Depositional Process and Mechanism of Organic Matter Accumulation of Lucaogou Shale in Southern Junggar Basin, Northwest China
-
摘要: 准噶尔盆地南缘二叠系芦草沟组页岩是重要的烃源岩和非常规油气资源储层,具有重大页岩油气勘探潜力.然而对准南芦草沟组页岩的沉积过程、古气候控制湖泊水文条件以及页岩中有机质的富集机理的研究相对较少.通过系统的野外地质调查和样品分析测试,主要利用沉积学定性分析和地球化学定量表征相结合的方法对芦草沟组页岩进行了综合研究.结果表明,研究区芦草沟组页岩主要沉积于盐度分层的半深湖-深湖环境;古气候在研究区湖盆流域具有独特的分带性,博格达东北部的古气候较温暖和潮湿,而博格达以西的古气候则相对干旱;博格达东北部较湿润的古气候引起该地区较充足的降雨,促进了湖水的盐度分层,同时降雨促进河流携带大量富营养元素的淡水注入湖泊引起了表层水体生产力升高,导致博格达东北部芦草沟组页岩相对于博格达西部地区具有更高的TOC含量;表层水体的古生产力与较稳定的贫氧-厌氧环境是研究区芦草沟组页岩有机质富集的主控因素.Abstract: The lacustrine shale succession of the Permian Lucaogou Formation in southern Junggar basin, Northwest China, is the most important hydrocarbon source rock and an unconventional reservoir. However, there are relatively few studies on the deposition process of Lucaogou shale, the hydrologic conditions controlled by the paleoclimate, and the enrichment mechanism of organic matter in the shale. In this study, the Lucaogou shale was studied comprehensively, based on the results of its sedimentological and geochemical test data. Results show that the Lucaogou shale was deposited in a semi-deep to deep stratified lake, which has anoxic, highly saline bottom and oxic, less saline surface water. The lake catchment of the study area has climatic zonality, which presents as that the paleoclimate in the lake catchment of northeastern Bogda was warm and humid and the paleoclimate in the lake catchment of western Bogda was arid. Elevated precipitation in humid climate provides fresh water rich in nutrients to lake caused relatively high paleoproductivity and promotes lake stratification, which led to relatively high TOC in the Lucaogou shale of northeastern Bogda. Organic matter accumulation in the Lucaogou shale was influenced by surface water primary productivity and preservation in stable anoxic bottom water.
-
Key words:
- Junggar basin /
- Lucaogou Formation /
- shale /
- paleoclimate /
- organic matter /
- petroleum geology
-
随着我国上扬子地区上奥陶统-下志留统五峰组-龙马溪组海相页岩非常规油气资源勘探与开发的巨大突破,以及我国首个页岩气示范工程在涪陵建立,标志着我国海相非常规油气资源研究步入了新时代(Ma et al., 2016a).陆相盆地在我国分布广泛,提供了大量的常规油气资源(岳绍飞等,2016;朱红涛等,2016;曾智伟等,2017),是我国油气勘探的重要领域,但是目前对陆相盆地内非常规油气资源的研究相对较少(马义权等,2015;张林晔等,2015;王东东等,2016).同时,沉积于陆相盆地内的富有机质页岩相比海相页岩具有更大的沉积厚度,并且在陆相盆地中有至少50%的烃类赋存于页岩中,因此对陆相盆地富有机质页岩展开研究,对寻找特有的非常规油气资源和开辟我国陆相页岩油气资源勘探新领域具有重要的指导意义.
随着准噶尔盆地南缘页岩油气资源勘探的不断深入,前人对其芦草沟组富有机质页岩进行了一定的研究.其中,张晓宝(1993)对准噶尔盆地南缘东部地区二叠系芦草沟组黑色页岩中白云岩夹层的成因进行了详细探讨;赵霞飞等(1994)分析了该地区芦草沟组的层序地层学特征;王东营等(2008)研究了准南大黄山芦草沟组页岩的基本特征并提出了该页岩的相控成矿模式;李婧婧等(2009)对准南大黄山矿区芦草沟组页岩沉积特征进行了初步分析;高智梁等(2011)对准南芦草沟组页岩地质特征及主控因素进行了细致的研究;高苑等(2013)对准噶尔盆地东南缘芦草沟组页岩的有机地球化学特征及含气潜力进行了深入分析;王正和等(2016)研究了准南芦草沟组的沉积特征并进行了一定的油气勘探前景预测.但是,学者们对准南二叠系芦草沟组页岩的沉积过程、古气候控制湖泊水文条件以及页岩中有机质的富集机理的研究相对较少.因此,在前人研究基础上,本文以系统的野外地质调查和样品分析测试方法,利用沉积学、地球化学分析方法对准南芦草沟组页岩特征、沉积过程和古气候背景进行研究,建立芦草沟组页岩的沉积模式,并揭示其有机质的富集机理,以期为研究区页岩油气勘探提供重要的地质理论依据,从而加快准噶尔盆地页岩油气资源战略调查与选区评价的进程.
1. 区域地质背景
准噶尔盆地为一大型多旋回叠合盆地,盆地内发育有多套烃源岩,其中二叠系为盆地内最重要的含烃源岩层系,也是具备页岩油气勘探和开发的主要层系,主要发育在盆地南缘的博格达山前和东北缘克拉美丽山前(高苑等,2013).准噶尔盆地南缘是指乌鲁木齐-米泉断裂以东的博格达山地区,构造上处于东、西天山过渡带,位于北天山晚古生代造山带中部,被阜康断裂带和博格达山北缘所限定,其间为妖魔山断裂带,总体呈“两向一背”的构造格局(图 1a).准噶尔盆地南缘前陆盆地自晚古生代以来,经历了海西、印支、燕山和喜马拉雅等多期构造变形和叠加改造,同时伸展、挤压、剪切等构造作用等交替进行,使得该地区构造较为复杂,地层褶皱极为强烈,形成了大量不等斜或等斜褶皱.沈传波等(2005)和汪新伟等(2007)认为在芦草沟组页岩形成时期,博格达山处于水下,并未露出地表.同时,大型逆冲断层导致二叠系富有机质页岩伴随博格达山系的形成而出露地表,成为规模巨大的页岩分布带,东西长约25 km,南北宽9~15 km.其中最富生烃潜力和最具勘探前景的是发育于中二叠统上芨芨槽子群中的芦草沟组页岩(图 1b),其岩性单一,横向上变化较小,页岩厚度分布在40~210 m,有机质类型主要为Ⅰ~Ⅱ1型(高苑等,2013),主要发育于塔里木板块与准噶尔板块缝合后的内陆湖泊环境.钻井揭示研究区芦草沟组页岩埋深在9 500 m左右,有机质成熟度主要为0.2%~0.8%,属于准噶尔盆地页岩气资源调查与评价新领域.
2. 方法和材料
本文主要在Ma et al.(2016b)对湖相页岩沉积模式和有机质富集机理研究的基础上,在研究区选取了具有代表性的3个芦草沟组野外露头剖面(宋家沟剖面、杨家庄剖面和芦草沟剖面;图 1a,2),对页岩的颜色、沉积结构和构造以及生物特征等方面进行了综合且细致的研究.在此基础上,结合69个样品的地球化学分析测试数据,笔者对研究区芦草沟组页岩沉积时期的古湖泊水文条件以及古气候对页岩形成的影响进行了较深入的研究,并建立了页岩的沉积模式,揭示了其有机质的富集机理.
