• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因

    郑海涛 郑有业 徐净 吴松 郭建慈 高顺宝 次琼

    郑海涛, 郑有业, 徐净, 吴松, 郭建慈, 高顺宝, 次琼, 2018. 西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因. 地球科学, 43(8): 2858-2874. doi: 10.3799/dqkx.2018.111
    引用本文: 郑海涛, 郑有业, 徐净, 吴松, 郭建慈, 高顺宝, 次琼, 2018. 西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因. 地球科学, 43(8): 2858-2874. doi: 10.3799/dqkx.2018.111
    Zheng Haitao, Zheng Youye, Xu Jing, Wu Song, Guo Jianci, Gao Shunbao, Ci Qiong, 2018. Zircon U-Pb Ages and Petrogenesis of Ore-Bearing Porphyry for Qingcaoshan Porphyry Cu-Au Deposit, Tibet. Earth Science, 43(8): 2858-2874. doi: 10.3799/dqkx.2018.111
    Citation: Zheng Haitao, Zheng Youye, Xu Jing, Wu Song, Guo Jianci, Gao Shunbao, Ci Qiong, 2018. Zircon U-Pb Ages and Petrogenesis of Ore-Bearing Porphyry for Qingcaoshan Porphyry Cu-Au Deposit, Tibet. Earth Science, 43(8): 2858-2874. doi: 10.3799/dqkx.2018.111

    西藏青草山斑岩铜金矿床含矿斑岩锆石U-Pb年代学及岩石成因

    doi: 10.3799/dqkx.2018.111
    基金项目: 

    中央高校基本科研业务费专项资金 CUGL170413

    国家自然科学基金项目 41302065

    中国地质调查局项目 12120114000701

    中国地质调查局项目 12120114081401

    详细信息
      作者简介:

      郑海涛(1982-), 男, 博士研究生, 主要从事成矿规律研究专业

      通讯作者:

      郑有业

    • 中图分类号: P597

    Zircon U-Pb Ages and Petrogenesis of Ore-Bearing Porphyry for Qingcaoshan Porphyry Cu-Au Deposit, Tibet

    • 摘要: 西藏青草山Cu-Au矿床是班公湖-怒江缝合带北侧新发现的具有大型远景的斑岩型矿床,但该矿床含矿斑岩的年龄、成因及源区一直未得到有效的约束.对青草山花岗闪长岩以及含矿花岗岩闪长斑岩进行了锆石年代学、Hf同位素以及岩石地球化学研究.结果显示,花岗闪长岩与含矿花岗闪长斑岩的侵入时代分别为131.2±0.3 Ma与117.9±0.8 Ma,代表了班公湖-怒江缝合带早期的成岩作用以及斑岩Cu-Au成矿作用.二者具有相似的地球化学特征,表明二者可能具有相同的岩浆源区,是不同时期同源岩浆活动的产物.结合含矿花岗闪长斑岩锆石Hf同位素组成,认为青草山含矿斑岩形成于班公湖-怒江洋壳向北俯冲过程中,是下地壳部分熔融的产物,受到了少量地幔物质的混合.

       

    • 图  1  青藏高原大地构造分区(a)和青草山斑岩Cu-Au矿床地质简图(b)

      图b据西藏地勘局第二地质大队,2011.2011改则青草山矿区铜矿普查设计报告

      Fig.  1.  Tectonic framework of the Tibetan Plateau (a) and simplified geological map (b) of the Qingcaoshan porphyry Cu-Au deposit

      图  2  青草山花岗闪长斑岩(QCS-B3)和花岗闪长岩(QCS-B9)锆石阴极发光图

      (QCS-B9)实线圆圈为U-Pb年龄测点,圆圈边数值表示年龄;虚线圆圈为Hf同位素测点,圆圈边数值表示锆石Hf同位素组成

      Fig.  2.  The cathodoluminescence (CL) images of zircons for the Qingcaoshan granodiorite porphyry (QCS-B3) and granodiorite

      图  3  青草山花岗闪长斑岩(QCS-B3)和花岗闪长岩(QCS-B9)锆石U-Pb年龄谐和图

      Fig.  3.  Zircon U-Pb concordia diagrams of the Qingcaoshan granodiorite porphyry (QCS-B3) and granodiorite (QCS-B9)

      图  4  青草山花岗闪长斑岩和花岗闪长岩主量元素图解

      图a据Wilson(1989);图b据Peccerillo and Taylor(1976).多不杂与波龙矿床的花岗闪长斑岩数据分别来源于佘宏全等(2009)陈华安等(2013)

      Fig.  4.  Discrimination diagrams for the Qingcaoshan granodiorite porphyry and granodiorite

      图  5  青草山花岗闪长斑岩和花岗闪长岩球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)

