• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西太平洋深水盆地海水及孔隙水的微量元素地球化学特征

    邓义楠 任江波 郭庆军 王海峰 于哲 刘晨晖

    邓义楠, 任江波, 郭庆军, 王海峰, 于哲, 刘晨晖, 2019. 西太平洋深水盆地海水及孔隙水的微量元素地球化学特征. 地球科学, 44(9): 3101-3114. doi: 10.3799/dqkx.2017.562
    引用本文: 邓义楠, 任江波, 郭庆军, 王海峰, 于哲, 刘晨晖, 2019. 西太平洋深水盆地海水及孔隙水的微量元素地球化学特征. 地球科学, 44(9): 3101-3114. doi: 10.3799/dqkx.2017.562
    Deng Yinan, Ren Jiangbo, Guo Qingjun, Wang Haifeng, Yu Zhe, Liu Chenhui, 2019. Trace Elements Geochemistry Characteristics of Seawater and Porewater in Deep-Water Basin, Western Pacific. Earth Science, 44(9): 3101-3114. doi: 10.3799/dqkx.2017.562
    Citation: Deng Yinan, Ren Jiangbo, Guo Qingjun, Wang Haifeng, Yu Zhe, Liu Chenhui, 2019. Trace Elements Geochemistry Characteristics of Seawater and Porewater in Deep-Water Basin, Western Pacific. Earth Science, 44(9): 3101-3114. doi: 10.3799/dqkx.2017.562

    西太平洋深水盆地海水及孔隙水的微量元素地球化学特征

    doi: 10.3799/dqkx.2017.562
    基金项目: 

    国家自然科学基金项目 41702096

    国土资源部海底矿产资源重点实验室项目 KLMMR-2015-A-03

    国际海域资源调查与开发“十三五”课题 DY135-C1-1-04

    国家自然科学基金项目 41803026

    中国地质调查局项目 DD20190629

    国际海域资源调查与开发“十三五”课题 DY135-R2-1-05

    国家杰出青年基金项目 41625006

    详细信息
      作者简介:

      邓义楠(1987-), 男, 工程师, 主要从事海洋地球化学研究

      通讯作者:

      郭庆军, E-mail:guoqj@igsnrr.ac.cn

    • 中图分类号: P595

    Trace Elements Geochemistry Characteristics of Seawater and Porewater in Deep-Water Basin, Western Pacific

    • 摘要: 关于西太平洋海山区深水盆地海水和孔隙水的地球化学特征,及其对该海域多金属结核生成的影响的研究至今仍比较缺乏.对西太平洋海山区的深海盆地进行海水和孔隙水的系统采样,分析了海水的化学特征以及海水和孔隙水的微量元素特征.结果显示:海水的DO和pH随水深增加呈逐渐下降再上升的趋势,而SiO32-、NO3-和PO43-的变化特征与其相反;微量元素在海水中的变化特征与上述营养盐相似,海水-沉积物界面表现出溶解态微量元素含量的极大富集,而在3~5 cm处的微弱上升可能与自生物质分解有关.以上表明大洋底层海水金属元素的富集与生物作用相关,是导致普遍氧化的表层沉积物之上多金属结核富集的主控因素;相对于其他海域,研究区域碎屑物质溶解产生的Sc、Cr、Ni、Pb以及大量的Cu、Co等金属元素可能对结核的生长起到重要的促进作用.

       

    • 图  1  西太平洋海山区研究区位置

      Fig.  1.  Location of the study area in the seamount region, western Pacific

      图  2  海水水化学特征变化情况

      单位中M为mol/L

      Fig.  2.  Variations of hydro-chemical characteristics of seawater

      图  3  海水和孔隙水的微量元素和pH的变化特征

      Fig.  3.  Variations of trace elements and pH in seawater and porewater

      图  4  孔隙水中Al与金属元素的相关关系

      Fig.  4.  The relationship between Al and trace metals in porewater

      图  5  孔隙水中自生物质的微量元素变化情况

      Fig.  5.  Variations of trace elements from authigenic materials in porewater

      图  6  溶解态微量元素在研究区的迁移模式

      Fig.  6.  Mobility model of dissolved trace elements in the study area

      图  7  不同海域沉积物孔隙水的微量元素变化特征对比

      Fig.  7.  The comparison of trace element concentrations of porewater in different sea areas