准南地区芦草沟组出露良好,页岩露头新鲜、发育完整.笔者对采自3个露头剖面的69个样品进行了详细的有机碳含量、主量元素和微量元素含量分析.其中有机碳含量测试仪器为LECO CS230碳硫分析仪,由中国石油化工股份有限公司无锡石油地质实验中心测试完成,测试精度为0.5%.元素分析(Al、K、Na、Ca、B、Ga、Cu、Ni、V、Cr等)采用电感耦合等离子体发射光谱仪测量(ICP-AES),由国土资源部乌鲁木齐矿产资源监督检测中心测试完成,分析误差小于5%.
3. 页岩特征及成因
研究区芦草沟组页岩总体表现为“西薄东北厚”的特征,且具有良好的横向对比性(图 2).页岩的风化面多为浅灰色、灰白色、褐灰色,其新鲜面主要为灰黑-黑色,页理发育(图 3a),且常见连续的水平纹层,纹层厚度较薄,通常小于1 mm;显微镜下观察显示该页岩为泥质结构,纹层状构造,纹层平行且连续,厚度分布于0.04~0.10 mm(图 3b).部分页岩夹粉砂质纹层或条带,粉砂岩见液化变形构造(图 3c,3d),可能为深湖-半深湖远端浊积砂岩成因.页岩中可见丰富的原地保存的鱼鳞化石、残余鱼化石、介形类以及植物化石(图 3e~3h).氩离子抛光环境扫描电镜(FE-SEM)显示芦草沟组页岩中发育大量的莓球状黄铁矿,大多数莓球状黄铁矿的直径小于10 μm,同时在其周围发育了较多有机质(图 3i).页岩中含有少量的石英粉砂,石英颗粒主要为次圆-圆状,主要为顺层分布或者少量分散分布.该页岩富含有机质,TOC含量为2.1%~7.8%,平均为5.5%,总体为优质烃源岩(图 2).有机质多呈灰黑色和黄褐色,顺层富集或分散展布.
连续的水平纹层结构表明该页岩总体沉积于低能、悬浮且水体半封闭-封闭的环境中(Könitzer et al., 2014; Ma et al., 2016b; 马义权等,2017).同时,灰黑色-黑色的岩石新鲜面、保存完好的微米级水平纹层以及较高的TOC含量,反映了芦草沟组页岩沉积时期未受到底栖生物活动的影响(Pietras and Carroll, 2006),进一步表明了该时期底层湖水主要为贫氧-缺氧的水体(Demaison and Moore, 1980; Talbo and Allen, 1996).较高的有机质含量以及较低的石英等陆源碎屑含量指示陆源碎屑对有机质的稀释作用较小(Pietras and Carroll, 2006).鱼鳞化石的出现指示该页岩沉积时期表层湖水为富氧的水体,有利于湖水表层浮游生物的繁殖和勃发,从而产生较高的古生产力.前人研究表明,莓球状黄铁矿直径大小是表征水体氧化还原条件的良好指标(Ma et al., 2016a).研究区芦草沟组页岩中大量富集直径小于10 μm的莓球状黄铁矿,表明该套页岩沉积时底层水体主要为缺氧的环境.同时,霉球状黄铁矿周围大量发育有机质则进一步说明缺氧的底层水体环境有利于有机质的保存.因此,上述分析表明芦草沟组页岩主要沉积于水体分层且不完全对流的半深湖-深湖环境,底层水体为贫氧-缺氧,有利于有机质的保存和富集;富氧且盐度较低的表层水体,有利于生物的繁殖和勃发(Talbot, 1988).这与我国东部济阳坳陷沾化凹陷沙河街组三段下亚段的纹层状灰质页岩(Ma et al., 2016b)、苏格兰布代豪斯灰岩组的狄南介湖相油页岩(Loftus and Greensmith, 1988)以及美国怀俄明州始新统Green River组的纹层状富干酪根灰质页岩(Pietras and Carroll, 2006)的沉积环境颇为相似.
4. 湖水古盐度和氧化还原条件
沉积物中的B/Ga比值一直是判断湖水古盐度的可靠指标(Chen et al., 1997; Fu et al., 2015; Wang et al., 2015).当B/Ga比值小于3时指示湖泊底部水体主要为淡水,当B/Ga比值为3~5时指示水体主要为半咸水,当该比值大于5时指示水体主要为盐水.同时,本文还选取了V/(V+Ni)和V/Cr作为判别水体氧化还原条件的指标,并列出了相应标准(表 1;Hatch and Leventhal, 1992; Jones and Manning, 1994; Tribovillard et al., 2006; Chen et al., 2012; Sun et al., 2013).此外,V/(V+Ni)也是判断湖水分层程度的可靠指标(Hatch and Leventhal, 1992),当V/(V+Ni)值分布在0.46~0.54时代表弱分层的贫氧环境,该值分布于0.54~0.84时指示中等分层的厌氧环境,该值大于0.84时表明湖泊为强分层的还原环境(Hatch and Leventhal, 1992; Jones and Manning, 1994; Tribovillard et al., 2006; Chen et al., 2012; Sun et al., 2013).
表 1 缺氧环境和富氧环境元素地球化学判识指标Table Supplementary Table Geochemical identification criteria of anoxic and oxic depositional environment判别指标 缺氧环境 富氧环境 厌氧 贫氧 V/(V+Ni) >0.54 0.46~0.54 <0.46 V/Cr >4.25 2.00~4.25 <2.00 注:据Hatch and Leventhal(1992),Jones and Manning(1994). 因此,利用古盐度与水体氧化还原条件的划分标准,笔者对研究区芦草沟组页岩沉积时古湖泊的水化学特征与湖水环境进行定量表征.本文的69个样品中有65个的B/Ga值大于5,部分样品的B/Ga值大于10,B/Ga平均值为7.72(表 2,图 4).结果表明芦草沟组页岩沉积时期湖水底层水体具有较高的古盐度,总体上为盐水.同时,V/(V+Ni)值为0.62~0.92,平均值为0.77,指示具有中等-强分层且底层水体为厌氧的湖泊环境;V/Cr值为1.87~4.46,平均值为2.99,指示贫氧的湖底水体环境(表 2,图 4).综上所述,研究区芦草沟组页岩主要沉积于中等-强分层、底部水体为高盐度且贫氧-厌氧的湖泊环境.该结论与前文对页岩成因的沉积学解释一致.
