• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    华北板块北缘中段花岗闪长岩-苏长辉长岩的锆石U-Pb年代学、地球化学特征及其形成机制

    王师捷 徐仲元 董晓杰 王挽琼 李鹏川

    王师捷, 徐仲元, 董晓杰, 王挽琼, 李鹏川, 2018. 华北板块北缘中段花岗闪长岩-苏长辉长岩的锆石U-Pb年代学、地球化学特征及其形成机制. 地球科学, 43(9): 3267-3284. doi: 10.3799/dqkx.2017.585
    引用本文: 王师捷, 徐仲元, 董晓杰, 王挽琼, 李鹏川, 2018. 华北板块北缘中段花岗闪长岩-苏长辉长岩的锆石U-Pb年代学、地球化学特征及其形成机制. 地球科学, 43(9): 3267-3284. doi: 10.3799/dqkx.2017.585
    Wang Shijie, Xu Zhongyuan, Dong Xiaojie, Wang Wanqiong, Li Pengchuan, 2018. Geochemical Characteristics and Zircon U-Pb Age of the Granodiorite-Norite Gabbro in the Northern Margin of the North China Block and Their Formation Mechanism. Earth Science, 43(9): 3267-3284. doi: 10.3799/dqkx.2017.585
    Citation: Wang Shijie, Xu Zhongyuan, Dong Xiaojie, Wang Wanqiong, Li Pengchuan, 2018. Geochemical Characteristics and Zircon U-Pb Age of the Granodiorite-Norite Gabbro in the Northern Margin of the North China Block and Their Formation Mechanism. Earth Science, 43(9): 3267-3284. doi: 10.3799/dqkx.2017.585

    华北板块北缘中段花岗闪长岩-苏长辉长岩的锆石U-Pb年代学、地球化学特征及其形成机制

    doi: 10.3799/dqkx.2017.585
    基金项目: 

    吉林大学研究生创新基金资助项目 2017092

    国家自然科学基金项目 41272223

    中国地质调查局项目 DD20189614

    国家自然科学基金项目 41402169

    详细信息
      作者简介:

      王师捷(1993-), 男, 博士研究生, 主要从事构造地质学研究

      通讯作者:

      徐仲元

    • 中图分类号: P581;P597

    Geochemical Characteristics and Zircon U-Pb Age of the Granodiorite-Norite Gabbro in the Northern Margin of the North China Block and Their Formation Mechanism

    • 摘要: 华北板块北缘中段土牧尔台地区发育大量的酸性侵入岩,仅局部出露一些苏长辉长岩岩体.前人对该基性岩岩体的研究较少,且缺少其与周围同时代酸性侵入岩演化关系的讨论.基于年代学和地球化学方法,锆石U-Pb测年结果显示,花岗闪长岩年龄为275.3±2.6 Ma,苏长辉长岩为270.1±4.2 Ma,两者均为早二叠世产出.苏长辉长岩贫硅(SiO2=46.2%~49.8%)和高场强元素(Nb、Ti、Zr等),富Mg#(59.16~67.58)和大离子亲石元素(Cs、Ba、Sr等),具有较低的稀土总量和较平缓的配分曲线,及Eu正异常(δEu=1.02~2.41),显示幔源侵入岩的特点;花岗闪长岩SiO2含量在65.6%~67.0%之间,K2O含量为3.71%~4.15%,为准铝质系列(A/CNK=0.94~0.98),属于高钾钙碱性I型花岗岩.样品富集轻稀土、大离子亲石元素(Cs、Rb、K等),亏损重稀土元素、高场强元素(Nb、Ti、Th等),存在Eu负异常(δEu=0.61~0.69),具有大陆弧火山岩的特征,同时岩石中存在镁铁质包体,表明其岩浆来源是壳幔混源的.两者的时空关系及地球化学特征显示,基性岩浆来自于受俯冲流体交代的亏损岩石圈地幔,底侵加热地壳产生花岗质岩浆并与之发生混合作用.结合区域研究背景,表明花岗闪长岩-苏长辉长岩岩体形成于俯冲的构造背景下,且在早二叠世,古亚洲洋仍未闭合.

       

    • 图  1  内蒙中部区域构造简图(a)和研究区地质简图(b, c)

      图a据Xiao et al.(2003)

      Fig.  1.  Regional tectonic sketch of middle Inner Mongolia (a) and regional geological sketch of the study area (b, c)

      图  2  花岗闪长岩和苏长辉长岩的野外和镜下照片

      a.花岗闪长岩野外照片;b, c.花岗闪长岩中包体;d.苏长辉长岩野外照片;e.花岗闪长岩正交偏光照片;f.苏长辉长岩正交偏光照片.Am.角闪石;Pl.斜长石;Bi.黑云母;Cpx.单斜辉石;Hy.紫苏辉石;Ol.橄榄石

      Fig.  2.  Specimen photos and photomicrographs of the granodiorite and norite gabbro

      图  3  锆石阴极发光照片

      Fig.  3.  CL images of the dated zircons for granodiorite and norite gabbro

      图  4  花岗闪长岩与苏长辉长岩的锆石U-Pb谐和图

      Fig.  4.  Concordia diagrams showing zircon U-Pb dating results of granodiorite and norite gabbro

      图  5  花岗闪长岩和苏长辉长岩的TAS(a)和SiO2-K2O图解(b)