      标准化数值据Sun and McDonough(1989).多不杂与波龙矿床的花岗闪长斑岩数据分别来源于佘宏全等(2009)陈华安等(2013)

      Fig.  5.  Chondrite-normalized rare earth element pattern (a) and primitive mantle-normalized trace element spider diagram (b) for the Qingcaoshan granodiorite porphyry and granodiorite

      图  6  青草山花岗闪长斑岩和花岗闪长岩的构造判别图解

      图b据Pearce et al.(1984).多不杂与波龙矿床的花岗闪长斑岩数据分别来源于佘宏全等(2009)陈华安等(2013);VAG.火山岛弧花岗岩;WPG.板内花岗岩;Syn-COLG.同碰撞花岗岩;ORG.洋脊花岗岩

      Fig.  6.  Discrimination diagrams for the Qingcaoshan granodiorite porphyry and granodiorite

      图  7  草山花岗闪长斑岩和花岗闪长岩的La/Sm-La图解

      多不杂与波龙矿床的花岗闪长斑岩数据分别来源于佘宏全等(2009)陈华安等(2013)

      Fig.  7.  La/Sm-La diagram for the Qingcaoshan granodiorite porphyry and granodiorite

      图  8  青草山花岗闪长斑岩锆石εHf(t)-t图解

      波龙花岗闪长斑岩与多龙矿集区成矿斑岩数据分别来源于陈华安等(2013)

      Fig.  8.  εHf(t)-t diagram for the Qingcaoshan granodiorite porphyry

      表  1  青草山花岗闪长斑岩与花岗闪长岩LA-ICPMS锆石U-Pb分析结果

      Table  1.   LA-ICPMS zircon U-Pb dating data of the Qingcaoshan granodiorite porphyry and granodiorite

      测点号含量(10-6)Th/U同位素比值 年龄(Ma)
      ThU207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/235U1σ206Pb/238U
      花岗闪长斑岩
      QCS-B3-1926390.140.050 00.001 70.130 60.004 30.018 90.000 21183.651181.02
      QCS-B3-2766000.130.045 20.001 50.115 60.003 70.018 60.000 21123.481171.05
      QCS-B3-3785810.130.049 40.001 60.128 50.004 20.018 90.000 21203.681191.06
      QCS-B3-41316700.200.047 10.001 60.133 20.004 70.020 50.000 21233.371281.15
      QCS-B3-51887860.240.048 70.001 30.135 90.003 50.020 20.000 21283.231281.12
      QCS-B3-61216860.180.047 00.001 50.126 40.004 00.019 50.000 21203.851221.21
      QCS-B3-71877850.240.046 70.001 40.133 80.003 90.020 80.000 21283.421321.07
      QCS-B3-81367320.190.045 60.001 30.129 60.003 80.020 60.000 21263.431320.94
      QCS-B3-101315360.240.048 00.001 90.122 00.004 50.018 60.000 21194.131181.19
      QCS-B3-113091 0170.300.048 50.001 30.134 80.003 60.020 10.000 21253.151280.97
      QCS-B3-121396710.210.048 20.001 60.130 30.004 40.019 50.000 21223.971231.07
      QCS-B3-132348780.270.047 80.001 20.136 80.003 50.020 70.000 21303.101321.10
      QCS-B3-14785880.130.047 80.001 60.126 30.004 20.019 30.000 21173.581181.12
      QCS-B3-151026530.160.049 10.001 70.125 90.004 10.018 60.000 21183.691181.21
      QCS-B3-161016750.150.051 50.001 70.138 60.004 70.019 60.000 21224.321221.24
      QCS-B3-171747970.220.048 00.001 40.138 50.003 90.020 90.000 21303.731321.14
      QCS-B3-181094070.270.050 30.002 20.124 70.005 10.018 10.000 21184.631171.32
      QCS-B3-191084490.240.045 90.001 80.115 70.004 60.018 30.000 21144.141171.10
      QCS-B3-201186500.180.046 50.001 60.124 00.004 30.019 40.000 21204.061211.10
      花岗闪长岩
      QCS-B9-12067840.260.047 20.001 30.135 20.003 60.020 80.000 21283.31311.0
      QCS-B9-22581 1130.230.049 90.001 60.141 60.004 40.020 90.000 41273.11301.0
      QCS-B9-33091 0330.300.050 60.001 50.147 80.004 80.021 10.000 21334.01311.5
      QCS-B9-42639700.270.050 00.001 40.143 60.004 00.020 80.000 21313.61301.4
      QCS-B9-72811 1460.250.048 60.001 30.141 30.004 00.021 00.000 21313.51311.5
      QCS-B9-93071 0840.280.046 90.001 20.131 10.003 20.020 20.000 21253.01311.1
      QCS-B9-101137740.150.052 40.001 70.149 30.004 70.020 70.000 21384.01301.2
      QCS-B9-142351 0220.230.049 70.001 30.147 90.003 90.021 40.000 21363.41331.2
      QCS-B9-153107710.400.048 20.001 60.142 40.004 70.021 40.000 21324.11341.3
      QCS-B9-162067890.260.047 00.001 40.139 60.004 10.021 50.000 21323.71341.4
      QCS-B9-171306470.200.053 10.001 50.159 80.004 90.021 60.000 31394.81321.8
      QCS-B9-184721 0980.430.049 70.001 30.139 10.003 50.020 30.000 21313.31300.9
      QCS-B9-192398170.290.049 10.001 30.141 60.003 80.020 80.000 21333.41311.1
      下载: 导出CSV