表 2 研究区芦草沟组页岩沉积时湖水的古盐度、古生产力大小、氧化还原条件以及CIATable Supplementary Table Paleosalinity, paleoproductivity, redox and CIA values of Lucaogou shale in the study area剖面 样品号 TOC(%) B/Ga Cu/Al Ni/Al V/(V+Ni) V/Cr CIA 宋家沟剖面 S-20 2.1 5.24 4.21 3.65 0.65 2.20 45.20 S-19 2.5 4.95 4.34 3.45 0.75 2.10 46.00 S-18 3.2 6.21 5.01 4.34 0.79 2.80 48.80 S-17 3.8 9.41 5.79 4.79 0.80 2.63 46.80 S-16 4.0 6.38 6.56 5.43 0.82 3.00 56.21 S-15 5.0 3.45 6.44 5.87 0.68 3.40 55.23 S-14 5.6 1.95 7.58 7.53 0.62 1.87 59.23 S-13 5.5 2.14 6.38 4.91 0.80 2.47 54.85 S-12 4.9 5.64 6.20 5.87 0.70 2.07 63.89 S-11 4.4 8.91 5.07 6.01 0.69 2.15 62.11 S-10 3.9 7.43 5.90 4.54 0.75 2.21 49.21 S-9 2.6 5.56 6.46 4.21 0.67 2.90 58.38 S-8 3.8 6.89 6.01 5.01 0.77 2.80 50.98 S-7 5.2 9.52 7.57 6.66 0.69 2.59 68.79 S-6 5.9 8.80 7.74 5.46 0.74 2.23 69.96 S-5 5.3 7.21 6.78 5.56 0.80 2.30 59.70 S-4 4.4 6.23 5.23 6.12 0.72 2.70 57.80 S-3 4.9 6.88 6.23 4.11 0.68 3.00 50.89 S-2 5.4 7.13 7.36 4.89 0.69 2.40 47.67 S-1 5.2 7.89 7.45 4.67 0.70 2.80 46.21 杨家庄剖面 Y-24 4.9 7.46 7.68 5.55 0.79 3.77 62.02 Y-23 5.3 8.13 8.23 5.45 0.78 3.45 73.89 Y-22 5.5 9.98 11.88 8.90 0.83 3.52 80.53 Y-21 5.8 8.67 7.46 7.21 0.76 2.67 76.53 Y-20 6.0 10.29 14.04 7.96 0.87 3.83 59.02 Y-19 6.4 9.75 10.56 7.56 0.80 2.56 79.53 Y-18 7.3 8.45 15.21 10.56 0.92 2.72 85.45 Y-17 7.6 7.05 19.96 11.33 0.78 4.46 66.16 Y-16 6.5 9.78 9.98 9.21 0.90 3.21 78.53 Y-15 5.3 8.21 7.46 5.12 0.85 4.23 78.53 Y-14 4.7 7.82 8.76 4.68 0.92 3.67 85.45 Y-13 4.6 7.40 9.58 8.52 0.74 4.11 77.52 Y-12 4.6 7.34 9.51 8.41 0.69 2.92 80.55 Y-11 4.3 7.79 7.53 5.94 0.79 2.59 80.44 Y-10 5.2 8.95 8.21 8.21 0.83 2.87 75.89 Y-9 5.8 8.88 7.46 7.34 0.82 3.12 73.23 Y-8 6.8 9.34 13.98 9.89 0.84 3.56 82.53 Y-7 5.8 7.95 9.78 8.56 0.81 3.58 72.67 Y-6 5.3 7.36 7.21 6.76 0.78 2.88 71.02 Y-5 4.3 8.72 6.49 4.77 0.82 2.58 77.89 Y-4 4.7 8.78 9.44 6.42 0.74 2.95 73.90 Y-3 5.6 9.89 8.11 7.21 0.83 3.45 71.53 Y-2 6.4 8.95 9.13 7.17 0.81 2.40 76.53 Y-1 4.8 8.96 8.53 6.24 0.79 3.23 74.53 芦草沟剖面 L-25 4.5 9.88 7.85 4.88 0.72 2.89 76.34 L-24 5.0 10.35 9.34 8.02 0.85 3.55 72.67 L-23 5.3 9.45 8.78 6.45 0.73 2.67 66.34 L-22 5.9 7.15 7.56 7.45 0.78 2.47 80.33 L-21 5.6 7.31 9.59 4.99 0.81 2.84 74.57 L-20 6.0 8.67 11.04 8.89 0.79 3.43 68.53 L-19 6.5 8.88 9.67 9.89 0.79 4.34 73.89 L-18 6.9 7.46 12.78 7.10 0.82 2.68 81.21 L-17 7.2 7.46 10.22 8.44 0.84 3.64 78.44 L-16 7.5 8.72 11.34 9.56 0.73 3.23 83.67 L-15 7.8 8.78 15.23 12.45 0.86 3.88 81.89 L-14 7.2 6.89 11.81 8.41 0.76 3.36 67.56 L-13 7.0 8.33 9.66 9.98 0.74 3.34 82.55 L-12 6.3 7.52 9.89 6.56 0.85 2.96 79.45 L-11 6.6 7.14 10.67 8.21 0.82 3.33 79.33 L-10 6.5 5.58 12.39 7.09 0.75 2.92 56.11 L-9 7.0 7.45 13.66 10.95 0.73 2.97 73.22 L-8 7.3 9.74 12.81 10.23 0.88 3.11 76.34 L-7 7.6 8.51 10.43 10.89 0.81 2.45 85.77 L-6 6.8 7.42 9.12 9.24 0.73 3.01 80.65 L-5 6.2 6.65 10.31 7.31 0.69 2.31 77.85 L-4 5.8 7.45 7.88 9.22 0.82 2.66 73.74 L-3 4.6 8.95 5.97 5.76 0.70 2.87 70.55 L-2 6.8 7.34 8.55 8.66 0.73 3.34 78.66 L-1 7.3 6.07 15.80 7.97 0.71 2.89 68.74 5. 古气候及其对古湖泊水文条件的影响
化学蚀变指数CIA已经被广泛应用于评估湖相盆地流域系统的化学风化强度和古气候的变化(Minyuk et al., 2007; McHenry, 2009; Ma et al., 2015; Jiang et al., 2016).相对较高的CIA值反映了在温暖潮湿气候条件下较强的化学风化程度和降雨,而相对较低的CIA值则指示在较为干旱的气候条件下湖盆流域缺乏化学风化作用(Minyuk et al., 2007; McHenry, 2009).CIA的计算公式如下:
CIA=[Al2O3/(Al2O3+CaO∗+Na2O+K2O)]×100, 其中,CaO*仅代表硅酸盐组分中的Ca含量,不包括碳酸盐和磷酸盐中的Ca(Nesbitt and Young, 1982,1989).在这种情况下,可以通过CaO*=CaO-P2O5×10/3,对CaO进行校正.假如剩余CaO的摩尔数小于Na2O的摩尔数,则剩余CaO的摩尔数则代表CaO*的摩尔数,反之则Na2O的摩尔数为CaO*的摩尔数.
同时,Fedo et al.(1995)和Selvaraj and Chen(2006)的研究表明,CIA值为50~60指示初级化学风化作用强度,CIA为60~80指示中等化学风化作用强度,CIA为80~100指示强烈化学风化作用强度.69个芦草沟组页岩样品的CIA值有39个为60~80,17个小于60,13个大于80(表 2,图 4).由此可知,研究区芦草沟组页岩沉积时期湖盆流域主要发生了中等化学风化作用,指示该时期总体为半干旱-半湿润的古气候背景.
在上述分析的基础上,本文进一步指出芦草沟组页岩沉积时期湖盆流域的古气候具有独特的分带性.位于博格达以西宋家沟剖面的芦草沟组页岩样品的CIA值主要分布于45.20~69.96,平均值为54.90(表 2,图 4);而位于博格达东北部的杨家庄剖面和芦草沟剖面芦草沟组页岩样品的CIA值主要分布于56.11~85.77,平均值为75.56(表 3,图 4).表明博格达东北部的芦草沟组页岩沉积时期流域盆地发生了中级-强烈化学风化作用,而博格达以西发生了初级-中级化学风化作用.该结果揭示,博格达东北部的芦草沟组页岩沉积时期的古气候较为温暖和潮湿,具有较充足的降雨量;而博格达以西该时期的古气候则相对干旱,降雨量相对较小.在温暖和潮湿的气候条件下,相对较强的降雨会造成湖盆流域中河流径流的发育,河流携带大量富营养元素的淡水进入湖盆,促进了湖水表层浮游生物的勃发,导致表层湖水具有较高的古生产力,有利于有机质的产生(Bohacs et al., 2000; Jiang et al., 2007; Smith et al., 2014).同时,较多的淡水注入会引起滞水作用,促进了湖水的盐度分层(Carroll and Bohacs, 2001),从而有利于有机质的保存.为此,本文还选取了Cu/Al和Ni/Al作为判别表层水体古生产力的指标(Hatch and Leventhal, 1992; Jones and Manning, 1994; Tribovillard et al., 2006; Chen et al., 2012).表 3和图 4显示博格达东北部芦草沟组页岩沉积时期的湖底盐度、氧化还原条件、古生产力大小和TOC含量均高于博格达山西部.因此,本文推断博格达东北部芦草沟组页岩沉积时期相对较湿润的气候条件和较强的降雨促进了该地区古湖泊的盐度分层,导致底层湖水具有较高的盐度并且更加缺氧,同时河流携带含有大量富营养元素的淡水注入湖泊造成表层水体具有较高的古生产力,导致了其相对于博格达西部芦草沟组页岩具有更高的TOC含量.