      图a据Bas et al.(1986);图b据Peccerillo and Taylor(1976)

      Fig.  5.  TAS diagram (a) and SiO2-K2O diagram (b) for the granodiorite and norite gabbro

      图  6  花岗闪长岩和苏长辉长岩的稀土元素配分模式(a, c)和微量元素蛛网图(b, d)

      图a, c中的标准化值据Boynton(1984);图b, d中的标准化值据Sun and McDonough(1989);阴影统计数据Zhang et al.(2009a, 2009b)罗红玲等(2009)

      Fig.  6.  The REE distribution patterns (a, c) and the spider diagrams (b, d) of trace elements ratio of granodiorite and norite gabbro

      图  7  华北板块北缘二叠纪火成岩分布

      年龄数据据表 3

      Fig.  7.  The distribution of the Permian igneous rocks in the northern margin of the North China Block

      图  8  苏长辉长岩的La/Ba-La/Nb图解(a)和Ba/La-Th/Yb图解(b)

      图a据Saunders et al.(1992);图b据Woodhead et al.(2001)

      Fig.  8.  La/Ba vs La/Nb (a) and Ba/La vs Th/Yb (b) diagrams for the norite gabbro

      图  9  苏长辉长岩的Dy/Yb-La/Yb图解(a)和(Tb/Yb)N-(La/Sm)N图解(b)

      图a据Yang et al.(2007);图b据Zhang et al.(2008)

      Fig.  9.  Dy/Yb vs La/Yb (a) and (Tb/Yb)N vs (La/Sm)N (b) diagrams for the norite gabbro

      图  10  I-A型花岗岩判别图

      Whalen et al.(1987)

      Fig.  10.  I-A type granite discrimination diagram

      图  11  花岗闪长岩和苏长辉长岩Harke图解

      Fig.  11.  Harke diagrams for compositions of the granodiorite and norite gabbro

      图  12  花岗闪长岩和苏长辉长岩协变图解

      Barth et al.(2000)

      Fig.  12.  Covariant diagrams for compositions of the granodiorite and norite gabbro

      图  13  苏长辉长岩和花岗闪长岩的构造判别图解

      图a据Wood et al.(1979);图b据Pearce et al.(1984)

      Fig.  13.  The discrimination diagrams for the norite gabbro and granodiorite

      图  14  早二叠世华北板块北缘构造环境示意图和岩浆演化模式

      Xiao et al.(2003)Chen et al.(2016)修改

      Fig.  14.  Schematic diagram of tectonic setting for the northern margin of North China Block during Early Permian and schematic diagram of mechanism in formation of the magma

      表  1  花岗闪长岩和苏长辉长岩的锆石U-Pb定年数据

      Table  1.   Zircon age data for the granodiorite and norite gabbro

      样品 含量(10-6) Th/U 同位素比值 年龄(Ma)
      Th U 207Pb/206Pb 1δ 207Pb/235U 1δ 206Pb/238U 1δ 208Pb/232Th 1δ 206Pb/238U 1δ
      P27N2-1
      1 178 326 0.56 0.051 97 0.032 62 0.303 64 0.069 84 0.044 00 0.019 02 257.3 14.6 277.6 5.2
      2 205 380 0.56 0.053 19 0.029 85 0.288 08 0.106 45 0.044 40 0.019 29 250.8 20.8 280.0 5.3
      3 159 265 0.62 0.053 35 0.035 11 0.285 03 0.064 53 0.043 50 0.019 27 251.9 11.8 274.5 5.2
      4 105 207 0.52 0.051 29 0.038 30 0.234 16 0.073 94 0.043 12 0.019 76 226.8 12.7 272.1 5.3
      5 132 210 0.65 0.055 42 0.049 85 0.299 01 0.079 94 0.042 96 0.019 95 249.1 13.1 271.2 5.3
      6 202 365 0.57 0.051 99 0.032 94 0.295 38 0.064 09 0.043 19 0.020 19 260.5 12.7 272.6 5.4
      7 99 173 0.59 0.054 69 0.042 94 0.311 56 0.062 13 0.043 60 0.020 27 271.4 12.9 275.1 5.5
      8 221 337 0.68 0.051 37 0.032 00 0.312 88 0.038 61 0.043 46 0.018 61 267.4 8.2 274.2 5.0
      9 241 438 0.57 0.053 76 0.032 97 0.339 86 0.039 07 0.044 76 0.018 20 300.3 8.8 282.3 5.0
      10 181 238 0.78 0.054 09 0.047 90 0.283 42 0.088 78 0.043 16 0.019 73 261.9 12.4 272.4 5.3
      11 147 281 0.54 0.053 55 0.034 57 0.327 08 0.039 68 0.044 30 0.019 48 283.5 9.5 279.4 5.3
      12 242 380 0.66 0.052 95 0.029 26 0.337 04 0.036 66 0.045 26 0.018 44 285.2 11.1 285.4 5.1
      13 125 214 0.60 0.055 09 0.038 31 0.295 87 0.071 57 0.043 08 0.019 83 251.8 13.5 271.9 5.3
      14 111 216 0.53 0.053 43 0.039 50 0.269 82 0.116 28 0.042 30 0.020 44 234.0 22.1 267.1 5.3
      15 173 278 0.64 0.054 07 0.034 04 0.274 83 0.063 19 0.043 28 0.019 18 243.5 10.9 273.1 5.1
      P27N9-4
      1 101 186 0.54 0.054 43 0.005 33 0.322 23 0.030 03 0.043 62 0.001 04 246.5 14.6 275.2 6.5
      2 139 224 0.62 0.049 36 0.003 45 0.280 07 0.021 26 0.040 87 0.000 74 233.8 12.1 258.2 4.6
      3 331 605 0.55 0.054 43 0.001 97 0.319 30 0.010 41 0.042 99 0.000 61 233.3 5.9 271.3 3.8
      4 340 329 1.03 0.051 05 0.002 00 0.295 68 0.010 89 0.042 39 0.000 46 228.1 4.8 267.6 2.9
      5 127 318 0.40 0.056 57 0.002 33 0.335 60 0.014 00 0.043 03 0.000 50 229.6 8.8 271.6 3.1
      6 183 296 0.62 0.053 21 0.002 12 0.315 79 0.011 75 0.043 60 0.000 74 238.8 7.7 275.1 4.6
      7 141 147 0.96 0.053 92 0.005 56 0.320 76 0.032 07 0.044 28 0.002 44 226.8 16.5 279.3 15.1
      8 120 195 0.61 0.054 28 0.002 33 0.320 50 0.013 27 0.043 40 0.000 66 249.3 9.9 273.8 4.1
      下载: 导出CSV