      表  2  青草山花岗闪长斑岩锆石原位Hf同位素数据

      Table  2.   In-situ zircon Hf isotope data of the Qingcaoshan granodiorite porphyry

      测点号t (Ma)176Yb/177Hf176Lu/177Hf176Hf/177Hf±σεHf(t)±1σtDM2(Hf)fLu/Hf
      QCS-B3-3120.80.021 6890.000 7970.282 7070.000 3790.270.571 029-0.98
      QCS-B3-1121.00.019 2190.000 6970.282 7120.000 3400.480.571 018-0.98
      QCS-B3-18117.00.018 5970.000 6790.282 7190.000 1741.100.61997-0.98
      QCS-B3-4130.50.020 1630.000 7370.282 6940.000 2320.020.611 051-0.98
      QCS-B3-5129.00.021 6720.000 7980.282 7020.000 1220.300.621 034-0.98
      QCS-B3-7132.70.024 3340.000 8990.282 7120.000 2090.720.581 014-0.97
      QCS-B3-8131.20.019 4960.000 7060.282 6750.000 425-0.610.581 087-0.98
      QCS-B3-10119.10.033 3750.001 2410.282 7250.000 1760.850.60996-0.96
      QCS-B3-11128.30.024 2510.000 8990.282 6810.000 235-0.470.581 077-0.97
      QCS-B3-12124.60.019 9700.000 7300.282 6890.000 357-0.270.621 063-0.98
      QCS-B3-13132.00.022 3650.000 8160.282 7110.000 1910.650.611 017-0.98
      QCS-B3-16124.90.031 5670.001 2550.282 7030.000 6140.190.751 037-0.96
      QCS-B3-14123.10.017 0940.000 6440.282 6930.000 161-0.140.591 054-0.98
      QCS-B3-15119.10.017 3300.000 6430.282 6900.000 069-0.350.581 063-0.98
      QCS-B3-17133.60.020 6590.000 7440.282 7010.000 1080.370.571 034-0.98
      注:εHf(t) = 10 000×{[(176Hf/177Hf)S-(176Lu/177Hf)S×(eλt-1)]/[(176Hf/177Hf)CHUR, 0-(176Lu/177Hf)CHUR×(eλt-1)]-1};tDM =1/λ×ln{1+[(176Hf/177Hf)S-(176Hf/177Hf)DM]/[(176Lu/177Hf)S-(176Lu/177Hf)DM]};tDMC=tDM-(tDM-t)×[(fcc-fLu/Hf)/(fcc-fDM)];fLu/Hf =(176Lu/177Hf)S/(176Lu/177Hf)CHUR-1;λ=1.867×10-11a-1 (Söderlund et al., 2004); (176Lu/177Hf)S和(176Hf/177Hf)S是样品的测量值;(176Lu/177Hf)CHUR =0.033 2,(176Hf/177Hf)CHUR, 0 =0.282 772;(176Lu/177Hf)DM = 0.038 4,(176Hf/177Hf)DM = 0.283 25(Griffin et al., 2000); (176Lu/177Hf)地壳=0.015;fcc= [(176Lu/177Hf)地壳/(176Lu/177Hf)CHUR]-1;fDM =[(176Lu/177Hf)DM/(176Lu/177Hf)CHUR]-1.
      下载: 导出CSV

      表  3  青草山岩体主量(%)、微量(10-6)及稀土元素(10-6)分析结果

      Table  3.   Major elements (%), trace elements (10-6) and rare earth elements (10-6) compositions of intrusions from Qingcaoshan porphyry Cu-Au deposit