表 3 博格达以西和东北部芦草沟组页岩沉积时期湖水的古水文条件、TOC含量和CIA对比Table Supplementary Table Ancient hydrological conditions, TOC content and CIA values comparison during depositional of Lucaogou shale between western and northeastern Bogda剖面位置 古盐度 氧化还原条件 古生产力 TOC(%) CIA B/Ga V/(V+Ni) V/Cr Cu/Al Ni/Al 博格达山东北部 5.58~10.35
(8.27)0.69~0.92
(0.79)2.31~4.46
(3.17)5.97~19.96
(10.17)4.68~12.45
(7.91)4.3~7.8
(6.0)56.11~85.77
(75.56)博格达山西部 1.95~9.52
(6.39)0.62~0.82
(0.73)1.87~3.40
(2.53)4.21~7.74
(6.22)3.45~6.66
(5.15)2.1~5.9
(4.4)45.2~69.96
(54.90)注:表中数据范围为最小值至最大值,括号内为平均值. 6. 沉积模式
本文在对研究区芦草沟组页岩成因、古湖泊水文条件和水体氧化还原条件以及湖盆流域古气候等研究的基础上,提出了芦草沟组页岩的沉积模式,进一步解释了古气候是如何通过改变湖泊水化学条件、氧化还原条件以及古生产力的大小来影响湖相页岩的沉积过程(图 5).
图 5 研究区芦草沟组页岩的沉积过程及沉积模式AA′剖面位置见图 1Fig. 5. Depositional process and depositional model of the Lucaogou shale in the study area芦草沟组页岩沉积时期,博格达东北部相对温暖和潮湿的古气候总体上从以下几个方面影响了湖相页岩的沉积过程.首先,潮湿的气候背景引起较充足的降雨量,促使河流携带大量的淡水注入湖泊;其次,温暖和潮湿的气候条件促进了湖盆流域植被的稳定生长,这些植被可以有效地阻挡河流携带的陆源碎屑进入湖泊,从而减少了石英、长石等陆源碎屑的输入量并增强了溶质的运移能力(Bohacs and Carroll, 2000; Smith et al., 2014; Ma et al., 2017).同时,充足的降雨可能会引起湖泊的滞水作用,有效阻止了湖泊表层淡水与湖底盐水混合,促进了湖水的分层(Jiang et al., 2007; Smith et al., 2008),导致了相对较高的B/Ga和V/(V+Ni)值与丰富的鱼化石同时出现,沉积了一套纹层较发育且有机质含量相对较高的页岩(图 5).而博格达以西的古气候相对较干旱,导致降雨量较少,从而减弱了淡水的输入量以及河流的运输能力,造成湖泊的分层程度较低,进而导致了B/Ga和V/(V+Ni)值普遍低于博格达东北部;同时,淡水输入量的减少造成注入湖泊的无机碳、硝酸盐以及其他能促进高古生产力的营养元素减少,导致博格达以西地区湖泊表层的古生产力水平低于博格达东北部,沉积了一套纹层相对不发育、且有机质含量相对较少的页岩(图 5).博格达以西地区芦草沟组页岩沉积时湖水的表层古生产力指标Cu/Al和Ni/Al值普遍小于博格达东北部地区也证实了上述观点.
7. 芦草沟组页岩有机质的富集机理
在湖相盆地中有机质的富集主要受控于水体表层的生产力、有机质的保存条件以及沉积速率(Demaison and Moore, 1980; Mort et al., 2007; Ma et al., 2016b).如前所述,研究区芦草沟组页岩含有较少的陆源碎屑,同时笔者结合其普遍含有较高的TOC含量(>4%)认为,陆源碎屑的输入对页岩中有机质的稀释作用极为有限,不是其有机质富集的主控因素.氧化还原条件是影响有机质保存的重要因素,缺氧的湖水条件抑制了有机质的降解,有利于有机质保存(Demaison and Moore, 1980; Chen et al., 2012).同时,在水体表层的生物生产力是控制沉积物中有机质丰度的重要因素(Demaison and Moore, 1980; Ma et al., 2016b).
图 6显示博格达西部和东北部芦草沟组页岩的古生产力指标Cu/Al和Ni/Al整体上均与TOC含量具有较强的正相关关系,表明芦草沟组页岩中有机质的富集受控于页岩沉积时水体表层的古生产力大小;而水体氧化还原指标V/(V+Ni)和V/Cr整体上与TOC含量的相关性不明显,且集中分布在贫氧-厌氧的区间内(图 6),指示当时的水体氧化还原条件并不是芦草沟组页岩中有机质富集的主控因素.造成该现象的原因可能是芦草沟组页岩沉积时期底层湖水一直处于较为稳定的贫氧-厌氧的环境,在该环境下产生的有机质能够得到良好的保存.这与前文对页岩成因的解释一致.上述结果表明,准南芦草沟组页岩沉积时期有机质的富集主要受控于表层水体的古生产力与较稳定的贫氧-厌氧底层水体环境,还没有达到静水硫化环境(Tribovillard et al., 2006; 孙梦迪等,2014).这与我国东部济阳坳陷沾化凹陷沙河街组三段下亚段的纹层状灰质页岩(Ma et al., 2016b)中有机质的富集机理颇为相似.
8. 结论
(1) 研究区芦草沟组页岩主要沉积于盐度分层的半深湖-深湖环境,其表层水体富氧且盐度较低、底层水体贫氧-缺氧且盐度较高.该套页岩TOC含量为2.1%~7.8%,平均值为5.5%,为典型的优质烃源岩.
(2) 研究区芦草沟组页岩沉积时期湖盆流域主要发生了中等化学风化作用,指示该时期总体上为半干旱-半湿润的古气候背景.对研究区古气候的分析进一步表明芦草沟组页岩沉积时期湖盆流域的古气候具有独特的分带性,其中博格达东北部在该时期的古气候较为温暖和潮湿,具有充足的降雨量;而博格达以西在该时期的古气候则相对干旱,降雨量相对较小.
(3) 博格达东北部芦草沟组页岩沉积时期相对湿润的气候条件和较强的降雨促进了古湖泊盐度分层,造成底层湖水具有较高的盐度并且更加缺氧,同时降雨促进河流携带大量富营养元素的淡水注入湖泊造成表层水体生产力升高,引起了该地区芦草沟组页岩相比博格达西部具有更高的TOC含量.
(4) 博格达西部和东北部芦草沟组页岩沉积时期水体表层的生产力和氧化还原条件指标与TOC的相关性分析表明,准南芦草沟组页岩有机质的富集主要受控于表层水体的古生产力和较稳定的贫氧-厌氧底层水体环境.
