• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地下水化学组成对Fe2+氧化产生羟自由基的影响

    周帆 朱健 张鹏 袁松虎

    周帆, 朱健, 张鹏, 袁松虎, 2017. 地下水化学组成对Fe2+氧化产生羟自由基的影响. 地球科学, 42(6): 1039-1044. doi: 10.3799/dqkx.2017.082
    引用本文: 周帆, 朱健, 张鹏, 袁松虎, 2017. 地下水化学组成对Fe2+氧化产生羟自由基的影响. 地球科学, 42(6): 1039-1044. doi: 10.3799/dqkx.2017.082
    Zhou Fan, Zhu Jian, Zhang Peng, Yuan Songhu, 2017. Effect of Groundwater Components on Hydroxyl Radical Production by Fe (Ⅱ) Oxygenation. Earth Science, 42(6): 1039-1044. doi: 10.3799/dqkx.2017.082
    Citation: Zhou Fan, Zhu Jian, Zhang Peng, Yuan Songhu, 2017. Effect of Groundwater Components on Hydroxyl Radical Production by Fe (Ⅱ) Oxygenation. Earth Science, 42(6): 1039-1044. doi: 10.3799/dqkx.2017.082

    地下水化学组成对Fe2+氧化产生羟自由基的影响

    doi: 10.3799/dqkx.2017.082
    基金项目: 

    国家自然科学基金优秀青年基金 41522208

    详细信息
      作者简介:

      周帆(1992-),女,在读硕士,主要从事地下水中亚铁氧化产羟自由基研究.ORCID:0000-0003-1586-3223.E-mail:xiaozfan@163.com

      通讯作者:

      袁松虎,E-mail:yuansonghu622@cug.edu.cn

    • 中图分类号: P641.3

    Effect of Groundwater Components on Hydroxyl Radical Production by Fe (Ⅱ) Oxygenation

    • 摘要: 羟自由基(·OH)是自然环境中氧化活性最强的物种,对物质转化具有重要影响.前期研究发现地下水接触O2可产生·OH,其中Fe2+氧化起主导作用,但地下水化学组成对Fe2+氧化产生·OH的影响尚不清楚.通过室内模拟实验,探究了地下水中常见组分(Ca2+、Mg2+、腐殖酸(HA)和磷酸根)对Fe2+氧化产生·OH的影响.结果表明,pH 6.5时0.357 mM Fe2+在5 h内氧化完全,产生约1.8 μM的·OH;Ca2+(1~6 mM)、Mg2+(1~4 mM)对Fe2+氧化和·OH产生无明显影响;HA(10~30 mg/L)促进Fe2+氧化和·OH产生,促进效果随pH降低而增强;磷酸根(0.01~0.03 mM)抑制Fe2+氧化,对·OH产生的影响为先抑制后促进.

       

    • 图  1  Ca2+对Fe2+氧化(a)和羟自由基产量(b)的影响,Mg2+对Fe2+氧化(c)和羟自由基产量(d)的影响

      Fig.  1.  Effects of Ca2+ on Fe2+ oxidation (a) and ·OH production (b), and of Mg2+ on Fe2+ oxidation (c) and ·OH production (d)

      图  2  HA在pH6.5时对Fe2+氧化(a)和对羟自由基产量(b)的影响

      Fig.  2.  Effect of HA on Fe2+ oxidation (a) and ·OH production (b) at pH 6.5

      图  3  HA在pH6.2时对Fe2+氧化(a)和对羟自由基产量(b)的影响

      Fig.  3.  Effect of HA on Fe2+ oxidation (a) and ·OH production (b) at pH 6.2

      图  4  磷酸根对Fe2+氧化(a)和对羟自由基产量(b)的影响

      Fig.  4.  Effects of phosphate on Fe2+ oxidation (a) and ·OH production (b)