      表  2  花岗闪长岩和苏长辉长岩的主量元素(%)和微量元素(10-6)分析结果

      Table  2.   Maior (%), trace elements (10-6) compositions for the granodiorite and norite gabbro

      岩性 花岗闪长岩 苏长辉长岩
      样品号 P27H2-1 P27H4-1 P27H4-2 P27H4-3 P27H4-4 P27H9-1 P27H9-2 P27H9-3 P27H9-4 T2014-5 T2014-6
      SiO2 65.6 66.3 66.2 67.0 66.8 49.8 47.0 46.6 46.2 48.1 47.8
      Al2O3 15.65 15.45 15.25 15.45 15.20 19.65 25.10 25.70 23.6 16.45 18.30
      Fe2O3 4.26 4.11 4.04 4.05 4.13 7.87 5.08 4.97 5.53 10.20 9.21
      CaO 3.49 3.40 3.67 3.55 3.43 11.00 15.40 15.55 15.35 10.70 11.30
      MgO 1.98 1.94 1.90 1.90 1.92 7.00 4.79 4.47 5.82 7.46 6.80
      K2O 3.78 4.15 3.77 3.87 3.71 0.92 0.28 0.20 0.19 0.98 1.13
      Na2O 3.41 3.24 3.37 3.41 3.37 1.95 1.16 1.16 1.08 2.19 1.80
      TiO2 0.54 0.51 0.51 0.50 0.51 0.51 0.30 0.41 0.28 1.08 0.76
      MnO 0.07 0.06 0.06 0.06 0.06 0.12 0.09 0.08 0.09 0.18 0.15
      P2O5 0.13 0.12 0.12 0.12 0.12 0.10 0.04 0.06 0.04 0.28 0.20
      LOI 0.49 0.47 0.66 0.55 0.58 1.22 0.75 0.96 1.28 1.42 1.51
      Total 99.64 99.98 99.74 100.70 100.05 100.30 100.20 100.40 99.74 99.25 99.17
      Mg# 47.94 48.32 48.23 48.17 47.94 63.79 65.13 64.05 67.58 59.16 59.39
      La 36.0 50.4 47.1 50.8 48.1 17.3 5.5 6.9 4.8 18.4 15.6
      Ce 67.4 91.0 85.3 91.9 86.2 32.8 11.4 13.4 8.9 43.7 34.2
      Pr 6.76 9.09 8.63 9.06 8.63 3.54 1.25 1.53 0.98 5.75 4.38
      Nd 23.5 30.6 29.6 30.7 29.2 13.0 5.2 6.2 4.2 23.9 17.8
      Sm 4.11 5.26 5.23 5.24 5.05 2.55 1.14 1.33 0.97 5.22 3.89
      Eu 0.88 1.08 0.99 1.07 0.99 1.03 0.81 0.81 0.81 1.77 1.42
      Gd 3.74 4.69 4.78 4.60 4.49 2.57 1.19 1.46 1.09 5.41 4.04
      Tb 0.50 0.62 0.62 0.64 0.61 0.34 0.18 0.19 0.16 0.74 0.52
      Dy 3.20 3.84 3.87 3.98 3.78 2.23 1.06 1.21 0.99 4.53 2.96
      Ho 0.63 0.75 0.76 0.76 0.71 0.43 0.22 0.23 0.20 0.94 0.61
      Er 2.06 2.49 2.64 2.62 2.42 1.38 0.65 0.63 0.63 2.64 1.81
      Tm 0.21 0.33 0.37 0.39 0.35 0.17 0.08 0.10 0.07 0.38 0.23
      Yb 1.91 2.28 2.44 2.50 2.38 1.21 0.63 0.53 0.61 2.35 1.49
      Lu 0.27 0.33 0.35 0.37 0.33 0.17 0.09 0.08 0.07 0.38 0.26
      Y 19.1 22.6 23.2 23.8 22.5 12.4 6.1 6.1 5.6 26.2 17.3
      Rb 118.0 144.5 148.0 155.5 145.0 30.4 11.0 5.5 6.4 29.6 48.4
      Sr 275 334 315 311 322 516 545 644 544 605 698
      Ba 860 1185 936 970 911 346 130 133 101 236 343
      U 0.90 1.09 2.06 1.51 1.42 0.55 0.17 0.14 0.10 0.49 0.86
      Th 13.80 15.90 18.05 19.45 20.50 4.08 0.89 0.72 0.53 2.39 2.59
      Nb 7.8 8.9 9.9 9.5 9.5 4.3 1.3 1.5 0.8 6.9 4.5
      Ta 0.4 0.6 0.9 1.0 0.7 0.3 0.2 0.2 0.2 0.3 0.3
      Zr 253 240 222 231 243 95 32 26 19 90 67
      Cr 50 80 70 70 80 110 280 240 300 220 110
      V 860 1185 936 970 911 158 170 159 214 315 249
      Hf 6.8 6.5 6.3 6.5 6.7 2.6 0.9 0.8 0.7 3.0 2.1
      ∑REE 151.17 202.76 192.68 204.63 193.24 78.72 29.4 34.6 24.48 116.11 89.21
      LREE/HREE 126.47 182.31 148.57 149.23 135.97 8.26 6.17 6.81 5.41 5.68 6.48
      (La/Yb)N 12.71 14.9 13.01 13.70 13.63 9.64 5.89 8.78 5.31 5.28 7.06
      δEu 0.69 0.66 0.61 0.67 0.64 1.23 2.13 1.78 2.41 1.02 1.10
      下载: 导出CSV