-
图 5 研究区芦草沟组页岩的沉积过程及沉积模式
AA′剖面位置见图 1
Fig. 5. Depositional process and depositional model of the Lucaogou shale in the study area
表 1 缺氧环境和富氧环境元素地球化学判识指标
Table 1. Geochemical identification criteria of anoxic and oxic depositional environment
判别指标 缺氧环境 富氧环境 厌氧 贫氧 V/(V+Ni) >0.54 0.46~0.54 <0.46 V/Cr >4.25 2.00~4.25 <2.00 注:据Hatch and Leventhal(1992),Jones and Manning(1994). 表 2 研究区芦草沟组页岩沉积时湖水的古盐度、古生产力大小、氧化还原条件以及CIA
Table 2. Paleosalinity, paleoproductivity, redox and CIA values of Lucaogou shale in the study area
剖面 样品号 TOC(%) B/Ga Cu/Al Ni/Al V/(V+Ni) V/Cr CIA 宋家沟剖面 S-20 2.1 5.24 4.21 3.65 0.65 2.20 45.20 S-19 2.5 4.95 4.34 3.45 0.75 2.10 46.00 S-18 3.2 6.21 5.01 4.34 0.79 2.80 48.80 S-17 3.8 9.41 5.79 4.79 0.80 2.63 46.80 S-16 4.0 6.38 6.56 5.43 0.82 3.00 56.21 S-15 5.0 3.45 6.44 5.87 0.68 3.40 55.23 S-14 5.6 1.95 7.58 7.53 0.62 1.87 59.23 S-13 5.5 2.14 6.38 4.91 0.80 2.47 54.85 S-12 4.9 5.64 6.20 5.87 0.70 2.07 63.89 S-11 4.4 8.91 5.07 6.01 0.69 2.15 62.11 S-10 3.9 7.43 5.90 4.54 0.75 2.21 49.21 S-9 2.6 5.56 6.46 4.21 0.67 2.90 58.38 S-8 3.8 6.89 6.01 5.01 0.77 2.80 50.98 S-7 5.2 9.52 7.57 6.66 0.69 2.59 68.79 S-6 5.9 8.80 7.74 5.46 0.74 2.23 69.96 S-5 5.3 7.21 6.78 5.56 0.80 2.30 59.70 S-4 4.4 6.23 5.23 6.12 0.72 2.70 57.80 S-3 4.9 6.88 6.23 4.11 0.68 3.00 50.89 S-2 5.4 7.13 7.36 4.89 0.69 2.40 47.67 S-1 5.2 7.89 7.45 4.67 0.70 2.80 46.21 杨家庄剖面 Y-24 4.9 7.46 7.68 5.55 0.79 3.77 62.02 Y-23 5.3 8.13 8.23 5.45 0.78 3.45 73.89 Y-22 5.5 9.98 11.88 8.90 0.83 3.52 80.53 Y-21 5.8 8.67 7.46 7.21 0.76 2.67 76.53 Y-20 6.0 10.29 14.04 7.96 0.87 3.83 59.02 Y-19 6.4 9.75 10.56 7.56 0.80 2.56 79.53 Y-18 7.3 8.45 15.21 10.56 0.92 2.72 85.45 Y-17 7.6 7.05 19.96 11.33 0.78 4.46 66.16 Y-16 6.5 9.78 9.98 9.21 0.90 3.21 78.53 Y-15 5.3 8.21 7.46 5.12 0.85 4.23 78.53 Y-14 4.7 7.82 8.76 4.68 0.92 3.67 85.45 Y-13 4.6 7.40 9.58 8.52 0.74 4.11 77.52 Y-12 4.6 7.34 9.51 8.41 0.69 2.92 80.55 Y-11 4.3 7.79 7.53 5.94 0.79 2.59 80.44 Y-10 5.2 8.95 8.21 8.21 0.83 2.87 75.89 Y-9 5.8 8.88 7.46 7.34 0.82 3.12 73.23 Y-8 6.8 9.34 13.98 9.89 0.84 3.56 82.53 Y-7 5.8 7.95 9.78 8.56 0.81 3.58 72.67 Y-6 5.3 7.36 7.21 6.76 0.78 2.88 71.02 Y-5 4.3 8.72 6.49 4.77 0.82 2.58 77.89 Y-4 4.7 8.78 9.44 6.42 0.74 2.95 73.90 Y-3 5.6 9.89 8.11 7.21 0.83 3.45 71.53 Y-2 6.4 8.95 9.13 7.17 0.81 2.40 76.53 Y-1 4.8 8.96 8.53 6.24 0.79 3.23 74.53 芦草沟剖面 L-25 4.5 9.88 7.85 4.88 0.72 2.89 76.34 L-24 5.0 10.35 9.34 8.02 0.85 3.55 72.67 L-23 5.3 9.45 8.78 6.45 0.73 2.67 66.34 L-22 5.9 7.15 7.56 7.45 0.78 2.47 80.33 L-21 5.6 7.31 9.59 4.99 0.81 2.84 74.57 L-20 6.0 8.67 11.04 8.89 0.79 3.43 68.53 L-19 6.5 8.88 9.67 9.89 0.79 4.34 73.89 L-18 6.9 7.46 12.78 7.10 0.82 2.68 81.21 L-17 7.2 7.46 10.22 8.44 0.84 3.64 78.44 L-16 7.5 8.72 11.34 9.56 0.73 3.23 83.67 L-15 7.8 8.78 15.23 12.45 0.86 3.88 81.89 L-14 7.2 6.89 11.81 8.41 0.76 3.36 67.56 L-13 7.0 8.33 9.66 9.98 0.74 3.34 82.55 L-12 6.3 7.52 9.89 6.56 0.85 2.96 79.45 L-11 6.6 7.14 10.67 8.21 0.82 3.33 79.33 L-10 6.5 5.58 12.39 7.09 0.75 2.92 56.11 L-9 7.0 7.45 13.66 10.95 0.73 2.97 73.22 L-8 7.3 9.74 12.81 10.23 0.88 3.11 76.34 L-7 7.6 8.51 10.43 10.89 0.81 2.45 85.77 L-6 6.8 7.42 9.12 9.24 0.73 3.01 80.65 L-5 6.2 6.65 10.31 7.31 0.69 2.31 77.85 L-4 5.8 7.45 7.88 9.22 0.82 2.66 73.74 L-3 4.6 8.95 5.97 5.76 0.70 2.87 70.55 L-2 6.8 7.34 8.55 8.66 0.73 3.34 78.66 L-1 7.3 6.07 15.80 7.97 0.71 2.89 68.74 表 3 博格达以西和东北部芦草沟组页岩沉积时期湖水的古水文条件、TOC含量和CIA对比
Table 3. Ancient hydrological conditions, TOC content and CIA values comparison during depositional of Lucaogou shale between western and northeastern Bogda
剖面位置 古盐度 氧化还原条件 古生产力 TOC(%) CIA B/Ga V/(V+Ni) V/Cr Cu/Al Ni/Al 博格达山东北部 5.58~10.35
(8.27)0.69~0.92
(0.79)2.31~4.46
(3.17)5.97~19.96
(10.17)4.68~12.45
(7.91)4.3~7.8
(6.0)56.11~85.77
(75.56)博格达山西部 1.95~9.52
(6.39)0.62~0.82
(0.73)1.87~3.40
(2.53)4.21~7.74
(6.22)3.45~6.66
(5.15)2.1~5.9
(4.4)45.2~69.96
(54.90)注:表中数据范围为最小值至最大值,括号内为平均值. -
Bohacs, K.M., Carroll, A.R., Neal, J.E., 2000.Lake-Basin Type, Source Potential, and Hydrocarbon Character:An Integrated Sequence-Stratigraphic-Geochemical Framework.In:Kordesch, E.H.G., Kelts, K.R., eds., Lake Basins through Space and Time.American Association of Petroleum Geologists, Tulsa. Carroll, A.R., Bohacs, K.M., 2001.Lake-Type Controls on Petroleum Source Rock Potential in Nonmarine Basins.AAPG Bulletin, 85(6):1033-1053. https://doi.org/10.1306/8626ca5f-173b-11d7-8645000102c1865d Chen, H., Xie, X.N., Hu, C.Y., et al., 2012.Geochemical Characteristics of Late Permian Sediments in the Dalong Formation of the Shangsi Section, Northwest Sichuan Basin in South China:Implications for Organic Carbon-Rich Siliceous Rocks Formation.Journal of Geochemical Exploration, 112:35-53. https://doi.org/10.1016/j.gexplo.2011.06.011 Chen, Z.Y., Chen, Z.L., Zhang, W.G., 1997., Quaternary Stratigraphy and Trace-Element Indices of the Yangtze Delta, Eastern China, with Special Reference to Marine Transgressions.Quaternary Research, 47(2):181-191. https://doi.org/10.1006/qres.1996.1878 Demaison, G.J., Moore, G.T., 1980.Anoxic Environments and Oil Source Bed Genesis.Organic