      样品花岗闪长斑岩 花岗闪长岩
      QCS-B3QCS-B4QCS-B5QCS-B6QCS2015-1QCS2015-2QCS2015-3QCS2015-4QCS2015-5QCS-B9QCS-B10
      SiO266.3067.5167.7767.1467.2366.9067.1367.4566.8769.1767.97
      TiO20.440.400.420.420.410.450.420.410.450.350.43
      Al2O315.5914.6815.1115.5015.9415.3315.4415.3915.2014.7615.43
      Fe2O31.351.421.621.381.461.451.571.511.670.931.82
      FeO1.651.301.401.131.291.341.621.461.511.370.73
      MnO0.020.020.020.010.010.020.020.020.010.030.02
      MgO1.641.411.241.441.541.451.421.411.561.100.75
      CaO1.621.311.821.421.661.751.641.571.502.211.34
      Na2O2.051.482.132.192.112.032.092.232.122.171.55
      K2O6.957.605.876.916.996.787.016.956.286.247.26
      P2O50.200.180.170.190.190.210.180.190.180.130.17
      H2O+1.601.521.521.481.571.491.561.541.451.101.51
      CO20.220.750.600.400.560.660.340.370.490.180.70
      Total99.6399.5899.6999.61100.9699.86100.44100.599.2999.7499.68
      Mg#50.4949.3543.6051.9651.4649.5645.6247.2748.1347.0336.07
      Na2O+K2O9.009.088.009.109.108.819.109.188.408.418.81
      Na2O/K2O3.395.142.763.163.313.343.353.122.962.884.68
      La24.729.227.027.226.825.126.428.927.424.727.9
      Ce46.453.749.048.747.141.849.152.952.044.566.9
      Pr5.515.995.645.655.565.675.555.705.625.035.73
      Nd20.121.520.420.520.019.520.322.620.917.921.0
      Sm3.823.863.723.773.793.723.903.883.733.173.97
      Eu0.8910.8610.8980.8670.9050.8290.8660.9120.8830.8841.00
      Gd3.503.323.363.403.453.293.503.433.482.813.52
      Tb0.4990.4860.4730.4960.4880.4910.4790.4770.5020.4160.509
      Dy2.862.632.672.662.962.612.782.732.592.262.84
      Ho0.5390.4910.5090.5130.4990.5210.5170.4880.5000.4330.523
      Er1.571.651.451.471.711.491.621.581.541.361.66
      Tm0.2550.2220.2250.2280.2340.2290.2310.2460.2430.1960.243
      Yb1.701.551.481.541.671.511.491.601.761.371.66
      Lu0.2480.2230.2300.2270.2290.2360.2410.2190.2500.2000.237
      Y16.124.814.415.413.911.815.816.016.713.922.5
      Li37.036.431.736.934.635.80.833.538.121.815.8
      Be1.701.421.921.621.551.671.781.851.591.871.69
      Sc7.536.436.996.806.456.097.136.846.764.986.15
      Cr8.7810.1012.007.248.987.7710.349.7910.5011.009.57
      Co7.7110.108.307.187.898.979.029.458.344.777.63
      Cu1 7672 9311 2871 9211 3671 7861 5731 0052 4505411 257
      Zn72.413446.265.256.799.076.5121.090.260.957.6
      Ga18.018.417.117.917.819.018.216.816.417.419.0
      Ge1.301.351.331.211.181.401.371.261.241.251.11
      Rb232230197201221218208233213176218
      Cs9.519.6910.709.239.769.459.9910.439.829.4410.90
      Pb49.455112.514.178.047.017.032.023.026.214.4
      Th10.18.612.012.312.411.810.59.511.211.813.4
      U2.451.982.192.642.402.232.382.551.892.782.50
      Ni9.813.510.013.29.014.111.313.712.58.913.9
      Sr243186240225194209231199216275189
      V75.063.568.063.367.169.371.264.873.043.247.0
      Zr1151511094 383157148134166123179164
      Nb10.412.712.612.611.410.612.411.513.411.113.4
      Ba46039837143389403386428415436491
      Hf3.404.383.3787.404.503.763.483.973.844.924.62
      Ta0.671.090.951.591.130.891.050.760.981.891.29
      As3.897.931.553.903.763.094.033.823.974.496.76
      Hg0.0310.0190.0200.0180.0170.0230.0300.0250.0160.0140.017
      Bi24.358.16.4324.254.345.737.832.45.93.9214.7
      Sb0.500.650.270.290.760.430.540.380.620.282.07
      Mo16.92946.215.7720.17.978.046.834.7313.36.67
      W10.473.63.610.115.113.516.89.89.414.19.1
      Sn9.079.577.249.589.879.038.788.029.457.387.52
      Ag1.784.091.092.182.092.341.891.731.990.7611.45
      Au16613776.821815613918916718711.467.7
      ∑REE112125117117129119133142138105137
      LREE/HREE9.110.910.210.19.39.39.810.710.210.611.3
      Sr/Y15.17.516.714.614.017.714.612.412.919.78.4
      La/Yb14.618.818.217.716.016.617.718.115.618.016.9
      (La/Yb)N10.513.513.112.711.511.912.713.011.212.912.1
      Dy/Yb1.701.701.801.701.691.691.801.731.771.651.71
      δEu0.730.720.760.730.750.710.700.750.740.890.80
      注:Mg#=100×Mg/(Mg+ Fe)(原子个数比);TFeO=FeO+0.89×Fe2O3;A/CNK=摩尔Al2O3/(CaO+Na2O+K2O);δEu=2×EuN/(SmN+GdN).
      下载: 导出CSV