    • Baltpurvins, K.A., Burns, R.C., Lawrance, G.A., et al., 1997.Effect of Ca2+, Mg2+, and Anion Type on the Aging of Iron(Ⅲ) Hydroxide Precipitates.Environmental Science & Technology, 31(4):1024-1032.doi: 10.1021/es960498y
      Chen, Y.M., Chen, Z.H., Yu, K.B., 2016.Heterogeneity and Water Prevention of Karst Water System in Metal Mine Areas in Southern China:A Case Study of Makeng Iron Mine, Fujian Province.Earth Science, 41(4):692-700(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201604015.htm
      Deng, Y.M., Wang, Y.X., Li, H.J., et al., 2015.Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain.Earth Science, 40(11):1876-1886(in Chinese with English abstract). https://www.researchgate.net/publication/288228393_Seasonal_variation_of_arsenic_speciation_in_shallow_groundwater_from_endemic_arsenicosis_area_in_Jianghan_Plain
      Duan, Y.H., Gan, Y.Q., Guo, X.X., et al., 2014.Water Chemical Characteristics and Arsenic Enrichment Factor Analysis at High Arsenic Groundwater Monitoring Field of Jianghan Plain.Geological Science and Technology Information, 33(2):140-147(in Chinese with English abstract).
      Goti, M., Musi, S., Popovi, S., et al., 2008.Investigation of Factors Influencing the Precipitation of Iron Oxides from Fe(Ⅱ) Containing Solutions.Croatica Chemica Acta, 81(4):569-578. https://www.researchgate.net/publication/288079329_Investigation_of_factors_influencing_the_precipitation_of_iron_oxides_from_FeII_containing_solutions
      Hug, S.J., Leupin, O., 2003.Iron-Catalyzed Oxidation of Arsenic(Ⅲ) by Oxygen and by Hydrogen Peroxide:pH-Dependent Formation of Oxidants in the Fenton Reaction.Environmental Science & Technology, 37(12):2734-2742.doi: 10.1021/es026208x
      Keenan, C.R., Sedlak, D.L., 2008.Ligand-Enhanced Reactive Oxidant Generation by Nanoparticle Zero-Valent Iron and Oxygen.Environmental Science & Technology, 42(18):6936-6941.doi: 10.1021/es801438
      Komadel, P., Stucki, J.W., 1988.Quantitative Assay of Minerals for Fe2+ and Fe3+ Using 1.10-Phenathroline:Ⅲ.A Rapid Photochemical Method.Clays and Clay Minerals, 36(4):379-381.doi: 10.1346/CCMN.1988.0360415
      Koppenol, W.H., 2001.The Haber-Weiss Cycle-70 Years Later.Redox Report, 6(4):229-234.doi: 10.1179/135100001101536373
      Lee, C.H., Keenan, C.R., Sedlak, D.L., 2008.Polyoxometalate-Enhanced Oxidation of Organic Compounds by Nanoparticulate Zero-Valent Iron and Ferrous Ion in the Presence of Oxygen.Environmental Science & Technology, 42(13):4921-4926.doi: 10.1021/es800317j
      Li, G.B., Liu, C., 1989.Eliminating Iron and Manganese from Groundwater(2nd Edition).China Architecture & Building Press, Beijing (in Chinese).
      Liang, L.Y., McNabb, J.A., Paulk, J.M., et al., 1993.Kinetics of Iron(Ⅱ) Oxygenation at Low Partial Pressure of Oxygen in the Presence of Natural Organic Matter.Environmental Science & Technology, 27(9):1864-1870.doi: 10.1021/es00046a014
      Liao, P., Li, W.L., Wang, D.J., et al., 2017.Effect of Reduced Humic Acid on the Transport of Ferrihydrite Nanoparticles under Anoxic Conditions.Water Research, 109:347-357.doi: 10.1016/j.watres.2016.11.069
      Mopper, K., Zhou, X., 1990.Hydroxyl Radical Photoproduction in the Sea and Its Potential Impact on Marine Processes.Science, 250(4981):661-664.doi: 10.1126/science.250.4981.661