Geochemistry, 2(1):9-31. https://doi.org/10.1016/0146-6380(80)90017-0 Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995.Unraveling the Effects of Potassium Metasomatism in Sedimentary Rocks and Paleosols, with Implications for Paleoweathering Conditions and Provenance.Geology, 23(10):921.https://doi.org/10.1130/0091-7613(1995)023<0921:uteopm>2.3.co;2 doi: 10.1130/0091-7613(1995)023<0921:uteopm>2.3.co;2 Fu, X.G., Wang, J., Chen, W.B., et al., 2015.Elemental Geochemistry of the Early Jurassic Black Shales in the Qiangtang Basin, Eastern Tethys:Constraints for Palaeoenvironment Conditions.Geological Journal, 51(3):443-454. https://doi.org/10.1002/gj.2642 Gao, Z.L., Kang, Y.S., Liu, R.H., et al., 2011.Geological Features and Developmental Controlling Factors of Lucaogou Oil Shale in the Southern Margin of Junngar Basin.Xinjiang Geology, 29(2):189-193(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI201102015.htm Gao, Y., Wang, Y.L., He, D.X., et al., 2013.Shale Gas Potential and Organic Geochemical Characteristics of Oil Shale in the Southeast of Junggar Basin.Natural Gas Geoscience, 24(6):1196-1204(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TDKX201306014.htm Hatch, J.R., Leventhal, J.S., 1992.Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A..Chemical Geology, 99(1-3):65-82. https://doi.org/10.1016/0009-2541(92)90031-y Jiang, H.C., Guo, G.X., Cai, X.M., et al., 2016.Geochemical Evidence of Windblown Origin of the Late Cenozoic Lacustrine Sediments in Beijing and Implications for Weathering and Climate Change.Palaeogeography, Palaeoclimatology, Palaeoecology, 446:32-43. https://doi.org/10.1016/j.palaeo.2016.01.017 Jiang, Z.X., Chen, D.Z., Qiu, L.W., et al., 2007.Source-Controlled Carbonates in a Small Eocene Half-Graben Lake Basin (Shulu Sag) in Central Hebei Province, North China.Sedimentology, 54(2):265-292. https://doi.org/10.1111/j.1365-3091.2006.00834.x Jones, B., Manning, D.A.C., 1994.Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones.Chemical Geology, 111(1-4):111-129. https://doi.org/10.1016/0009-2541(94)90085-x Könitzer, S.F., Davies, S.J., Stephenson, M.H., et al., 2014.Depositional Controls on Mudstone Lithofacies in a Basinal Setting:Implications for the Delivery of Sedimentary Organic Matter.Journal of Sedimentary Research, 84(3):198-214. https://doi.org/10.2110/jsr.2014.18 Li, J.J., Tang, D.Z., Xu, H., et al., 2009.Sedimentary Characteristics of the Upper Permian Lucaogou Formation in Dahuangshan Southern Margin of Junggar.Journal of Xi'an University of Science and Technology, 29(1):68-72 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1672-9315.2009.01.015 Loftus, G.W.F., Greensmith, J.T., 1988.The Lacustrine Burdiehouse Limestone Formation-A Key to the Deposition of the Dinantian Oil Shales of Scotland.Geological Society, London, Special Publications, 40(1):219-234. https://doi.org/10.1144/gsl.sp.1988.040.01.19 Ma, P.F., Wang, L.C., Wang, C.S., et al., 2015.Organic-Matter Accumulation of the Lacustrine Lunpola Oil Shale, Central Tibetan Plateau:Controlled by the Paleoclimate, Provenance, and Drainage System.International Journal of Coal Geology, 147-148:58-70. https://doi.org/10.1016/j.coal.2015.06.011 Ma, Y.Q., Du, X.B., Liu, H.M., et al., 2017.Characteristics, Depositional Processes, and Evolution of Shale Lithofaceis of the Upper Submember of Es 4 in the Dongying Depression.Earth Science, 42(7), 1195-1208 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.097 Ma, Y.Q., Fan, M.J., Lu, Y.C., et al., 2016a.Geochemistry and Sedimentology of the Lower Silurian Longmaxi Mudstone in Southwestern China:Implications for Depositional Controls on Organic Matter Accumulation.Marine and Petroleum Geology, 75:291-309. https://doi.org/10.1016/j.marpetgeo.2016.04.024 Ma, Y.Q., Fan, M.J., Lu, Y.C., et al., 2016b.Climate-Driven Paleolimnological Change Controls Lacustrine Mudstone Depositional Process and Organic Matter Accumulation:Constraints from Lithofacies and Geochemical Studies in the Zhanhua Depression, Eastern China.International Journal of Coal Geology, 167:103-118. https://doi.org/10.1016/j.coal.2016.09.014 Ma, Y.Q., Fan, M.J., Lu, Y.C., et al., 2017.Middle Eocene Paleohydrology of the Dongying Depression in Eastern China from Sedimentological and Geochemical Signatures of Lacustrine Mudstone.Palaeogeography, Palaeoclimatology, Palaeoecology, 479:16-33. https://doi.org/10.1016/j.palaeo.2017.04.011 Ma, Y.Q., Lu, Y.C., Liu, S.P., et al., 2015.Characteristics of Tight Sandstones and Forming Mechanism of Relative High-Quality Reservoir in Chang 3 Member of Yanchang Formation in Xunyi Area, Ordos Basin.Journal of Central South University (Science and Technology), 46(8):3013-3024 (in Chinese with English abstract). McHenry, L.J., 2009.Element Mobility during Zeolitic and Argillic Alteration of Volcanic Ash in a Closed-Basin Lacustrine Environment:Case Study of Olduvai Gorge, Tanzania.Chemical Geology, 265(3-4):540-552. https://doi.org/10.1016/j.chemgeo.2009.05.019 Minyuk, P.S., Brigham-Grette, J., Melles, M., et al., 2007.Inorganic