    • Al, T. A., Clark, I. D., Kennell, L., et al., 2015. Geochemical Evolution and Residence Time of Porewater in Low-Permeability Rocks of the Michigan Basin, Southwest Ontario. Chemical Geology, 404:1-17. https://doi.org/10.1016/j.chemgeo.2015.03.005
      Algeo, T. J., Maynard, J. B., 2004. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 206(3-4):289-318. https://doi.org/10.1016/j.chemgeo.2003.12.009
      Bi, S. J., Li, Z. K., Tang, K. F., et al., 2016. LA-ICP-MS in Situ Trace Element Analysis of Pyrite from Dongtongyu Gold Deposit and Its Metallogenic Significance, Xiaoqinling Gold District. Earth Science, 41(7):1121-1140 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201607005
      Cai, W. J., Hu, X. P., Huang, W. J., et al., 2011. Acidification of Subsurface Coastal Waters Enhanced by Eutrophication. Nature Geoscience, 4(11):766-770. https://doi.org/10.1038/ngeo1297
      Calvert, S. E., Pedersen, T. F., 1993. Geochemistry of Recent Oxic and Anoxic Marine Sediments:Implications for the Geological Record. Marine Geology, 113(1-2):67-88.https://doi.org/10.1016/0025-3227(93)90150-t doi: 10.1016/0025-3227(93)90150-T
      Canfield, D. E., Thamdrup, B., 2009. Towards a Consistent Classification Scheme for Geochemical Environments, or, Why We Wish the Term 'Suboxic' would Go Away.Geobiology, 7(4):385-392. https://doi.org/10.1111/j.1472-4669.2009.00214.x
      Charette, M. A., Sholkovitz, E. R., 2006. Trace Element Cycling in a Subterranean Estuary:Part 2. Geochemistry of the Pore Water. Geochimica et Cosmochimica Acta, 70(4):811-826. https://doi.org/10.1016/j.gca.2005.10.019
      Chen, F., Hu, Y., Feng, D., et al., 2016. Evidence of Intense Methane Seepages from Molybdenum Enrichments in Gas Hydrate-Bearing Sediments of the Northern South China Sea. Chemical Geology, 443:173-181. https://doi.org/10.1016/j.chemgeo.2016.09.029
      Chen, J. L., Shen, H. T., Han, X. Q., 1999. Analysis for Ferromanganese Minerals of the Pacific Oceanic Polymetallic Nodules and the Study for Its Origination. Acta Oceanologica Sinica, 21 (2):56-64 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SEAC199902007.htm
      Chen, R. F., Bada, J. L., 1994. The Fluorescence of Dissolved Organic Matter in Porewaters of Marine Sediments. Marine Chemistry, 45(1-2):31-42. https://doi.org/10.1016/0304-4203(94)90089-2
      Craig, H., Hayward, T., 1987. Oxygen Supersaturation in the Ocean:Biological versus Physical Contributions. Science, 235(4785):199-202. https://doi.org/10.1126/science.235.4785.199
      Crusius, J., Calvert, S., Pedersen, T., et al., 1996. Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 145(1-4):65-78. https://doi.org/10.1016/s0012-821x(96)00204-x doi: 10.1016/S0012-821X(96)00204-X
      Dean, W. E., Gardner, J. V., Piper, D. Z., 1997. Inorganic Geochemical Indicators of Glacial-Interglacial Changes in Productivity and Anoxia on the California Continental Margin. Geochimica et Cosmochimica Acta, 61(21):4507-4518. https://doi.org/10.1016/s0016-7037(97)00237-8 doi: 10.1016/S0016-7037(97)00237-8
      Deng, Y. N., Guo, Q. J., Zhu, M. Y., et al., 2014. REE Geochemistry of Kerogen from Early Cambrian Black Rock Series in Western Hunan. Earth Science, 39(3):283-292 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201403004
