• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南堡凹陷1号构造断层垂向封闭能力定量评价

    胡欣蕾 吕延防 付广 王超 刘哲

    胡欣蕾, 吕延防, 付广, 王超, 刘哲, 2019. 南堡凹陷1号构造断层垂向封闭能力定量评价. 地球科学, 44(11): 3882-3893. doi: 10.3799/dqkx.2017.574
    引用本文: 胡欣蕾, 吕延防, 付广, 王超, 刘哲, 2019. 南堡凹陷1号构造断层垂向封闭能力定量评价. 地球科学, 44(11): 3882-3893. doi: 10.3799/dqkx.2017.574
    Hu Xinlei, Lü Yanfang, Fu Guang, Wang Chao, Liu Zhe, 2019. Quantitative Evaluation of Fault Vertical Sealing Ability of 1st Structure in Nanpu Sag. Earth Science, 44(11): 3882-3893. doi: 10.3799/dqkx.2017.574
    Citation: Hu Xinlei, Lü Yanfang, Fu Guang, Wang Chao, Liu Zhe, 2019. Quantitative Evaluation of Fault Vertical Sealing Ability of 1st Structure in Nanpu Sag. Earth Science, 44(11): 3882-3893. doi: 10.3799/dqkx.2017.574

    南堡凹陷1号构造断层垂向封闭能力定量评价

    doi: 10.3799/dqkx.2017.574
    基金项目: 

    国家自然科学基金项目 41872153

    东北石油大学校级研究生创新科研项目 YJSCX2017-001NEPU

    详细信息
      作者简介:

      胡欣蕾(1991-), 女, 讲师, 主要从事油气藏形成与资源评价工作

    • 中图分类号: P618

    Quantitative Evaluation of Fault Vertical Sealing Ability of 1st Structure in Nanpu Sag

    • 摘要: 通过对断裂带内部结构及其特征研究发现,断层岩是断层构成的重要部分,断层垂向封闭能力的强弱关键取决于油气运移方向断层岩与下伏储层岩石的排替压力差.若断层岩排替压力大于等于储层岩石,断层垂向封闭,其封闭能力的大小取决于二者排替压力差值的大小,差值越大,断层垂向封闭能力越强;反之断层垂向开启.断层岩的排替压力大小受泥质含量、压实成岩程度、岩石结构方向性等因素的影响,其泥质含量越高、压实成岩程度越大、断面方向与铅直方向夹角越小,断层岩排替压力越大.基于断层垂向封闭机理及影响因素,综合实验室不同角度泥岩样品排替压力测试结果与岩石力学分解关系,在确定与目标点断层岩具有相同压实成岩程度围岩地层的基础上,建立了一套定量评价断层垂向封闭能力的方法,并将其应用于渤海湾盆地南堡凹陷1号构造内典型断层垂向封闭能力评价中,结果表明:f1断层在不同测线处的断-储排替压力差为-0.114~1.035 MPa,除L7~L11测线处其他测线内断层岩排替压力均大于储层岩石,断层垂向封闭,与油气分布吻合关系较好.通过与未考虑岩石结构方向性方法的比较,证实该方法具有更好的可行性和更高的可信度.

       

    • 图  1  南堡凹陷1号构造f1断层示意

      a.平面图;b.剖面图;c.断面断距属性图

      Fig.  1.  Fault f1 in 1st structure of Nanpu sag

      图  2  断层垂向封闭机理及影响因素示意

      Fig.  2.  The fault vertical sealing mechanism and influencing factors

      图  3  南堡凹陷实测岩石样品排替压力拟合关系

      a.断层岩;b.储层岩石

      Fig.  3.  Fitting relation of the capillary entry pressure of rock samples in Nanpu sag

      图  4  四川盆地龙马溪组泥岩样品排替压力测试

      Fig.  4.  Test of the capillary entry pressure of mudstone samples in S1l Formation of Sichuan basin

      图  5  不同方向岩石排替压力变化规律

      a.断层岩;b.储层岩石

      Fig.  5.  Laws of the capillary entry pressure in different directions

      图  6  南堡凹陷1号构造孔隙度随深度变化规律

      Fig.  6.  Variation law of porosity with depth in 1st structure of Nanpu sag

      图  7  南堡凹陷1号构造f1断层及东二段储层属性图

      Fig.  7.  Attribution of Fault f1 and Ed2 Formation in 1st structure of Nanpu sag