      表  3  华北板块北缘二叠纪火成岩年龄汇总

      Table  3.   Summary of ages of the Permian igneous rocks in the northern margin of the North China Block

      序号 样品号 纬度 经度 采样位置 岩性 年龄(Ma) 测试方法 来源
      侵入岩
      1 D490 41°03′57″ 117°20′22″ 波罗诺 角闪辉长岩 297±1 LA-ICP-MS Zhang et al., 2009b
      2 WZ08 41°39′58″ 108°50.28′ 乌拉特中旗 花岗闪长岩 291±4 SHRIMP 罗红玲等,2007
      3 05A06 40°50.35′ 113°37.14′ 喇嘛沟门 闪长岩 288±5 SHRIMP 王慧初等,2007
      4 D079-1 41°01′37″ 117°06′17″ 凌营 花岗闪长岩 288±4 LA-ICP-MS Zhang et al., 2009a
      5 ZL21C 40°59′ 115°39′ 赤城 二长花岗岩 287±1 LA-ICP-MS 王芳等,2009
      6 D464 40°57′29″ 116°45′08″ 五道营子 闪长岩 283±2 LA-ICP-MS Zhang et al., 2009a
      7 T1 109°3.9′ 41°54.7′ 乌拉特中旗 黑云母二长花岗岩 279±3 LA-ICP-MS 王挽琼等,2013
      8 ZQ05-06 41°20′33″ 108°11′13″ 乌梁斯太 花岗岩 277±3 SHRIMP 罗红玲等,2009
      9 99-7 113.61° 42.42° 镶黄旗 黑云角闪石英闪长岩 277.2±2.9 LA-ICP-MS 童英等,2010
      10 D252 116°55.5′ 41°03.3′ 厢黄旗 辉长岩 276±2 SHRIMP Zhang et al., 2009a
      11 SL04-28 108°05.3′ 41°31.7′ 乌拉特中旗 辉长岩 269±8 SHRIMP 赵磊等,2011
      12 06B195 - - 白云鄂博 花岗闪长岩 269±3 LA-ICP-MS 范宏瑞等,2009
      13 NM08-59 41°44′49″ 110°31′39″ 达茂旗 正长花岗岩 268±2 LA-ICP-MS 冯丽霞等,2013
      14 BJG1 41°35′ 111°9.6′ 四子王旗 正长花岗岩 264±3.4 LA-ICP-MS 柳长峰等,2010
      火山岩
      15 G3117-12 41°46′ 113°11′ 土牧尔台 玄武安山岩 278.9±1.1 LA-ICP-MS 未发表数据
      16 07057-1 41°50.62′ 112°51.18′ 三井泉乡 流纹质凝灰岩 276±2 LA-ICP-MS Zhang et al., 2016
      17 07D024-1 42°24.40′ 119°41.58′ 赤峰 安山岩 273±6 SHRIMP Zhang et al., 2016
      18 P28N9-1 41°45′53″ 113°13′49″ 西井子 流纹岩 269.5±3.4 LA-ICP-MS 董晓杰等,2016
      19 - - - 白云鄂博 安山岩 265.9 K-Ar 许立权,2005
      20 08485-1 41°59′33″ 111°34′24″ 达茂旗 流纹岩 264±2 LA-ICP-MS Zhang et al., 2016
      下载: 导出CSV
    • Barth, M.G., McDonough, W.F., Rudnick, R.L., 2000.Tracking the Budget of Nb and Ta in the Continental Crust.Chemical Geology, 165(3-4):197-213. https://doi.org/10.1016/s0009-2541(99)00173-4
      Bas, M.J.L., Maitre, R.W.L., Streckeisen, A., et al., 1986.A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram.Journal of Petrology, 27(3):745-750. https://doi.org/10.1093/petrology/27.3.745
      Belousova, E., Griffin, W., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622. https://doi.org/10.1007/s00410-002-0364-7
      Boynton, W.V., 1984.Cosmochemistry of the Rare Earth Elements:Meteorite Studies.Rare Earth Element Geochemistry, 2(2):63-114. https://doi.org/10.1016/b978-0-444-42148-7050008-3
      Chen, B., Jahn, B.M., Tian, W., 2009.Evolution of the Solonker Suture Zone:Constraints from Zircon U-Pb Ages, Hf Isotopic Ratios and Whole-Rock Nd-Sr Isotope Compositions of Subduction-and Collision-Related Magmas and Forearc Sediments.Journal of Asian Earth Sciences, 34(3):245-257. https://doi.org/10.1016/j.jseaes.2008.05.007
      Chen, M., Sun, M., Buslov, M.M., et al., 2016.Crustal Melting and Magma Mixing in a Continental Arc Setting:Evidence from the Yaloman Intrusive Complex in the Gorny Altai Terrane, Central Asian Orogenic Belt.Lithos, 252-253:76-91. https://doi.org/10.1016/j.lithos.2016.02.016
      Claesson, S., 1987.Isotopic Evidence for the Precambrian Provenance and Caledonian Metamorphism of High Grade Paragneisses from the Seve Nappes, Scandinavian Caledonides.Contributions to Mineralogy and Petrology, 97(2):196-204. https://doi.org/10.1007/bf00371239
      Claoue-long, J.C., Compston, W., Roberts J., et al., 1995.Two Carboniferous Ages:A Comparison of SHRIMP Zircon Dating with Conventional Zircon Ages and 40Ar/39Ar Analysis.SEPM Special Publication, 54(54):3-21. https://doi.org/10.2110/pec.95.04.0003
      Dobretsov, N.L., Berzin, N.A., Buslov, M.M., 1995.Opening and Tectonic Evolution of the Paleo-Asian Ocean.International Geology Review, 37(4):335-360. https://doi.org/10.1080/00206819509465407
      Dong, X.J., Wang, W.Q., Sha, Q., et al., 2016.Suzy Volcanic Rocks in the Northern Margin of the North China Craton and Its Formation Mechanism.Acta Petrologica Sinica, 32(9):2765-2779 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201609012.htm