      Deng, Y. N., Guo, Q. J., Zhu, M. Y., et al., 2015. Trace Element Geochemistry Characteristics of Niutitang Formation from Lower Cambrian Black Rock Series in Western Hunan. Bulletin of Mineralogy, Petrology and Geochemistry, 34(2):410-418 (in Chinese with English abstract).
      Diao, H. X., 1986. The Minimum Values Formation Mechanism of Vertical Profile for Dissolve Oxygen from Pacific. Acta Oceanologica Sinica, 80 (2):184-189 (in Chinese).
      Gaillard, J. F., Jeandel, C., Michard, G., et al., 1986. Interstitial Water Chemistry of Villefranche Bay Sediments:Trace Metal Diagenesis. Marine Chemistry, 18(2-4):233-247. https://doi.org/10.1016/0304-4203(86)90011-3
      Giblin, A. E., Weston, N. B., Banta, G. T., et al., 2010. The Effects of Salinity on Nitrogen Losses from an Oligohaline Estuarine Sediment. Estuaries and Coasts, 33(5):1054-1068. https://doi.org/10.1007/s12237-010-9280-7
      Graybeal, A. L., Heath, G. R., 1984. Remobilization of Transition Metals in Surficial Pelagic Sediments from the Eastern Pacific. Geochimica et Cosmochimica Acta, 48(5):965-975. https://doi.org/10.1016/0016-7037(84)90188-1
      Guo, Q. J., Deng, Y. N., Hippler, D., et al., 2016. REE and Trace Element Patterns from Organic-Rich Rocks of the Ediacaran-Cambrian Transitional Interval. Gondwana Research, 36:94-106. https://doi.org/10.1016/j.gr.2016.03.012
      Hagens, M., Middelburg, J. J., 2016. Generalised Expressions for the Response of pH to Changes in Ocean Chemistry. Geochimica et Cosmochimica Acta, 187:334-349. https://doi.org/10.1016/j.gca.2016.04.012
      Hamme, R. C., Emerson, S. R., 2006. Constraining Bubble Dynamics and Mixing with Dissolved Gases:Implications for Productivity Measurements by Oxygen Mass Balance. Journal of Marine Research, 64(1):73-95. https://doi.org/10.1357/002224006776412322
      Hammond, D. E., McManus, J., Berelson, W. M., et al., 1996. Early Diagenesis of Organic Material in Equatorial Pacific Sediments:Stpichiometry and Kinetics. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 43(4-6):1365-1412. https://doi.org/10.1016/0967-0645(96)00027-6
      Han, X. Q., Jin, X. L., Yang, S. F., et al., 2003. Rhythmic Growth of Pacific Ferromanganese Nodules and Their Milankovitch Climatic Origin. Earth and Planetary Science Letters, 211(1-2):143-157. https://doi.org/10.1016/s0012-821x(03)00169-9 doi: 10.1016/S0012-821X(03)00169-9
      He, G. W., Sun, X. M., Yang, S. X., et al., 2011.A Comparison of REE Geochemistry between Polymetallic Nodules and Cobalt-Rich Crusts in the Pacific Ocean. Geology in China, 38 (2):462-472(in Chinese with English abstract).
      Kim, J., Hyeong, K., Jung, H. S., et al., 2006. Southward Shift of the Intertropical Convergence Zone in the Western Pacific during the Late Tertiary:Evidence from Ferromanganese Crusts on Seamounts West of the Marshall Islands. Paleoceanography, 21(4):247-257. https://doi.org/10.1029/2006pa001291 doi: 10.1029/2006PA001291
      Klinkhammer, G. P., 1980. Early Diagenesis in Sediments from the Eastern Equatorial Pacific, Ⅱ. Pore Water Metal Results. Earth and Planetary Science Letters, 49(1):81-101. https://doi.org/10.1016/0012-821x(80)90151-x doi: 10.1016/0012-821X(80)90151-X
      Klinkhammer, G.P., Heggie, D. T., Graham, D. W., 1982. Metal Diagenesis in Oxic Marine Sediments. Earth and Planetary Science Letters, 61(2):211-219. https://doi.org/10.1016/0012-821x(82)90054-1 doi: 10.1016/0012-821X(82)90054-1