      表  1  不同方向岩石排替压力实测值与分解法计算值间关系

      Table  1.   The relation of capillary entry pressure by measurement and calculation (applicable for normal fault)

      样品1 样品2
      断层倾角(°) 90 75 60 45 90 75 60 45
      实测值(MPa) 2.68 2.43 2.16 1.96 4.55 4.16 3.82 3.33
      计算值(MPa) 2.68 2.59 2.32 1.90 4.55 4.39 3.94 3.22
      误差(%) 0 6.73 7.61 3.31 0 5.53 3.25 3.27
      下载: 导出CSV

      表  2  南堡凹陷1号构造f1断层垂向封闭性评价参数

      Table  2.   Evaluation data of fault vertical sealing of Fault f1 in 1st structure of Nanpu sag

      测线号 现今埋深(m) 断层岩 储层岩石 断-储排替压力差(MPa)
      泥质含量(%) 断层倾角(°) 压实成岩埋深(m) 垂直断层方向排替压力(MPa) 油气运移方向排替压力(MPa) 泥质含量(%) 储层倾角(°) 垂直储层方向排替压力(MPa) 油气运移方向排替压力(MPa)
      1 2 876.5 36.49 61.81 128.42 0.421 0.786 30.53 14.63 0.747 0.548 0.238
      2 2 869.3 44.03 56.65 149.07 0.431 0.655 30.53 8.87 0.760 0.563 0.092
      3 2 901.7 40.92 47.67 184.67 0.436 0.479 30.51 16.41 0.786 0.408 0.070
      4 2 887.3 35.12 47.35 184.87 0.430 0.467 30.51 19.07 0.749 0.355 0.112
      5 2 963.4 42.05 61.32 134.40 0.426 0.779 30.49 14.41 0.789 0.576 0.203
      6 2 985.3 39.61 45.16 198.94 0.438 0.440 30.61 10.94 0.783 0.440 0.000
      7 3 000.0 36.83 39.54 218.64 0.438 0.362 30.66 2.57 0.791 0.476 -0.114
      8 2 996.3 34.39 42.53 208.67 0.434 0.398 30.67 3.42 0.804 0.507 -0.109
      9 2 959.8 33.91 44.30 200.19 0.432 0.422 30.65 4.41 0.801 0.514 -0.092
      10 2 927.0 31.94 47.76 185.96 0.428 0.471 30.63 1.83 0.781 0.561 -0.090
      11 2 956.1 30.97 49.03 183.17 0.426 0.491 30.52 6.02 0.769 0.525 -0.034
      12 3 047.8 31.75 53.53 171.21 0.425 0.575 30.46 9.86 0.792 0.547 0.028
      13 3 040.4 31.47 53.20 172.12 0.425 0.568 30.23 13.22 0.788 0.506 0.062
      14 3 122.1 31.33 61.98 138.61 0.420 0.789 26.77 11.58 0.690 0.531 0.258
      15 3 073.7 28.68 66.27 116.90 0.415 0.944 26.77 14.63 0.687 0.539 0.405
      16 3 096.0 27.30 66.12 118.45 0.414 0.936 26.77 11.91 0.701 0.569 0.367
      17 3 144.5 25.14 62.43 137.54 0.415 0.796 26.77 6.56 0.711 0.589 0.207
      18 3 178.3 23.42 65.14 126.27 0.413 0.891 26.77 15.02 0.713 0.547 0.344
      19 3 185.8 22.43 67.65 114.49 0.411 1.000 24.81 9.72 0.669 0.567 0.433
      20 3 315.0 23.63 74.98 81.19 0.408 1.521 21.62 8.27 0.561 0.515 1.005
      21 3 212.2 30.26 75.05 78.31 0.410 1.536 21.41 12.84 0.567 0.501 1.035
      22 3 315.0 33.36 69.73 108.54 0.416 1.127 22.77 16.31 0.599 0.481 0.646
      23 3 322.7 40.23 66.42 125.61 0.423 0.970 23.72 8.99 0.638 0.537 0.432
      24 3 396.0 40.16 60.92 155.99 0.429 0.772 19.79 9.67 0.513 0.400 0.372
      25 3 380.5 43.12 65.98 130.04 0.426 0.956 18.06 4.87 0.475 0.415 0.541
      26 3 399.8 43.79 64.90 136.30 0.428 0.913 16.38 12.14 0.427 0.340 0.573
      27 3 509.2 42.23 64.11 144.81 0.429 0.883 14.68 7.58 0.393 0.328 0.555
      28 3 470.0 44.39 55.60 185.27 0.439 0.642 13.80 4.47 0.369 0.287 0.354
      29 3 548.7 44.34 64.22 145.86 0.430 0.891 13.16 8.20 0.359 0.298 0.593
      30 3 485.7 43.35 71.49 104.58 0.421 1.257 12.19 11.84 0.337 0.291 0.966
      下载: 导出CSV
    • Athy, L. F., 1930. Density, Porosity, and Compaction of Sedimentary Rocks. AAPG Bulletin, 14(1):1-24. https://doi.org/10.1306/3d93289e-16b1-11d7-8645000102c1865d