      Fan, H.R., Hu, F.F., Yang, K.F., et al., 2009.Geochronology Framework of Late Paleozoic Dioritic-Granitic Plutons in the Bayan Obo Area, Inner Mongolia, and Tectonic Significance.Acta Petrologica Sinica, 25(11):2933-2938 (in Chinese with English abstract). http://www.oalib.com/paper/1472677#.W760xPm-CZQ
      Feng, L.X., Zhang, Z.C., Han, B.F., et al., 2013.LA-ICP-MS Zircon U-Pb Ages of Granitoids in Darhan Muminggan Joint Banner, Inner Mongolia, and Their Geological Significance.Geological Bulletin of China, 32(11):67-78 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201311006.htm
      Gibson, I.L., Kirkpatrick, R.J., Emmerman, R., et al., 1982.The Trace Element Composition of the Lavas and Dikes from a 3-km Vertical Section through the Lava Pile of Eastern Iceland.Journal of Geophysical Research:Solid Earth, 87(B8):6532-6546. https://doi.org/10.1029/jb087ib08p06532
      Hibbard, M.J., 1991.Textural Anatomy of Twelve Magma-Mixed Granitoid Systems.In: Didier, J., Barbarin, B., eds., Enclaves and Granite Petrology.Elsevier, Amesterdam, 431-444.
      Huang, Y.M., Hawkesworth, C., Smith, I., et al., 2000.Geochemistry of Late Cenozoic Basaltic Volcanism in Northland and Coromandel, New Zealand:Implications for Mantle Enrichment Processes.Chemical Geology, 164(3-4):219-238. https://doi.org/10.1016/s0009-2541(99)00145-x
      Jahn, B.M., Litvinovsky, B.A., Zanvilevich, A.N., et al., 2009.Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt:Evolution, Petrogenesis and Tectonic Significance.Lithos, 113(3-4):521-539. https://doi.org/10.1016/j.lithos.2009.06.015
      Keppler, H., 1996.Constraints from Partitioning Experiments on the Composition of Subduction-Zone Fluids.Nature, 380(6571):237-240. https://doi.org/10.1038/380237a0
      Kuritani, T., Yoshida, T., Kimura, J.I., et al., 2014.Water Content of Primitive Low-K Tholeiitic Basalt Magma from Iwate Volcano, NE Japan Arc:Implications for Differentiation Mechanism of Frontal-Arc Basalt Magmas.Mineralogy and Petrology, 108(1):1-11. https://doi.org/10.1007/s00710-013-0278-2
      Li, H.K., Geng, J.Z., Hao, S., et al., 2009.Study on the Determination of Zircon U-Pb Isotopic Age by LA-MC-ICPMS.Acta Mineralogica Sinica, 29(S1):600-601 (in Chinese).
      Li, J.Y., 2006.Permian Geodynamic Setting of Northeast China and Adjacent Regions:Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate.Journal of Asian Earth Sciences, 26(3-4):207-224. https://doi.org/10.1016/j.jseaes.2005.09.001
      Li, Y.J., Zhao, R.F., Li, Z.C., et al., 2003.Origin Discrimination of Granitoids Formed by Mingled Magma:Using a Trace Element Diagram and Examplified by Wenquan Granites, Western Qinling.Journal of Chang'an University (Earth Science Edition), 25(3):7-11, 15 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX200303002.htm
      Liu, C.F., Zhang, H.R., Yu, Y.S., et al., 2010.Dating and Petrochemistry of the Beijige Pluton in Siziwangqi, Inner Mongolia.Geoscience, 24(1):112-119 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201001015.htm
      Liu, J.F., Li, J.Y., Chi, X.G., et al., 2013.A Late-Carboniferous to Early Early-Permian Subduction-Accretion Complex in Daqing Pasture, Southeastern Inner Mongolia:Evidence of Northward Subduction Beneath the Siberian Paleoplate Southern Margin.Lithos, 177:285-296. https://doi.org/10.1016/j.lithos.2013.07.008
      Liu, M., Zhao, H.T., Zhang, D., et al., 2017.Chronology, Geochemistry and Tectonic Implications of Late Palseozoic Intrusions from South of Xiwuqi, Inner Mongolia.Earth Science, 42(4):527-548 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.042
      Ludwig, K.R., 2003.Isoplot 3.0-A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center Special Publication, Berkeley.
      Luo, H.L., Wu, T.R., Li, Y., 2007.Geochemistry and SHRIMP Dating of the Kebu Massif from Wulatezhongqi, Inner Mongolia:Evidence for the Early Permian Underplating Beneath the North Chian Craton.Acta Petrologica Sinca, 23(4):755-766 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB200704008.htm
