岩浆混合作用, 北京:地质出版社, 142. 刘金龙, 孙丰月, 李良, 等. 2015.青海阿尼玛卿蛇绿混杂岩带西段哥日卓托杂岩体年代学、地球化学及Hf同位素.地球科学, 40(6):965-981. http://www.earth-science.net/WebPage/Article.aspx?id=3101 刘战庆, 裴先治, 李瑞保, 等. 2011a.东昆仑南缘布青山构造混杂岩带早古生代白日切特中酸性岩浆活动:来自锆石U-Pb测年及岩石地球化学证据.中国地质, 38(5):1150-1167. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201105004.htm 刘战庆, 裴先治, 李瑞保, 等. 2011b.东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义.地质学报, 85(2):185-194. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201102005.htm 陆松年, 于海峰, 赵凤清, 等. 2002.青藏高原北部前寒武纪地质初探.北京:地质出版社, 125. 罗照华, 邓晋福, 曹永清, 等. 1999.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化.现代地质, 13(1):51-56. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ901.007.htm 莫宣学, 罗照华, 邓晋福, 等. 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm 潘裕生, 1990.西昆仑山构造特征与演化.地质科学, 25(3):224-232. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199003002.htm 潘裕生, 王毅, Matte P.H., 等. 1994.青藏高原叶城-狮泉河路线地质特征及区域构造演化.地质学报, 68(4):295-307. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199404000.htm 裴先治, 2001. 勉略-阿尼玛卿构造带的形成演化与动力学特征(博士学位论文). 西安: 西北大学, 155. 任军虎, 柳益群, 冯乔, 等. 2009.东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年.岩石学报, 25(5):1135-1145. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200905008.htm 孙丰月, 陈国华, 迟效国, 等. 2003. 新疆-青海东昆仑成矿带成矿规律和找矿方向综合研究. 长春: 中国地质调查局地质调查项目科研报告. 孙雨, 2010. 东昆仑南缘布青山得力斯坦蛇绿岩地质特征、形成时代及构造环境研究(硕士学位论文). 西安: 长安大学, 60. 王秉璋, 2011. 祁漫塔格地质走廊域古生代-中生代火成岩岩石构造组合研究(博士学位论文). 北京: 中国地质大学. 王国灿, 魏启荣, 贾春兴, 等. 2007.关于东昆仑地区前寒武纪地质的几点认识.地质通报, 26(8):929-937. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200708002.htm 王晓霞, 胡能高, 王涛, 等. 2012.柴达木盆地南缘晚奥陶世万宝沟花岗岩:锆石SHRIMP U-Pb年龄、Hf同位素和元素地球化学.岩石学报, 28(9):2950-2962. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201209023.htm 吴福元, 李献华, 郑永飞, 等. 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm 许庆林, 2014. 青海东昆仑造山带斑岩型矿床成矿作用(博士学位论文). 长春: 吉林大学, 195. 许志琴, 杨经绥, 陈方远, 1996.阿尼玛卿缝合带及"俯冲-碰撞"动力学.见:张旗主编, 蛇绿岩与地球动力研究.北京:地质出版社, 185-189. 殷鸿福, 张克信, 1997.东昆仑造山带的一些特点.地球科学, 22(4):339-342. http://www.earth-science.net/WebPage/Article.aspx?id=532 袁洪林, 吴福元, 高山, 等. 2003.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报, 48(14):1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008 张亚峰, 裴先治, 丁仨平, 等. 2010.东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义.地质通报, 29(1):79-85. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201001010.htm 期刊类型引用(16)
1. 曾旭,付锁堂,王波,龙国徽,吴志雄,崔海栋,王琛茜. 柴达木盆地古近系下干柴沟组上段碎屑锆石U-Pb测年及盆山耦合探讨. 地质学报. 2024(01): 79-105 . 百度学术
2. 王秉璋,李积清,付长垒,许海全,李五福. 东昆仑布尔汗布达早古生代岩浆弧的形成与演化初探. 地球科学. 2022(04): 1253-1270 . 本站查看
3. 沈志远,魏俊浩,周红智,赵旭,张新铭. 青海都兰肉早某日地区地球化学测量信息提取与靶区圈定. 地质找矿论丛. 2020(01): 102-114 . 百度学术
4. 曹亮,陈林,段其发,周云,刘重芃,张利国. 扬子陆块北缘东河铂钯矿化超基性岩脉成岩时代与岩石成因:锆石年代学、地球化学和Sr-Nd-Hf同位素约束. 地球科学. 2019(02): 366-386 . 本站查看
5. 魏小林,康波,甘承萍,保善斌,王维. 东昆仑马尼特地区晚三叠世侵入岩地球化学特征及地质意义. 西北地质. 2019(01): 41-51 . 百度学术
6. 李积清,王涛,陈静,白宗海,林艳海. 东昆仑马尼特金矿床赋矿花岗闪长岩锆石U-Pb年龄及岩石地球化学特征. 矿物岩石. 2019(03): 69-77 . 百度学术
7. 李积清,王明,李青,薛万文,余福承,徐贝贝. 青海亚日何师金矿床地质特征及成因. 矿产勘查. 2019(09): 2171-2179 . 百度学术
8. 赵旭,付乐兵,魏俊浩,赵玉京,唐洋,杨宝荣,管波,王晓云. 东昆仑按纳格角闪辉长岩体地球化学特征及其对古特提斯洋演化的制约. 地球科学. 2018(02): 354-370 . 本站查看
9. 张航,王宗起,马昌前,熊富浩,蒋红安,郭宇衡. 东昆仑古特提斯构造带中的原特提斯记录:来自苦海镁铁质岩块的证据. 地球科学. 2018(04): 1164-1188 . 本站查看
10. 朱传宝,孙非非,袁万明,张爱奎,张大明,马忠元,周青禄,王生明,赵梦琪,刘光莲. 东昆仑野马泉地区磷灰石裂变径迹热年代学及构造意义. 地球科学. 2018(06): 2019-2028 . 本站查看
11. 陈国超,裴先治,李瑞保,李佐臣,裴磊,刘成军,陈有炘,王盟,张玉,李小兵. 东昆仑东段哈拉尕吐花岗岩基岩浆混合作用:来自岩石学和矿物学约束. 地球科学. 2018(09): 3200-3217 . 本站查看
12. 魏小林,甘承萍,仓索南尖措,康波. 东昆仑马尼特地区花岗闪长岩地球化学特征及地质意义. 中国锰业. 2018(05): 45-50 . 百度学术
13. 李佐臣,李瑞保,裴磊,陈有炘,刘成军,裴先治,刘战庆,陈国超,李小兵. 东昆仑东段原特提斯洋俯冲的岩浆响应:来自晚震旦世锆石U-Pb年龄的证据. 地球科学. 2018(12): 4536-4550 . 本站查看
14. 裴先治,李瑞保,李佐臣,刘成军,陈有炘,裴磊,刘战庆,陈国超,李小兵,王盟. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程. 地球科学. 2018(12): 4498-4520 . 本站查看
15. 李瑞保,裴先治,李佐臣,裴磊,陈国超,李小兵,陈有炘,刘成军,魏博. 东昆中构造混杂岩带清泉沟弧前玄武岩地质、地球化学特征及构造环境. 地球科学. 2018(12): 4521-4535 . 本站查看
16. 魏小林,甘承萍,保善斌,王维,康波,于小亮. 东昆仑马尼特地区中奥陶世侵入岩地球化学特征及地质意义. 矿产勘查. 2018(10): 1852-1861 . 百度学术
其他类型引用(7)
-