      表  4  班公湖-怒江成矿带主要矿床的年代学特征

      Table  4.   Ages of deposits in Bangong Co-Nujiang metallogenic belt

      矿区岩性测试对象方法年龄(Ma)资料来源
      尕尔穷石英闪长岩锆石LA-ICPMS U-Pb87.1±0.4姚晓峰等(2012)
      花岗斑岩83.2±0.7姚晓峰等(2013)
      石英闪长岩辉钼矿Re-Os等时线86.87±0.5李志军等(2011)
      嘎拉勒花岗闪长岩锆石LA-ICPMS U-Pb86.52±0.41
      闪长玢岩88.59±0.45吕立娜等(2011)
      88.09±0.41
      矽卡岩白云母40Ar-39Ar91.48±0.68汪傲等(2014)
      多不杂花岗闪长斑岩锆石SHRIMP U-Pb120.9±2.4佘宏全等(2009)
      121.6±1.9李金祥等(2008)
      116.7±1.7Li et al.(2011)
      辉钼矿Re-Os等时线118.0±1.5佘宏全等(2009)
      绢云母40Ar-39Ar115.2±1.2Li et al.(2011)
      钾长石115.2±1.1
      波龙花岗闪长斑岩锆石LA-ICPMS U-Pb120.2±2.0
      119.5±0.9陈华安等(2013)
      119.3±1.3
      SHRIMP U-Pb121.1±1.7Li et al.(2011)
      SIMS U-Pb117.5±1.0
      118.0±1.0
      118.5±1.0Li et al.(2014)
      石英闪长玢岩118.4±1.1
      118.6±1.0
      花岗闪长斑岩辉钼矿Re-Os等时线119.4±1.5祝向平等(2011)
      拿若 花岗闪长斑岩锆石 SHRIMP U-Pb119.5±0.6吕立娜(2012)
      铁格龙英云闪长斑岩锆石 SHRIMP U-Pb119.7±0.6吕立娜(2012)
      尕尔勤英云闪长斑岩锆石 SHRIMP U-Pb122.5±0.6吕立娜(2012)
      青草山花岗闪长斑岩锆石LA-ICPMS U-Pb114.6±1.2周胜金等(2013)
      117.9±0.8本文
      花岗闪长岩131.2±0.3
      下载: 导出CSV
    • Chen, H.A., Zhu, X.P., Ma, D.F., et al., 2013.Geochronology and Geochemistry of the Bolong Porphyry Cu-Au Deposit, Tibet and Its Mineralizing Significance.Acta Geologica Sinica, 87(10):1593-1611(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201310009
      Ding, S., Tang, J.X., Zheng, W.B., et al., 2017.Geochronology and Geochemistry of Naruo Porphyry Cu (Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance.Earth Science, 42(1):1-23 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.001
      Du, D.D., Qu, X, M., Wang, G.H., et al., 2011.Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet:Evidence from Zircon U-Pb LAICPMS Dating and Petrogeochemistry of Arc Granites.Acta Petrologica Sinica, 27(7):1993-2002 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107008
      Furman, T., Graham, D., 1999.Erosion of Lithospheric Mantle beneath the East African Rift System:Geochemical Evidence from the Kivu Volcanic Province.Lithos, 48(1):237-262. https://doi.org/10.1016/s0024-4937(99)00031-6
      Gao, S., Rudnick.R., Richard, W., et al., 2003.Removal of Lithospheric Mantle in the North China Craton:Re-Os Isotopic Evidence for Coupled Crust-Mantle Growth.Earth Science Frontiers, 10(3):61-67 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200303006.htm
      Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
      Hou, K.J., Li, Y.H., Xie, G.Q., 2007.LA-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon.Journal of Chinese Mass Spectrometry Society, 28(Suppl.):26-28 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025
      Hu, Z.C., Liu, Y.S., Gao, S., et al., 2012.Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS.Journal of Analytical Atomic Spectrometry, 27(9):1391-1399. https://doi.org/10.1039/c2ja30078h
      Huang, J.Q., Chen B.W., 1987.The Evolution of the Tethys in China and Adjacent Regions.Geological Publishing House, Beijing (in Chinese).
      Li, G.M., Duan, Z.M., Liu, B., et al., 2011.The Discovery of Jurassic Accretionary Complexes in Duolong Area, Northern Bangong Co-Nujiang Suture Zone, Tibet, and Its Geologic Significance.Geologcal Bulletin of China, 30(8):1256-1260 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201108012
      Li, J.X., Li, G.M., Qin, K.Z., et al., 2008.Geochemistry of Porphyries and Volcanic Rocks and Ore-Forming Geochronology of Duobuza Gold-Rich Porphyry Copper Deposit in Bangonghu Belt, Tibet:Constraints on Metallogenic Tectonic Settings.Acta Petrologica Sinica, 24(3):531-543 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200803013.htm