Geochemistry of El'gygytgyn Lake Sediments (Northeastern Russia) as an Indicator of Paleoclimatic Change for the Last 250 kyr.Journal of Paleolimnology, 37:123-133. https://doi.org/10.1007/s10933-006-9027-4 Mort, H.P., Adatte, T., Föllmi, K.B., et al., 2007.Phosphorus and the Roles of Productivity and Nutrient Recycling during Oceanic Anoxic Event 2.Geology, 35(6):483-486. https://doi.org/10.1130/g23475a.1 Nesbitt, H.W., Young, G.M., 1982.Early Proterozoic Climates and Plate Motions Inferred from Major Element Chemistry of Lutites.Nature, 299:715-717. https://doi.org/10.1038/299715a0 Nesbitt, H.W., Young, G.M., 1989.Formation and Diagenesis of Weathering Profiles.The Journal of Geology, 97(2):129-147. https://doi.org/10.1086/629290 Pietras, J.T., Carroll, A.R., 2006.High-Resolution Stratigraphy of an Underfilled Lake Basin:Wilkins Peak Member, Eocene Green River Formation, Wyoming, U.S.A..Journal of Sedimentary Research, 76(11):1197-1214. https://doi.org/10.2110/jsr.2006.096 Selvaraj, K., Chen, T.A., 2006.Moderate Chemical Weathering of Subtropical Taiwan:Constraints from Solid-Phase Geochemistry of Sediments and Sedimentary Rocks.The Journal of Geology, 114(1):101-116. https://doi.org/10.1086/498102 Shen, C.B., Mei, L.F., Liu, L., et al., 2005.Characteristics of Fission Track Age of Bogedashan in Xinjiang and Its Structural Significance.Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 27(2):273-276 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX2005S2000.htm Smith, M.E., Carroll, A.R., Mueller, E.R., 2008.Elevated Weathering Rates in the Rocky Mountains during the Early Eocene Climatic Optimum.Nature Geoscience, 1(6):370-374. https://doi.org/10.1038/ngeo205 Smith, M.E., Carroll, A.R., Scott, J.J., et al., 2014.Early Eocene Carbon Isotope Excursions and Landscape Destabilization at Eccentricity Minima:Green River Formation of Wyoming.Earth and Planetary Science Letters, 403:393-406. https://doi.org/10.1016/j.epsl.2014.06.024 Sun, M.D., Yu, B.S., Xia, W., et al., 2014.Depositional Setting and Enrichment Mechanism of Organic Matter of the Lower Silurian Black Shale Series in the Southeast of Chongqing:A Case Study from Lujiao Outcrop Section.Journal of Northeast Petroleum University, 38(5):51-60(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQSY201405008.htm Sun, P.C., Sachsenhofer, R., Liu, Z.J., et al., 2013.Organic Matter Accumulation in the Oil Shale-and Coal-Bearing Huadian Basin (Eocene; NE China).International Journal of Coal Geology, 105:1-15. https://doi.org/10.1016/j.coal.2012.11.009 Talbot, M.R., 1988.The Origins of Lacustrine Oil Source Rocks:Evidence from the Lakes of Tropical Africa.Geological Society, London, Special Publications, 40(1):29-43. https://doi.org/10.1144/GSL.SP.1988.040.01.04 Talbot, M.R., Allen, P.A., 1996.Lakes.In:Reading, H.G., ed., Sedimentary Environments:Processes, Facies and Stratigraphy.Blackwell Scientific Publications, Oxford, 83-123. Tribovillard, N., Algeo, T.J., Lyons, T., et al., 2006.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update.Chemical Geology, 232(1-2):12-32. https://doi.org/10.1016/j.chemgeo.2006.02.012 Wang, D.D., Li, Z.X., Lü, D.W., et al., 2016.Coal and Oil Shale Paragenetic Assemblage and Sequence Stratigraphic Features in Continental Faulted Basin.Earth Science, 41(3):508-522 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.042 Wang, D.Y., Xu, H., Li, J.J., et al., 2008.Mineralization Model of Oil Shale Controlled by Facies in Lucaogou Formation of Permian, Dahuangshan, Zhunnan.Petroleum Geology and Recovery Efficiency, 15(2):53-55 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS200802019.htm Wang, X.W., Wang, X.W., Ma, Y.S., 2007.The Tectonic Evolution of Bogda Mountain, Xinjiang, Northwest China and Its Relationship to Oil and Gas Accumulation.Geoscience, 21(1):116-124(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ200701014.htm Wang, Z.H., Ding, B.C., Yan, J.F., et al., 2016.Depositional Characteristics and Petroleum Exploration Significance of Lucaogou Formation in South Junggar Basin.Journal of Xi'an Shiyou University (Natural Science Edition), 31(2):25-32 (in Chinese with English abstract). Wang, Z.W., Fu, X.G., Feng, X.L., et al., 2015.Geochemical Features of the Black Shales from the Wuyu Basin, Southern Tibet:Implications for Palaeoenvironment and Palaeoclimate.Geological Journal, 52(2):282-297. https://doi.org/10.1002/gj.2756 Yue, S.F., Wang, H., Yan, D.T., et al., 2016.The Sedimentary Characteristics and Evolution Law of Trassic, Luoyi District.Earth Science, 41(10):1683-1695 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.506 Zeng, Z.W., Yang, X.H., Zhu, H.T., et al., 2017.Development Characteristics and Significance of Large Delta of Upper Enping Formation, Baiyun Sag.Earth Science, 42(1):78-92(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.006 Zhang, L.Y., Li, J.Y., Li, Z., et al., 2015.Development Characteristic and Formation Mechanism of Intra-Organic Reservoir Space in Lacustrine Shales.Earth Science, 