      Li, L., Yao, G. Q., Liu, Y. H., et al., 2015. Major and Trace Elements Geochemistry and Geological Implications of Dolomite-Bearing Mudstones in Lower Part of Shahejie Formation in Tanggu Area, Eastern China. Earth Science, 40(9):1480-1496 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201509003
      Machida, S., Fujinaga, K., Ishii, T., et al., 2016. Geology and Geochemistry of Ferromanganese Nodules in the Japanese Exclusive Economic Zone around Minamitorishima Island.Geochemical Journal, 50(6):539-555. https://doi.org/10.2343/geochemj.2.0419
      Madison, A. S., Tebo, B. M., Mucci, A., et al., 2013. Abundant Porewater Mn (Ⅲ) is a Major Component of the Sedimentary Redox System. Science, 341(6148):875-878. https://doi.org/10.1126/science.1241396
      Marchig, V., von Stackelberg, U., Hufnagel, H., et al., 2001. Compositional Changes of Surface Sediments and Variability of Manganese Nodules in the Peru Basin. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 48(17-18):3523-3547. https://doi.org/10.1016/s0967-0645(01)00055-8 doi: 10.1016/S0967-0645(01)00055-8
      Martynova, M. V., 2014. Exchange of Manganese Compounds between Bottom Sediments and Water:2. Manganese Flux from Bed into Water (A Brief Review of Studies). Water Resources, 41(2):178-187. https://doi.org/10.1134/s0097807814020092 doi: 10.1134/S0097807814020092
      Middag, R., de Baar, H. J. W., Laan, P., et al., 2009. Dissolved Aluminium and the Silicon Cycle in the Arctic Ocean. Marine Chemistry, 115(3-4):176-195. https://doi.org/10.1016/j.marchem.2009.08.002
      Middag, R., van Hulten, M. M. P., van Aken, H. M., et al., 2015. Dissolved Aluminium in the Ocean Conveyor of the West Atlantic Ocean:Effects of the Biological Cycle, Scavenging, Sediment Resuspension and Hydrography. Marine Chemistry, 177:69-86. https://doi.org/10.1016/j.marchem.2015.02.015
      Morford, J. L., Martin, W. R., Kalnejais, L. H., et al., 2007. Insights on Geochemical Cycling of U, Re and Mo from Seasonal Sampling in Boston Harbor, Massachusetts, USA. Geochimica et Cosmochimica Acta, 71(4):895-917. https://doi.org/10.1016/j.gca.2006.10.016
      Morford, J. L., Emerson, S., 1999. The Geochemistry of Redox Sensitive Trace Metals in Sediments. Geochimica et Cosmochimica Acta, 63(11-12):1735-1750. https://doi.org/10.1016/s0016-7037(99)00126-x doi: 10.1016/S0016-7037(99)00126-X
      Morford, J. L., Emerson, S. R., Breckel, E. J., et al., 2005. Diagenesis of Oxyanions (V, U, Re, and Mo) in Pore Waters and Sediments from a Continental Margin. Geochimica et Cosmochimica Acta, 69(21):5021-5032. https://doi.org/10.1016/j.gca.2005.05.015
      Morford, J. L., Russell, A. D., Emerson, S., 2001. Trace Metal Evidence for Changes in the Redox Environment Associated with the Transition from Terrigenous Clay to Diatomaceous Sediment, Saanich Inlet, BC. Marine Geology, 174(1-4):355-369. https://doi.org/10.1016/s0025-3227(00)00160-2 doi: 10.1016/S0025-3227(00)00160-2
      Müller, P.J., Hartmann, M., Suess, E., 1988. The Chemical Environment of Pelagic Sediments. In: Halbach, P., Friedrich, G., Stackelberg, U. V., eds., The Manganese Nodule Belt of the Pacific Ocean Geological Environment, Nodule Formation, and Mining Aspects. Ferdinand Enke, Stuttgart, 70-90.