      Li, J.X., Qin, K.Z., Li, G.M., et al., 2011.Magmatic-Hydrothermal Evolution of the Cretaceous Duolong Gold-Rich Porphyry Copper Deposit in the Bangongco Metallogenic Belt, Tibet:Evidence From U-Pb and 40Ar/39Ar Geochronology.Journal of Asian Earth Sciences, 41(6):525-536. doi: 10.1016/j.jseaes.2011.03.008
      Li, J.X., Qin, K.Z., Li, G.M., et al., 2014.Petrogenesis of Cretaceous Igneous Rocks From the Duolong Porphyry Cu-Au Deposit, Central Tibet:Evidence From Zircon U-Pb Geochronology, Petrochemistry and Sr-Nd-Pb-Hf Isotope Characteristics.Geological Journal, 51(2):285-307. https://www.researchgate.net/publication/269727338_Petrogenesis_of_Cretaceous_igneous_rocks_from_the_Duolong_porphyry_Cu-Au_deposit_central_Tibet_Evidence_from_zircon_U-Pb_geochronology_petrochemistry_and_Sr-Nd-Pb-Hf_isotope_characteristics
      Li, Z.J., Tang, J.X., Yao, X.F., et al., 2011.Re-Os Isotope Age and Geological Significance of Molybdenite in the Gaerqiong Cu-Au Deposit of Geji, Tibet, China.Journal of Chengdu University of Technology(Science & Technology Edition), 38(6):678-683 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201106013
      Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      Lü, L. N., 2012. Metallogenic Model of Rich Iron and Copper (Gold) Deposit in Western Part of Bangong Co-Nujiang Metallogenic Belt, Tibet (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      Lü, L.N., Cui, Y.B., Song, L., et al., 2011.Geochemical Characteristics and Zircon LA-ICP-MS U-Pb Dating of Galale Skarn Gold(Copper) Deposit, Tibet and Its Significance.Earth Science Frontiers, 18(5):224-242 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201105022
      Mungall, J.E., 2002.Roasting the Mantle:Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits.Geology, 30(10):915-918.https://doi.org/10.1130/0091-7613(2002)030<0915:rtmsma>2.0.co;2 doi: 10.1130/0091-7613(2002)030<0915:rtmsma>2.0.co;2
      Oyarzun, R., Márquez, A., Lillo, J., et al., 2001.Giant Versus Small Porphyry Copper Deposits of Cenozoic Age in Northern Chile:Adakitic Versus Normal Calc-Alkaline Magmatism.Mineralium Deposita, 36(8):794-798. https://doi.org/10.1007/s001260100205
      Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956
      Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745
      Qiu, R.Z., Zhou, S., Deng, J.F., et al., 2004.Dating of Gabbro in the Shemalagou Ophiolite in the Western Segment of the Bangong Co-Nujiang Ophiolite Belt, Tibet-With a Discussion of the Age of the Bangong Co-Nujiang Ophiolite Belt.Chinese Geology, 31(3):262-268 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200403004
      Qu, X.M., Xin, H.B., 2006.Ages and Tectonic Environment of the Bangong Co Porphyry Copper Belt in Western Tibet, China.Geologcal Bulletin of China, 25(7):792-799 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200607004
      Qu, X.M., Xin, H.B., Du, D.D., et al., 2012.Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture, the Tibetan Plateau.Geochimica, 41(1):1-14 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201201001
      She, H.Q., Li, J.W., Ma, D.F., et al., 2009.Molybdenite Re-Os and SHRIMP Zircon U-Pb Dating of Duobuza Porphyry Copper Deposit in Tibet and Its Geological Implications.Mineral Deposits, 28(6):737-746 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200906003
      Shi, R.D., 2007.The Bangong Lake Ophiolite (NW Tibet) and Its Bearing on the Tectonic Evolution of the Bangong-Nujiang Suture Zone.Chinese Science Bulletin, 52(2):223-227 (in Chinese). http://www.sciencedirect.com/science/article/pii/S1367912007002283
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