      Luo, H.L., Wu, T.R., Zhao, L., 2009.Zircon SHRIMP U-Pb Dating of Wuliangsitai A-Type Granite on the Northern Margin of the North China Plate and Tectonic Significance.Acta Petrologica Sinca, 25(3):515-526 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200903005.htm
      McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. https://doi.org/10.1016/0009-2541(94)00140-4
      Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745
      Saunders, A.D., Storey, M., Kent, R.W., et al., 1992.Consequences of Plume-Lithosphere Interactions.Geological Society, London, Special Publications, 68(1):41-60. https://doi.org/10.1144/gsl.sp.1992.068.01.04
      Sengör, A.M.C., Natalin, B.A., 1996.Turkic-Type Orogeny and Its Role in the Making of the Continental Crust.Annual Review of Earth and Planetary Sciences, 24:263-337. https://doi.org/10.1146/annurev.earth.24.1.263
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Oxford Press, Blackwell, 312.
      Tong, Y., Hong, D.W., Wang, T., et al., 2010.Spatial and Temporal Distribution of Granitoids in the Middle Segment of the Sino-Mongolian Border and Its Tectonic and Metallogenic Implications.Acta Geoscientia Sinica, 31(3):395-412 (in Chinese with English abstract).
      Wang, F., Chen, F.K., Hou, Z.H., et al., 2009.Zircon Ages and Sr-Nd-Hf Isotopic Composition of the Paleozoic Granitoids in the Chongli-Chicheng Area, Northern Margin of the North Block.Acta Petrologica Sinica, 25(11):3057-3074 (in Chinese with English abstract). http://www.oalib.com/paper/1472737#.W761b_m-CZQ
      Wang, H., Wang, Y.J., Chen, Z.Y., et al., 2005.Discovery of the Permian Radiolarians from the Bayanaobao Area, Inner Mongolia.Journal of Stratigraphy, 29(4):368-371 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200504009.htm
      Wang, H.C., Zhao, F.Q., Li, H.M., et al., 2007.Zircon SHRIMP U-Pb Age of the Dioritie Rocks from Northern Hebei:Geological Records of Late Paleozoic Magmatic Arc.Acta Petrologica Sinica, 23(3):597-604 (in Chinese with English abstract).
      Wang, J., Sun, F.Y., Li, B.L., et al., 2016.Age, Petrogenesis and Tectonic Implications of Permian Hornblendite in Tugurige, Urad Zhongqi, Inner Mongolia.Earth Science, 41(5):792-808 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.067
      Wang, W.Q., 2014.Late Paleozoic Tectonic Evolution of the Central-Northern Margin of the North China Plate: Constraints from Zircon U-Pb Ages and Geochemistry of Igneous Rocks in Ondor Sum-Jining Area (Dissertation).Jilin University, Changchun (in Chinese with English abstract).
      Wang, W.Q., Xu, Z.Y., Liu, Z.H., et al., 2013.Early-Middle Permian Tectonic Evolution of the Central-Northern Margin of the North China Craton:Constraints from Zircon U-Pb Ages and Geochemistry of the Granitoids.Acta Petrologica Sinica, 29(9):2987-3003 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201309003
      Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x
      Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202
      Windley, B.F., Alexeiev, D., Xiao, W., et al., 2007.Tectonic Models for Accretion of the Central Asian Orogenic Belt.Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022
      Wood, D.A., Joron, J.L., Treuil, M., 1979.A Re-Appraisal of the Use of Trace Elements to Classify and Discriminate between Magma Series Erupted in Different Tectonic Settings.Earth and Planetary Science Letters, 45(2):326-336. https://doi.org/10.1016/0012-821x(79)90133-x
      Woodhead, J.D., Hergt, J.M., Davidson, J.P., et al., 2001.Hafnium Isotope Evidence for 'Conservative' Element Mobility during Subduction Zone Processes.Earth and Planetary Science Letters, 192(3):331-346. https://doi.org/10.1016/s0012-821x(01)00453-8