      Ni, J. Y., Liu, X. Q., Zhao, H. Q., et al., 2011. Nutrients Distribution in The Middle-to-Low Latitude Zone of North Pacific. Marine Geology and Quaternary Geology. 31(2):11-19 (in Chinese with English abstract). doi: 10.3724/SP.J.1140.2011.02011
      Pi, D. H., Liu, C. Q., Shields-Zhou, G. A., et al., 2013. Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China:Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 225:218-229. https://doi.org/10.1016/j.precamres.2011.07.004
      Piper, D. Z., Perkins, R. B., 2004. A Modern vs. Permian Black Shale-The Hydrography, Primary Productivity, and Water-Column Chemistry of Deposition. Chemical Geology, 206(3-4):177-197. https://doi.org/10.1016/j.chemgeo.2003.12.006 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_0814659b436262095d34e068beeef98f
      Santos-Echeandia, J., Prego, R., Cobelo-García, A., et al., 2009. Porewater Geochemistry in a Galician Ria (NW Iberian Peninsula):Implications for Benthic Fluxes of Dissolved Trace Elements (Co, Cu, Ni, Pb, V, Zn). Marine Chemistry, 117(1-4):77-87. https://doi.org/10.1016/j.marchem.2009.05.001
      Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J., et al., 1998. Simulated Response of the Ocean Carbon Cycle to Anthropogenic Climate Warming. Nature, 393(6682):245-249. https://doi.org/10.1038/30455
      Schlitzer, R., 2004. Export Production in the Equatorial and North Pacific Derived from Dissolved Oxygen, Nutrient and Carbon Data. Journal of Oceanography, 60(1):53-62. https://doi.org/10.1023/b:joce.0000038318.38916.e6 doi: 10.1023/B:JOCE.0000038318.38916.e6
      Sholkovitz, E. R., Shaw, T. J., Schneider, D. L., 1992. The Geochemistry of Rare Earth Elements in the Seasonally Anoxic Water Column and Porewaters of Chesapeake Bay. Geochimica et Cosmochimica Acta, 56(9):3389-3402. https://doi.org/10.1016/0016-7037(92)90386-w doi: 10.1016/0016-7037(92)90386-W
      Skrabal, S. A., Terry, C. M., 2002. Distributions of Dissolved Titanium in Porewaters of Estuarine and Coastal Marine Sediments. Marine Chemistry, 77(2-3):109-122. https://doi.org/10.1016/s0304-4203(01)00077-9 doi: 10.1016/S0304-4203(01)00077-9
      Tanaka, S. S., Watanabe, Y. W., Ono, T., et al., 2013. Spatial High-Resolution Estimation of Net Oxygen Production during Spring Bloom in the Western North Pacific Using Dissolved Oxygen, Nitrogen and Argon. Marine Chemistry, 149:85-95. https://doi.org/10.1016/j.marchem.2013.01.001
      Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update. Chemical Geology, 232(1-2):12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012
      van Hulten, M. M. P., Sterl, A., Tagliabue, A., et al., 2013. Aluminium in an Ocean General Circulation Model Compared with the West Atlantic Geotraces Cruises. Journal of Marine Systems, 126:3-23. https://doi.org/10.1016/j.jmarsys.2012.05.005
      Wegorzewski, A. V., Kuhn, T., 2014. The Influence of Suboxic Diagenesis on the Formation of Manganese Nodules in the Clarion Clipperton Nodule Belt of the Pacific Ocean. Marine Geology, 357:123-138. https://doi.org/10.1016/j.margeo.2014.07.004
      Xiang, L., Cai, C. F., He, X. Y., et al., 2015. Ocean Redox State Evolution and Its Controlling Factors during Cambrian Terreneuvian Epoch:Evidence from Lijiatuo Section, South China. Earth Science, 40(7):1197-1214 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201507008