      Taylor, S.R., McLennan, S.M., 1985.The Continental Crust:Its Composition and Evolution.Blackwell Scientific Publication, Boston.
      Wang, A., Zhao, Y.Y., Xu, H., et al., 2014.40Ar/39Ar Age of Muscovite from the Galale Skarn Type Copper-Gold Deposit in Tibet and Its Geological Significance.Geological Bulletin of China, 33(7):1008-1014 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201407008
      Wilson, M.1989.Igneous Petrogenesis:A Global Tectonic Approach.Chapman & Hall, London.
      Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematic and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.oalib.com/paper/1492671
      Xin, H.B., Qu, X.M., Wang, R.J., et al., 2009.Geochemistry and Pb, Sr, Nd Isotopic Features of Ore-Bearing Porphyries in Bangong Lake Porphyry Copper Belt, Western Tibet.Mineral Deposits, 28(6):785-792 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200906007
      Yao, X.F., Tang, J.X., Li, Z.J., et al., 2012.Magma Origin of Two Plutons from Gaerqiong Copper-Gold Deposit and Its Geological Significance, Western Bangonghu-Nujiang Metallogenic Belt, Tibet:Implication from Hf Isotope Characteristics.Journal of Jilin University (Earth Science Edition), 42(S2):188-197 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ2012S2022.htm
      Yao, X.F., Tang, J.X., Li, Z.J., et al., 2013.The Redefinition of the Ore-Forming Porphyry's Age in Gaerqiong Skarn-Type Gold Copper Deposit, Western Bangong Lake——Nujiang River Metallogenic Belt, Xizang (Tibet).Geological Review, 59(1):193-200 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201301027.htm
      Zhang, Z., Song, J.L., Tang, J.X., et al., 2017.Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet:Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating.Earth Science, 42(6):862-880 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.523
      Zheng, Y.Y., Ci, Q., Wu, S., et al., 2017.The Discovery and Significance of Rongga Porphyry Mo Deposit in the Bangong-Nujiang Metallogenic Belt, Tibet.Earth Science, 42(9):1441-1453 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.109
      Zhou, J.S., Meng, X.J., Zang, W.S., et al., 2013.Zircon U-Pb Geochronology and Trace Element Geochemistry of the Ore-Bearing Porphyry in Qingcaoshan Porphyry Cu-Au Deposit, Tibet, and Its Geological Significance.Acta Petrologica Sinica, 29(11):3755-3766 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311009
      Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006a.Identification for the Mesozoic OIB-Type Basalts in Central Qinghai-Tibetan Plateau:Geochronology, Geochemistry and Their Tectonic Setting.Acta Geologica Sinica, 80(9):1312-1328 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200609008.htm
      Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006b.Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese:New Insights from Volcanic Rocks.Acta Petrologica Sinica, 22(3):534-546 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200603002.htm
      Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009.Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction?Journal of Asian Earth Sciences, 34(3):298-309. https://doi.org/10.1016/j.jseaes.2008.05.003
      Zhu, X.P., Chen, H.A., Ma, D.F., et al., 2011.Re-Os Dating for the Molybdenite from Bolong Porphyry Copper-Gold Deposit in Tibet, China and Its Geological Significance.Acta Petrologica Sinica, 27(7):2159-2164 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107023
      陈华安, 祝向平, 马东方, 等, 2013.西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义.地质学报, 87(10):1593-1611. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201310009