      Boutareaud, S., Wibberley, C. A. J., Fabbri, O., et al., 2008. Permeability Structure and Co-Seismic Thermal Pressurization on Fault Branches:Insights from the Usukidani Fault, Japan. Geological Society, London, Special Publications, 299(1):341-361. https://doi.org/10.1144/sp299.20
      Bretan, P., Yielding, G., Jones, H., 2003. Using Calibrated Shale Gouge Ratio to Estimate Hydrocarbon Column Heights. AAPG Bulletin, 87(3):397-413. https://doi.org/10.1306/08010201128
      Caine, J. S., Evans, J. P., Forster, C. B., 1996. Fault Zone Architecture and Permeability Structure. Geology, 24(11):1025-1028. https://doi.org/10.1130/0091-7613(1996)024<1025:fzaaps>2.3.co; 2 doi: 10.1130/0091-7613(1996)024<1025:fzaaps>2.3.co;2
      Cao, Z. H., Zhang, H. C., Liu, G. Y., et al., 2015. Main Control Factors and Distribution Prediction of High-Quality Carbonate Reservoirs in the Nanpu Sag, Bohai Bay Basin. Oil & Gas Geology, 36(1):103-110 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201501013
      Chen, W., Wu, Z. P., Hou, F., et al., 2010. Internal Structures of Fault Zones and Their Relationship with Hydrocarbon Migration and Accumulation. Acta Petrolei Sinica, 31(5):774-780 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201005012
      Fan, J., Jiang, Y.L., Liu, J.D., et al., 2017. Relationship of Fault with Hydrocarbon Migration and Accumulation in Longfengshan Area, Changling Faulted Depression. Earth Science, 42(10):1817-1829 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.568
      Fu, G., Li, S. Z., 2017. Restoration Method of Closed Evolution History of Fractured Mudstone Cap Rock and Its Application. Earth Science, 42(9):1590-1598 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.514
      Fu, G., Shi, J. J., Lü, Y. F., 2012. An Improvement in Quantitatively Studying Lateral Seal of Faults. Acta Petrolei Sinica, 33(3):414-418 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201203010
      Fu, G., Yang, W. M., Lei, L., et al., 2009. A New Method for Quantitative Evaluation of Vertical Seal Ability of Faults in Caprock. Special Oil & Gas Reservoirs, 16(4):18-20 (in Chinese with English abstract).
      Fu, X. F., Fang, D. Q., Lü, Y. F., et al., 2005. Method of Evaluating Vertical Sealing of Faults in Terms of the Internal Structure of Fault Zones. Earth Science, 30(3):328-336 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200503008
      Fu, X. F., Lü, Y. F., Fu, G., et al., 2004. Quantitative Simulation Experiment and Evaluation Method for Vertical Seal of Overthrust. Chinese Journal of Geology, 39(2):223-233 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200402009
      Fu, X. F., Shang, X. Y., Meng, L. D., 2013. Internal Structure of Fault Zone and Oil/Gas Reservior in Low-Porosity Rock. Journal of Central South University (Science and Technology), 44(6):2428-2438 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201306034
      Fu, X. F., Yan, L. Y., Meng, L. D., 2019. Deformation Mechanism and Vertical Sealing Capacity of Fault in the Mudstone Caprock. Journal of Earth Science, 30(2):367-375. https://doi.org/10.1007/s12583-018-0998-7
      Hubbert, M. K., 1953. Entrapment of Petroleum under Hydro-Dynamic Conditions. American Association of Petroleum Geologists Bulletin, 37:1954-2026. http://cn.bing.com/academic/profile?id=ca89c180ddd745dff7a1945efc12034e&encoded=0&v=paper_preview&mkt=zh-cn