      Yarincik, K. M., Murray, R. W., Lyons, T. W., et al., 2000. Oxygenation History of Bottom Waters in the Cariaco Basin, Venezuela, over the Past 578, 000 Years:Results from Redox-Sensitive Metals (Mo, V, Mn, and Fe). Paleoceanography, 15(6):593-604. https://doi.org/10.1029/1999pa00040 doi: 10.1029/1999PA000401
      Zhang, F. Y., Yang, Q. H., Yin, R. G., et al., 2001. Material Source and Distribution Characteristics of Polymetallic Nodules in the Eastern Pacific. Acta Geologica Sinica, 75 (4):537-547 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzxe200104017.htm
      Zhang, H., Davison, W., Miller, S., et al., 1995. In Situ High Resolution Measurements of Fluxes of Ni, Cu, Fe, and Mn and Concentrations of Zn and Cd in Porewaters by DGT. Geochimica et Cosmochimica Acta, 59(20):4181-4192. https://doi.org/10.1016/0016-7037(95)00293-9
      Zhang, L. J., Yao, D., Liang, H. F., 1994. Geochemistry of Interstitial Water in Sediments from Eastern Pacific Basin. Geochemica, 23 (Suppl.):201-209 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX4S1.022.htm
      Zhang, W. Y., Zhang, F. Y., Zhu, K. C., et al., 2009. Fractal Research on Seamount Topography in the West Pacific Ocean. Geoscience, 23 (6):1138-1146 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200906020
      Zhao, L. H., Jin, X. L., Gao, J. Y., et al., 2010. The Effective Elastic Thickness of Lithosphere in the Mid-West Pacific and Its Geological Significance. Earth Science, 35(4):637-644 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201004014
      毕诗健, 李占轲, 唐克非, 等, 2016.小秦岭东桐峪金矿床黄铁矿LA-ICP-MS微量元素特征及其成矿意义.地球科学, 41(7):1121-1140. http://d.old.wanfangdata.com.cn/Periodical/dqkx201607005
      陈建林, 沈华悌, 韩喜球, 等, 1999.太平洋多金属结核中铁锰矿物分析及成因研究.海洋学报, 21(2):56-64. http://www.cnki.com.cn/Article/CJFDTotal-SEAC199902007.htm
      邓义楠, 郭庆军, 朱茂炎, 等, 2014.湘西寒武纪早期黑色岩系中干酪根的稀土元素地球化学特征.地球科学, 39(3):283-292. http://d.old.wanfangdata.com.cn/Periodical/dqkx201403004
      邓义楠, 郭庆军, 朱茂炎, 等, 2015.湘西下寒武统牛蹄塘组黑色岩系的微量元素地球化学特征.矿物岩石地球化学通报, 34(2):410-418. doi: 10.3969/j.issn.1007-2802.2015.02.025
      刁焕祥, 1986.太平洋溶解氧垂直分布最小值形成机理的探讨.海洋学报, 80(2):184-189. http://www.cnki.com.cn/Article/CJFDTotal-SEAC198602007.htm
      何高文, 孙晓明, 杨胜雄, 等, 2011.太平洋多金属结核和富钴结壳稀土元素地球化学对比及其地质意义.中国地质, 38(2):462-472. doi: 10.3969/j.issn.1000-3657.2011.02.020
      李乐, 姚光庆, 刘永河, 等, 2015.塘沽地区沙河街组下部含云质泥岩主微量元素地球化学特征及地质意义.地球科学, 40(9):1480-1496. http://d.old.wanfangdata.com.cn/Periodical/dqkx201509003
      倪建宇, 刘小骐, 赵宏樵, 等, 2011.北太平洋中低纬度海区水体中营养盐的分布特征.海洋地质与第四纪地质, 31(2):11-19. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201102002
      向雷, 蔡春芳, 贺训云, 等, 2015.华南李家沱剖面寒武纪纽芬兰世海水氧化还原性质演化及其驱动因素.地球科学, 40(7):1197-1214. http://d.old.wanfangdata.com.cn/Periodical/dqkx201507008
      张富元, 杨群慧, 殷汝广, 等, 2001.东太平洋CC区多金属结核物质来源和分布规律.地质学报, 75(4):537-547. doi: 10.3321/j.issn:0001-5717.2001.04.013
      张丽洁, 姚德, 梁宏锋, 1994.东太平洋海盆沉积物间隙水地球化学研究.地球化学, 23 (增刊):201-209. http://www.cqvip.com/QK/92960X/1994C00/11005248.html
      章伟艳, 张富元, 朱克超, 等, 2009.西太平洋海域海山地形分形特征研究.现代地质, 23(6):1138-1146. doi: 10.3969/j.issn.1000-8527.2009.06.020
      赵俐红, 金翔龙, 高金耀, 等, 2010.中西太平洋海山区的岩石圈有效弹性厚度及其地质意义.地球科学, 35(4):637-644. http://d.old.wanfangdata.com.cn/Periodical/dqkx201004014
    • dqkx-44-9-3101-Table1-3.doc
    • 加载中
    图(7)
    计量
    • 文章访问数:  5250
    • HTML全文浏览量:  2039
    • PDF下载量:  92
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-02-09
    • 刊出日期:  2019-09-15

    目录

      /

      返回文章
      返回