      丁帅, 唐菊兴, 郑文宝, 等, 2017.西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义.地球科学, 42(1):1-23. https://doi.org/10.3799/dqkx.2017.001
      杜德道, 曲晓明, 王根厚, 等, 2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据.岩石学报, 27(7):1993-2002. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107008
      高山, Rudnick.R., Richard, W., 等, 2003.华北克拉通岩石圈地幔置换作用和壳幔生长耦合的Re-Os同位素证据.地学前缘, 10(3):61-67. doi: 10.3321/j.issn:1005-2321.2003.03.005
      侯可军, 李延河, 谢桂青, 2007.锆石Hf同位素的LA-MC-ICP-MS分析方法.质谱学报, 28(增刊):26-28. http://d.old.wanfangdata.com.cn/Conference/6529982
      黄汲清, 陈炳蔚, 1987.中国及邻区特提斯海的演化.北京:地质出版社.
      李光明, 段志明, 刘波, 等, 2011.西藏班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的特征及意义.地质通报, 30(8):1256-1260. doi: 10.3969/j.issn.1671-2552.2011.08.012
      李金祥, 李光明, 秦克章, 等, 2008.班公湖带多不杂富金斑岩铜矿床斑岩-火山岩的地球化学特征与时代:对成矿构造背景的制约.岩石学报, 24(3):531-543. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200803013
      李志军, 唐菊兴, 姚晓峰, 等, 2011.班公湖-怒江成矿带西段尕尔穷铜金矿床辉钼矿Re-Os年龄及其地质意义.成都理工大学学报(自然科学版), 38(6):678-683. doi: 10.3969/j.issn.1671-9727.2011.06.013
      吕立娜, 崔玉斌, 宋亮, 等, 2011.西藏嘎拉勒夕卡岩型金(铜)矿床地球化学特征与锆石的LA-ICP-MS定年及意义.地学前缘, 18(5):224-242. http://d.old.wanfangdata.com.cn/Periodical/dxqy201105022
      吕立娜, 2012. 西藏班公湖-怒江成矿带西段富铁与铜(金)矿床模型(硕士学位论文). 北京: 中国地质科学院. http://cdmd.cnki.com.cn/article/cdmd-82501-1012371246.htm
      潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      邱瑞照, 周肃, 邓晋福, 等, 2004.西藏班公湖-怒江西段舍马拉沟蛇绿岩中辉长岩年龄测定——兼论班公湖-怒江蛇绿岩带形成时代.中国地质, 31(3):262-268. doi: 10.3969/j.issn.1000-3657.2004.03.004
      曲晓明, 辛洪波, 2006.藏西班公湖斑岩铜矿带的形成时代与成矿构造环境.地质通报, 25(7):792-799. doi: 10.3969/j.issn.1671-2552.2006.07.004
      曲晓明, 辛洪波, 杜德道, 等, 2012.西藏班公湖-怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束.地球化学, 41(1):1-14. http://d.old.wanfangdata.com.cn/Periodical/dqhx201201001
      佘宏全, 李进文, 马东方, 等, 2009.西藏多不杂斑岩铜矿床辉钼矿Re-Os和锆石U-Pb SHRIMP测年及地质意义.矿床地质, 28(6):737-746. doi: 10.3969/j.issn.0258-7106.2009.06.003
      史仁灯, 2007.班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约.科学通报, 52(2):223-227. doi: 10.3321/j.issn:0023-074X.2007.02.016
      汪傲, 赵元艺, 许虹, 等, 2014.西藏嘎拉勒夕卡岩型铜金矿白云母40Ar-39Ar年龄及其地质意义.地质通报, 33(7):1008-1014. doi: 10.3969/j.issn.1671-2552.2014.07.008
      吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001
      辛洪波, 曲晓明, 王瑞江, 等, 2009.藏西班公湖斑岩铜矿带成矿斑岩地球化学及Pb、Sr、Nd同位素特征.矿床地质, 28(6):785-792. doi: 10.3969/j.issn.0258-7106.2009.06.007
      姚晓峰, 唐菊兴, 李志军, 等, 2012.班怒带西段尕尔穷铜金矿两套侵入岩源区及其地质意义——来自Hf同位素特征的指示.吉林大学学报(地球科学版), 42(S2):188-197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201205935397
      姚晓峰, 唐菊兴, 李志军, 等, 2013.班公湖-怒江带西段尕尔穷矽卡岩型铜金矿含矿母岩成岩时代的重新厘定及其地质意义.地质论评, 59(1):193-200. doi: 10.3969/j.issn.0371-5736.2013.01.021
      张志, 宋俊龙, 唐菊兴, 等, 2017.西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年.地球科学, 42(6):862-880. https://doi.org/10.3799/dqkx.2017.523
      郑有业, 次琼, 吴松, 等, 2017.西藏班公湖-怒江成矿带荣嘎斑岩型钼矿床的发现及意义.地球科学, 42(9):1441-1453. https://doi.org/10.3799/dqkx.2017.109
      周金胜, 孟祥金, 臧文栓, 等, 2013.西藏青草山斑岩铜金矿含矿斑岩锆石U-Pb年代学、微量元素地球化学及地质意义.岩石学报, 29(11):3755-3766. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201311009
      朱弟成, 潘桂棠, 莫宣学, 等, 2006a.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境.地质学报, 80(9):1312-1328. http://d.old.wanfangdata.com.cn/Periodical/dizhixb200609008
      朱弟成, 潘桂棠, 莫宣学, 等, 2006b.冈底斯中北部晚侏罗世-早白垩世地球动力学环境:火山岩约束.岩石学报, 22(3):534-546. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603002
      祝向平, 陈华安, 马东方, 等, 2011.西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义.岩石学报, 27(7):2159-2164. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107023
    • 加载中
    图(8) / 表(4)
    计量
    • 文章访问数:  4174
    • HTML全文浏览量:  1817
    • PDF下载量:  39
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-05-24
    • 刊出日期:  2018-08-15

    目录

      /

      返回文章
      返回