40(11):1824-1833(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.163 Zhang, X.B., 1993.Study on the Origin of the Dolostone Intercalcated in the Black Shales in Middle Permian Lucaogou Formation Eastern Part of Southern Margin of Junggar Basin.Acta Sedimentologica Sinica, 11(2):133-140 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199302017.htm Zhao, X.F., Zhao, Y.S., Deng, Q.Y., et al., 1994.Preliminary Study of the Sequence Stratigraphy of Upper Permian Lucaogou and Hongyanchi Formations on the Southern Edge of Junggar Basin.Journal of Chengdu Institute of Technology, 21(3):112-120 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG403.014.htm Zhu, H.T., Li, S., Liu, H.R, et al., 2016.The Types and Implication of Migrated Sequence Stratigraphic Architecture in Continetal Lacustrine Rift Basin:An Example from the Paleogene Wenchang Formation of Zhu I Depression, Pearl River Mouth Basin.Earth Science, 41(3):361-372(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.028 高智梁, 康永尚, 刘人和, 等, 2011.准噶尔盆地南缘芦草沟组油页岩地质特征及主控因素.新疆地质, 29(2):189-193. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xjdi201102015&dbname=CJFD&dbcode=CJFQ 高苑, 王永莉, 何大祥, 等, 2013.准噶尔盆地东南缘油页岩有机地球化学特征及含气潜力.天然气地球科学, 24(6):1196-1204. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tdkx201306014&dbname=CJFD&dbcode=CJFQ 李婧婧, 汤达祯, 许浩, 等, 2009.准噶尔盆地南缘大黄山矿区二叠系芦草沟组油页岩沉积特征.西安科技大学学报, 29(1):68-72. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xkxb200901017&dbname=CJFD&dbcode=CJFQ 马义权, 陆永潮, 刘树平, 等, 2015.鄂南延长组长3段致密储层特征及相对优质储层形成机理.中南大学学报(自然科学版), 46(8):3013-3024. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zngd201508034&dbname=CJFD&dbcode=CJFQ 马义权, 杜学斌, 刘惠民, 等, 2017.东营凹陷沙四上亚段陆相页岩岩相特征、成因及演化.地球科学, 42(7):1195-1208. https://doi.org/10.3799/dqkx.2017.097 沈传波, 梅廉夫, 刘麟, 等, 2005.新疆博格达山裂变径迹年龄特征及其构造意义.石油天然气学报(江汉石油学院学报), 27(2):273-276. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jhsx2005s2000&dbname=CJFD&dbcode=CJFQ 孙梦迪, 于炳松, 夏威, 等, 2014.渝东南地区下志留统底部黑色岩系沉积环境及有机质富集机制——以鹿角剖面为例.东北石油大学学报, 38(5):51-60. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqsy201405008&dbname=CJFD&dbcode=CJFQ 王东东, 李增学, 吕大炜, 等, 2016.陆相断陷盆地煤与油页岩共生组合及其层序地层特征.地球科学, 41(3):508-522. https://doi.org/10.3799/dqkx.2016.042 王东营, 许浩, 李婧婧, 等, 2008.准南大黄山二叠系芦草沟组油页岩相控成矿模式.油气地质与采收率, 15(2):53-55. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yqcs200802019&dbname=CJFD&dbcode=CJFQ 汪新伟, 汪新文, 马永生, 2007.新疆博格达山的构造演化及其与油气的关系.现代地质, 21(1):116-124. https://doi.org/10.3969/j.issn.1000-8527.2007.01.015 王正和, 丁邦春, 闫剑飞, 等, 2016.准南芦草沟组沉积特征及油气勘探前景.西安石油大学学报(自然科学版), 31(2):25-32. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xasy201602004&dbname=CJFD&dbcode=CJFQ 岳绍飞, 王华, 严德天, 等, 2016.洛伊地区三叠系沉积体系特征及演化规律.地球科学, 41(10):1683-1695. https://doi.org/10.3799/dqkx.2016.506 曾智伟, 杨香华, 朱红涛, 等, 2017.白云凹陷恩平组沉积晚期大型三角洲发育特征及其意义.地球科学, 42(1):78-92. https://doi.org/10.3799/dqkx.2017.006 张林晔, 李钜源, 李政, 等, 2015.湖相页岩有机储集空间发育特点与成因机制.地球科学, 40 (11):1824-1833. https://doi.org/10.3799/dqkx.2015.163 张晓宝, 1993.准噶尔盆地南缘东部中二叠流芦草沟组黑色页岩中白云岩夹层的成因探讨.沉积学报, 11(2):133-140. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cjxb199302017&dbname=CJFD&dbcode=CJFQ 赵霞飞, 赵永胜, 邓启予, 等, 1994.准噶尔盆地南缘上二叠统芦草沟组和红雁池组层序地层学初析.成都理工学院学报, 21(3):112-120. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=cdlg403.014&dbname=CJFD&dbcode=CJFQ 朱红涛, 李森, 刘浩冉, 等, 2016.陆相断陷湖盆迁移型层序构型及意义:以珠Ⅰ坳陷古近系文昌组为例.地球科学, 41(3):361-372. https://doi.org/10.3799/dqkx.2016.028 期刊类型引用(18)
1. 朱筱敏,王晓琳,张美洲,林兴悦,张琴. 中国典型陆相盆地细粒沉积环境和岩相特征. 石油与天然气地质. 2024(04): 873-892 . 百度学术
2. 张妍,吴欣松,康积伦,高岗,黄志龙,樊柯廷,李杰,马强,张伟. 准东吉南凹陷二叠系芦草沟组烃源岩有机质富集机制. 天然气地球科学. 2024(09): 1574-1589 . 百度学术
3. 姜在兴,张建国,孔祥鑫,谢环羽,程浩,王力. 中国陆相页岩油气沉积储层研究进展及发展方向. 石油学报. 2023(01): 45-71 . 百度学术
4. 焦悦,吴朝东,王家林,焦国华,张卫平,关旭同. 天山东段地区二叠系芦草沟组沉积特征与古环境对比. 古地理学报. 2023(02): 277-342 . 百度学术
5. 柳忠泉,赵乐强,曾治平,田继军,李正强,罗锦昌,胡美玲. 准噶尔盆地阜康断裂带二叠系芦草沟组页岩油成藏条件. 岩性油气藏. 2023(03): 126-137 . 百度学术
6. 陈林 ,刘安 ,田巍 ,李海 ,张保民 ,陈孝红 ,吕嵘 . 湘中坳陷邵阳凹陷佘田桥组下段古气候变迁及其对海洋碳循环的影响. 华南地质. 2023(02): 309-319 . 百度学术
7. 谢再波,曲永强,吴涛,王天海,刘雨桐,黑晨露,陶辉飞. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组沉积古环境与生物来源探讨. 天然气地球科学. 2023(08): 1328-1342 . 百度学术
8. 刘金,王剑,谭静强,崔海骕,刘淼,郑雨,宋雪琪,元强. 吉木萨尔凹陷芦草沟组沉积古环境与有机质富集. 地质力学学报. 2023(05): 631-647 . 百度学术
9. 李依林,伏美燕,邓虎成,刘四兵,胥旺,吴冬. 滨岸闭塞环境中有机质富集模式——以川西南峨边葛村剖面筇竹寺组为例. 天然气地球科学. 2022(04): 588-604 . 百度学术
10. 罗锦昌,田继军,马静辉,闫嘉启,梁雅菲,胡卓浩. 吉木萨尔凹陷吉页1井区二叠系芦草沟组沉积环境及有机质富集机理. 岩性油气藏. 2022(05): 73-85 . 百度学术
11. 刘兵兵,马东正,秦臻,王天海,刘军,陶辉飞. 准噶尔盆地吉木萨尔南部中上二叠统沉积古环境分析——来自泥页岩生物标志化合物和元素地球化学方面的证据. 天然气地球科学. 2022(10): 1571-1584 . 百度学术
12. 周立宏,韩国猛,杨飞,马建英,牟连刚,周可佳,王昌丽,孟立娜. 渤海湾盆地歧口凹陷沙河街组三段一亚段地质特征与页岩油勘探实践. 石油与天然气地质. 2021(02): 443-455 . 百度学术
13. 李青,陈建洲,王国仓,王瑾,谢菁,王琪玮,晁海德. 青藏高原北部东昆仑地区三叠系元素地球化学组成对古环境的指示意义. 天然气地球科学. 2021(11): 1714-1723 . 百度学术
14. 樊奇,樊太亮,李一凡,张俊鹏,高志前,陈跃. 塔里木地台北缘早寒武世古海洋氧化-还原环境与优质海相烃源岩发育模式. 地球科学. 2020(01): 285-302 . 本站查看
15. 孙中良,王芙蓉,侯宇光,罗京,郑有恒,吴世强,朱钢添. 盐湖页岩有机质富集主控因素及模式. 地球科学. 2020(04): 1375-1387 . 本站查看
16. 吴超. 新疆吉木萨尔县南部西大龙口至白杨河一带页岩气特征研究. 西部资源. 2019(02): 27-28 . 百度学术
17. 柯友亮,王华,甘华军,陈思,刘可行,王思洋,巩天浩,李奔,闫馨友. 准噶尔盆地南缘芦草沟组上段油页岩有机地球化学特征及其沉积意义. 地质科技情报. 2019(03): 199-207 . 百度学术
18. 周立宏,蒲秀刚,陈长伟,杨飞,夏君,官全胜,黄传炎. 陆相湖盆细粒岩油气的概念、特征及勘探意义:以渤海湾盆地沧东凹陷孔二段为例. 地球科学. 2018(10): 3625-3639 . 本站查看
其他类型引用(8)
-