      Knipe, R. J., Jones, G., Fisher, Q. J., 1998. Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs:An Introduction. Geological Society, London, Special Publications, 147(1):93. https://doi.org/10.1144/GSL.SP.1998.147.01.01
      Landes, K. K., 1951. A Scrutiny of the Abstract. Bulletin of the American Association of Petroleum Geologists, 35(7):1660-1966. https://doi.org/10.1029/EO050i003p00074-01
      Lu, B., Chen, Z. M., Guan, D. F., et al., 1996. The Activating Properties of Fault Planes and Functions of Sealing Oil-Gas Accumulation. Acta Petrolei Sinica, 17(3):33-38 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600808407
      Lü, Y. F., Chen, Z. M., Chen, F. J., 1995. Evaluation of Sealing Ability of Faults Using Nonlinear Mapping Analysis. Acta Petrolei Sinica, 16(2):36-41 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199500767731
      Lü, Y. F., Chen, Z. M., Fu, G., et al., 1993. Research on the Displacement Pressure of Caprock. Journal of Daqing Petroleum Institute, 17(4):1-7 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=18847253666615eff3f4102de2ac3941&encoded=0&v=paper_preview&mkt=zh-cn
      Lü, Y. F., Sha, Z. X., Fu, X. F., et al., 2007. Quantitative Evaluation Method for Fault Vertical Sealing Ability and Its Application. Acta Petrolei Sinica, 28(5):34-38 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200705006
      Lü, Y. F., Wang, W., Hu, X. L., et al., 2016. Quantitative Evaluation Method of Fault Lateral Sealing. Petroleum Exploration and Development, 43(2):1-7 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a9b94d619a5e1f5325a77bf881ccd05f&encoded=0&v=paper_preview&mkt=zh-cn
      Ma, L., 2009. The Dynamics Simulation on Migration and Accumulation of Oil-Gas Prediction of Exploration Targets in Nanpu Depression, Bohai Bay Basin, China (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      Qiao, H. B., Wang, S. L., Zhang, B. M., et al., 2017. Diagenetic Characteristics and Evolution Sequence of Dongying Formation in Nanpu 1st Structure. Petroleum Geology and Engineering, 31(2):33-37 (in Chinese).
      Riley, P. R., Goodwin, L. B., Lewis, C. J., 2010. Controls on Fault Damage Zone Width, Structure, and Symmetry in the Bandelier Tuff, New Mexico. Journal of Structural Geology, 32(6):766-780. https://doi.org/10.1016/j.jsg.2010.05.005
      Shi, J. J., Li, L. L., Fu, G., et al., 2012. Quantitative Evaluation Method and Application of Vertical Sealing Property of Faults in Caprock. Journal of Jilin University (Earth Science Edition), 42(Suppl.2):162-169 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ2012S2020.htm
      Smith, D. A., 1966. Theoretical Consideration of Sealing and Non-Sealing Faults. AAPG Bulletin, 50(2):363-374. https://doi.org/10.1306/5d25b48f-16c1-11d7-8645000102c1865d
      Tanaka, H., Hinoki, S. I., Kosaka, K., et al., 2001. Deformation Mechanisms and Fluid Behavior in a Shallow, Brittle Fault Zone during Coseismic and Interseismic Periods:Results from Drill Core Penetrating the Nojima Fault, Japan. The Island Arc, 10(3/4):381-391. https://doi.org/10.1046/j.1440-1738.2001.00336.x
      Tang, J. R., Wang, H., Meng, L. J., et al., 2016. Pressure Evolution and Its Effect on Petroleum Accumulation in Nanpu Sag, Bohai Bay Basin. Earth Science, 41(5):809-820 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.068