      Xiao, W.J., Shu, L.S., Gao, J., et al., 2008.Continental Dynamcis of the Central Asian Orogenic Belt and Its Metallogeny.Xinjiang Geology, 26(1):4-8 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI200801005.htm
      Xiao, W.J., Windley, B.F., Hao, J., et al., 2003.Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt.Tectonics, 22(6):288-308. https://doi.org/10.1029/2002tc001484
      Xiao, W.J., Windley, B.F., Huang, B.C., et al., 2009.End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids:Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia.International Journal of Earth Sciences, 98(6):1189-1217. https://doi.org/10.1007/s00531-008-0407-z
      Xu, B., Charvet, J., Chen, Y., et al., 2013.Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China):Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt.Gondwana Research, 23(4):1342-1364. https://doi.org/10.1016/j.gr.2012.05.015
      Xu, L.Q., 2005.The Characteristics of Magmatic Rocks and Discussion of Geotectonics Evolution from Caledonian through Hercynian to Indosinian Stage in the Baiyun'ebo-Mandula Region, Inner Mongolia(Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract).
      Yang, J.H., Sun, J.F., Chen, F., et al., 2007.Sources and Petrogenesis of Late Triassic Dolerite Dikes in the Liaodong Peninsula:Implications for Post-Collisional Lithosphere Thinning of the Eastern North China Craton.Journal of Petrology, 48(10):1973-1997. https://doi.org/10.1093/petrology/egm046
      Zhang, S.H., Zhao, Y., Kröner, A., et al., 2009a.Early Permian Plutons from the Northern North China Block:Constraints on Continental Arc Evolution and Convergent Margin Magmatism Related to the Central Asian Orogenic Belt.International Journal of Earth Sciences, 98(6):1441-1467. https://doi.org/10.1007/s00531-008-0368-2
      Zhang, S.H., Zhao, Y., Liu, X.C., et al., 2009b.Late Paleozoic to Early Mesozoic Mafic-Ultramafic Complexes from the Northern North China Block:Constraints on the Composition and Evolution of the Lithospheric Mantle.Lithos, 110(1-4):229-246. https://doi.org/10.1016/j.lithos.2009.01.008
      Zhang, X., Wilde, S.A., Zhang, H., et al., 2011.Early Permian High-K Calc-Alkaline Volcanic Rocks from NW Inner Mongolia, North China:Geochemistry, Origin and Tectonic Implications.Journal of the Geological Society, 168(2):525-543. https://doi.org/10.1144/0016-76492010-094
      Zhang, X., Zhang, H., Jiang, N., et al., 2010.Early Devonian Alkaline Intrusive Complex from the Northern North China Craton:A Petrological Monitor of Post-Collisional Tectonics.Journal of the Geological Society, 167(4):717-730. https://doi.org/10.1144/0016-76492009-110
      Zhang, X.H., Zhang, H.F., Tang, Y.J., et al., 2008.Geochemistry of Permian Bimodal Volcanic Rocks from Central Inner Mongolia, North China:Implication for Tectonic Setting and Phanerozoic Continental Growth in Central Asian Orogenic Belt.Chemical Geology, 249(3-4):262-281. https://doi.org/10.1016/j.chemgeo.2008.01.005
      Zhang, J.J., Wang, T., Zhang, Z.C., et al., 2012.Magma Mixing Origin of Yamatu Granite in Nuoergong-Langshan area, Western Part of the Northern Margin of North China Craton:Petrological and Geochemical Evidences.Geological Review, 58(1):53-66 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000002586
      Zhang, Q., Ran, H., Li, C.D., et al., 2012.A-Type Granite:What is the Essence? Acta Petrologica et Mineralogica, 31(4):621-626 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_8c2890609571b9a5f39733c2b59b003c
      Zhang, S.H., Zhao, Y., Liu, J.M., et al., 2010.Geochronology, Geochemistry and Tectonic Setting of the Late Paleozoic-Early Mesozoic Magmatism in the Northern Margin of the North China Block:A Preliminary Review.Acta Petrological et Mineralogica, 29(6):824-842 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201006017.htm
      Zhang, S.H., Zhao, Y., Liu, J., et al., 2016.Different Sources Involved in Generation of Continental Arc Volcanism:the Carboniferous-Permian Volcanic Rocks in the Northern Margin of the North China Block.Lithos, 240-243:382-401. https://doi.org/10.1016/j.lithos.2015.11.027