      Page, S.E., Kling, G.W., Sander, M., et al., 2013.Dark Formation of Hydroxyl Radicals in Arctic Soil and Surface Waters.Environmental Science & Technology, 47(22):12860-12867.doi: 10.1021/es4033265
      Page, S.E., Sander, M., Arnold, W.A., et al., 2012.Hydroxyl Radical Formation upon Oxidation of Reduced Humic Acids by Oxygen in the Dark.Environmental Science & Technology, 46(3):1590-1597.doi: 10.1021/es203836f
      Pang, S.Y., Jiang, J., Ma, J., 2011.Oxidation of Sulfoxides and Arsenic(Ⅲ) in Corrosion of Nanoscale Zero Valent Iron by Oxygen:Evidence against Ferryl Ions (Fe(Ⅳ)) as Active Intermediates in Fenton Reaction.Environmental Science & Technology, 45(1):307-312.doi: 10.1021/es102401d
      Rose, J., Flank, A.M., Masion, A., et al., 1997.Nucleation and Growth Mechanisms of Fe Oxyhydroxide in the Presence of PO4 Ions.2.P K-Edge EXAFS Study.Langmuir, 13(6):1827-1834.doi: 10.1021/la961039d
      Rose, J., Manceau, A., Bottero, J.Y., et al., 1996.Nucleation and Growth Mechanisms of Fe Oxyhydroxide in the Presence of PO4 Ions.1.Fe K-Edge EXAFS Study.Langmuir, 12(26):6701-6707.doi: 10.1021/la9606299
      Sharma, P., Ofner, J., Kappler, A., 2010.Formation of Binary and Ternary Colloids and Dissolved Complexes of Organic Matter, Fe and As.Environmental Science & Technology, 44(12):4479-4485.doi: 10.1021/es100066s
      Stumm, W., Sulzburger, B., 1992.The Cycling of Iron in Natural Environments:Considerations Based on Laboratory Studies of Heterogeneous Redox Processes.Geochimica et Cosmochimica Acta, 56(8):3233-3257.doi: 10.1016/0016-7037(92)90301-X
      Tong, M., Yuan, S.H., Ma, S.C., et al., 2016.Production of Abundant Hydroxyl Radicals from Oxygenation of Subsurface Sediments.Environmental Science & Technology, 50(1):214-221.doi: 10.1021/acs.est.5b04323
      Tryk, D.A., Fujishima, A., Honda, K., 2000.Recent Topics in Photoelectrochemistry:Achievements and Future Prospects.Electrochimica Acta, 45(15-16):2363-2376.doi: 10.1016/S0013-4686(00)00337-6
      Zhang, N.D., Zheng W., 2001.The Application of Hydroxyl Radical in Wasterwater Treatment.Journal of Harbin University of Commerce (Natural Sciences Edition), 17(3):22-24, 28(in Chinese with English abstract). doi: 10.1080/10643389.2010.507698?queryID=%24%7BresultBean.queryID%7D
      Zhang, R.Q., Liang, X., Jin, M.G., et al., 2001.General Hydrogeology.6th Edition.Geological Publishing House, Beijing, 64 (in Chinese).
      Zhu, J., Zhang, P., Yuan, S.H., et al., 2017.Production of Hydroxyl Radicals from Oxygenation of Simulated AMD Due to CaCO3-Induced pH Increase.Water Research, 111:118-126.doi: 10.1016/j.watres.2016.12.048
      陈彦美, 陈植华, 於开炳, 2016.南方岩溶金属矿区地下水非均质性及防治水意义:以福建马坑铁矿为例.地球科学, 41(4):692-700. http://www.earth-science.net/WebPage/Article.aspx?id=3286
      邓娅敏, 王焰新, 李慧娟, 等, 2015.江汉平原砷中毒病区地下水砷形态季节性变化特征.地球科学, 40(11):1876-1886. http://www.earth-science.net/WebPage/Article.aspx?id=3194
      段艳华, 甘义群, 郭欣欣, 等, 2014.江汉平原高砷地下水监测场水化学特征及砷富集影响因素分析.地质科技情报, 33(2):140-147. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201402024.htm
      李圭白, 刘超, 1989.地下水除铁除锰(第2版).北京:中国建筑工业出版社.
      张乃东, 郑威, 2001.羟自由基·OH在水处理中的应用.哈尔滨商业大学学报(自然科学版), 17(3):22-24, 28. http://www.cnki.com.cn/Article/CJFDTOTAL-HLJS200103006.htm
      张人权, 梁杏, 靳孟贵, 等, 2010.水文地质学基础(第六版).北京:地质出版社, 64.
    • 加载中
    图(4)
    计量
    • 文章访问数:  4360
    • HTML全文浏览量:  1942
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-03-06
    • 刊出日期:  2017-06-15

    目录

      /

      返回文章
      返回