      Wang, W. F., Zhou, W. W., Xu, S. L., 2017. Formation and Evolution of Concealed Fault Zone in Sedimentary Basin and Its Significance in Hydrocarbon Accumulation. Earth Science, 42(4):613-624 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.048
      Wayne, R. B., Jim, U., David, N. D., et al., 2006. Multi-Disciplinary Approach to Fault and Top Seal Appraisal; Pyrenees-Macedon Oil and Gas Fields, Exmouth Sub-Basin, Australian Northwest Shelf. Marine and Petroleum Geology, 23(3):241-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b95a66a68b1c91ef9aa8b7e105b6ffa6
      Yielding, G., 2002. Shale Gouge Ratio-Calibration by Geohistory. Norwegian Petroleum Society Special Publications, 11(2):1-15. https://doi.org/10.1016/S0928-8937(02)80003-0
      Yielding, G., Freeman, B., Needham, D. T., 1997. Quantitative Fault Seal Prediction. AAPG Bulletin, 81(6):897-917. https://doi.org/10.1306/522b498d-1727-11d7-8645000102c1865d
      曹中宏, 张红臣, 刘国勇, 等, 2015.南堡凹陷碳酸盐岩优质储层发育主控因素与分布预测.石油与天然气地质, 36(1):103-110. http://d.old.wanfangdata.com.cn/Periodical/syytrqdz201501013
      陈伟, 吴智平, 侯峰, 等, 2010.断裂带内部结构特征及其与油气运聚关系.石油学报, 31(5):774-780. http://d.old.wanfangdata.com.cn/Periodical/syxb201005012
      范婕, 蒋有录, 刘景东, 等, 2017.长岭断陷龙凤山地区断裂与油气运聚的关系.地球科学, 42(10):1817-1829. doi: 10.3799/dqkx.2017.568
      付广, 李世朝, 2017.被断裂破坏泥岩盖层封闭性演化史恢复方法及其应用.地球科学, 42(9):1590-1598. doi: 10.3799/dqkx.2017.514
      付广, 史集建, 吕延防, 2012.断层侧向封闭性定量研究方法的改进.石油学报, 33(3):414-418. http://d.old.wanfangdata.com.cn/Periodical/syxb201203010
      付广, 杨文敏, 雷琳, 等, 2009.盖层内断裂垂向封闭性定量评价新方法.特种油气藏, 16(4):18-20. doi: 10.3969/j.issn.1006-6535.2009.04.004
      付晓飞, 方德庆, 吕延防, 等, 2005.从断裂带内部出发评价断层垂向封闭性的方法.地球科学, 30(3):328-336. http://www.earth-science.net/article/id/1414
      付晓飞, 吕延防, 付广, 等, 2004.逆掩断层垂向封闭性定量模拟实验及评价方法.地质科学, 39(2):223-233. doi: 10.3321/j.issn:0563-5020.2004.02.009
      付晓飞, 尚小钰, 孟令东, 2013.低孔隙岩石中断裂带内部结构及与油气成藏.中南大学学报(自然科学版), 44(6):2428-2438. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201306034
      鲁兵, 陈章明, 关德范, 等, 1996.断面活动特征及其对油气的封闭作用.石油学报, 17(3):33-38. doi: 10.3321/j.issn:0253-2697.1996.03.005
      吕延防, 陈章明, 陈发景, 1995.非线性映射分析判断断层封闭性.石油学报, 16(2):36-41. doi: 10.3321/j.issn:0253-2697.1995.02.006
      吕延防, 陈章明, 付广, 等, 1993.盖岩排替压力研究.大庆石油学院学报, 17(4):1-7. http://www.cnki.com.cn/Article/CJFDTotal-DQSY199304000.htm
      吕延防, 沙子萱, 付晓飞, 等, 2007.断层垂向封闭性定量评价方法及其应用.石油学报, 28(5):34-38. doi: 10.3321/j.issn:0253-2697.2007.05.006
      吕延防, 王伟, 胡欣蕾, 等, 2016.断层侧向封闭性定量评价方法.石油勘探与开发, 43(2):1-7. http://d.old.wanfangdata.com.cn/Periodical/syktykf201602020
      马良, 2009.南堡凹陷油气运聚动力学模拟及有利勘探目标预测(硕士学位论文).北京: 中国地质大学.
      乔海波, 王时林, 张博明, 等, 2017.南堡1号构造东营组储层成岩作用特征及演化序列.石油地质与工程, 31(2):33-37. doi: 10.3969/j.issn.1673-8217.2017.02.008
      史集建, 李丽丽, 付广, 等, 2012.盖层内断层垂向封闭性定量评价方法及应用.吉林大学学报(地球科学版), 42(增刊2):162-169.
      汤建荣, 王华, 孟令箭, 等, 2016.渤海湾盆地南堡凹陷地层压力演化及其成藏意义.地球科学, 41(5):809-820. doi: 10.3799/dqkx.2016.068
      王伟锋, 周维维, 徐守礼, 2017.沉积盆地断裂趋势带形成演化及其控藏作用.地球科学, 42(4):613-624. doi: 10.3799/dqkx.2017.048
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  3951
    • HTML全文浏览量:  1919
    • PDF下载量:  45
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-07-10
    • 刊出日期:  2019-11-15

    目录

      /

      返回文章
      返回