      Zhao, L., Wu, T.R., Luo, H.L., 2011.SHRIMP U-Pb Dating, Geochemistry and Tectonic Implications of the Beiqigetao Gabbrosin Urad Zhongqi Area, Inner Mongolia.Acta Petrologica Sinica, 7(10):3071-3082 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201110023.htm
      Zhao, P., Chen, Y., Xu, B., et al., 2013.Did the Paleo-Asian Ocean between North China Block and Mongolia Block Exist during the Late Paleozoic? First Paleomagnetic Evidence from Central-Eastern Inner Mongolia, China.Journal of Geophysical Research:Solid Earth, 118(5):1873-1894. https://doi.org/10.1002/jgrb.50198
      董晓杰, 王挽琼, 沙茜, 等, 2016.华北克拉通北缘中段二叠纪苏吉火山岩及其形成机制.岩石学报, 32(9):2765-2779. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201609012
      范宏瑞, 胡芳芳, 杨奎锋, 等, 2009.内蒙古白云鄂博地区晚古生代闪长质-花岗质岩石年代学框架及其地质意义.岩石学报, 25(11):2933-2938. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200911022
      冯丽霞, 张志诚, 韩宝福, 等, 2013.内蒙古达茂旗花岗岩类LA-ICP-MS锆石U-Pb年龄及其地质意义.地质通报, 32(11):67-78. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201311006
      李怀坤, 耿建珍, 郝爽, 等, 2009.用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究.矿物学报, 29(S1):600-601. http://d.old.wanfangdata.com.cn/Conference/7298171
      李永军, 赵仁夫, 李注苍, 等, 2003.岩浆混合花岗岩微量元素成因图解尝试.长安大学学报, 25(3):7-11, 15. doi: 10.3969/j.issn.1672-6561.2003.03.002
      刘敏, 赵洪涛, 张达, 等, 2017.内蒙古西乌旗南部晚古生代侵入岩年代学、地球化学特征及地质意义.地球科学, 42(4):527-548. http://earth-science.net/WebPage/Article.aspx?id=3560
      柳长峰, 张浩然, 於炀森, 等, 2010.内蒙古中部四子王旗地区北极各岩体锆石定年及其岩石化学特征.现代地质, 24(1):112-119. doi: 10.3969/j.issn.1000-8527.2010.01.014
      罗红玲, 吴泰然, 李毅, 2007.乌拉特中旗克布岩体的地球化学特征及SHRIMP定年:早二叠世华北克拉通底侵作用的证据.岩石学报, 23(4):755-766. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200704007
      罗红玲, 吴泰然, 赵磊, 2009.华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义.岩石学报, 25(3):515-526. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200903004
      童英, 洪大卫, 王涛, 等, 2010.中蒙边境中段花岗岩时空分布特征及构造和找矿意义.地球学报, 31(3):133-150. http://d.old.wanfangdata.com.cn/Periodical/dqxb201003013
      王芳, 陈福坤, 侯振辉, 等, 2009.华北陆块北缘崇礼-赤城地区晚古生代花岗岩类的锆石年龄和Sr-Nd-Hf同位素组成.岩石学报, 25(11):3057-3074. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200911033
      王惠, 王玉净, 陈志勇, 等, 2005.内蒙古巴彦敖包二叠纪放射虫化石的发现.地层学杂志, 29(4):368-371. doi: 10.3969/j.issn.0253-4959.2005.04.009
      王惠初, 赵风清, 李惠民, 等, 2007.冀北闪长质岩石的锆石SHRIMP U-Pb年龄:晚古生代岩浆弧的地质记录.岩石学报, 23(3):597-604. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200703007
      王键, 孙丰月, 李碧乐, 等, 2016.内蒙乌拉特中旗图古日格二叠纪角闪石岩年龄、岩石成因及构造背景.地球科学, 41(5):792-808. http://earth-science.net/WebPage/Article.aspx?id=3299
      王挽琼, 2014.华北板块北缘中段晚古生代构造演化: 温都尔庙-集宁火成岩年代学、地球化学的制约(博士学位论文).长春: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014267870.htm
      王挽琼, 徐仲元, 刘正宏, 等, 2013.华北板块北缘中段早中二叠世的构造属性:来自花岗类锆石U-Pb年代学及地球化学的制约.岩石学报, 29(9):2987-3003. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB201309003&dbname=CJFD&dbcode=CJFQ
      肖文交, 舒良树, 高俊, 等, 2008.中亚造山带大陆动力学过程与成矿作用.新疆地质, 26(1):4-8. doi: 10.3969/j.issn.1000-8845.2008.01.002
      许立权, 2005.内蒙古白云鄂博-满都拉地区加里东期-华力西期-印支期岩浆岩特征与大地构造演化探讨(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/article/cdmd-11415-2005102580.htm
      张建军, 王涛, 张招崇, 等, 2012.华北地块北缘西段巴音诺尔公-狼山地区牙马图岩体的岩浆混合成因——岩相学和元素地球化学证据.地质论评, 58(1):53-66. doi: 10.3969/j.issn.0371-5736.2012.01.005
      张旗, 冉皞, 李承东, 等, 2012.A型花岗岩的实质是什么?岩石矿物学杂志, 31(4):621-626. doi: 10.3969/j.issn.1000-6524.2012.04.014
      张拴宏, 赵越, 刘建民, 等, 2010.华北地块北缘晚古生代-早中生代岩浆活动期次、特征及构造背景.岩石矿物学杂志, 29(6):824-842. doi: 10.3969/j.issn.1000-6524.2010.06.017
      赵磊, 吴泰然, 罗红玲, 2011.内蒙古乌拉特中旗北七哥陶辉长岩SHRIMP锆石U-Pb年龄、地球化学特征及其地质意义.岩石学报, 27(10):3071-3082. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201110022
    • 加载中
    图(14) / 表(3)
    计量
    • 文章访问数:  4173
    • HTML全文浏览量:  1909
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-01-09
    • 刊出日期:  2018-09-15

    目录

      /

      返回文章
      返回