Origin of Granites from A'quedun Area in Qimantage Mountains: Constraints from Zircon U-Pb Dating, Geochemistry and Hf Isotope
-
摘要: 祁漫塔格阿确墩地区花岗岩的形成背景对东昆仑加里东期碰撞-伸展过程具有重要制约意义.阿确墩地区泥盆纪侵入岩主要由花岗闪长岩和英云闪长岩组成,锆石U-Pb定年结果显示,花岗闪长岩和英云闪长岩形成年龄分别为385±5 Ma和393±5 Ma,为中泥盆世岩浆活动的产物.花岗闪长岩的SiO2含量为63.56%~66.57%,Mg#为0.31~0.35,K2O/Na2O比值为0.49~0.66,铝饱和指数A/CNK值为0.95~1.02,富集Rb、Ba和LREE,亏损Nb-Ta、Sr、P和Ti等元素,具有明显Eu负异常(δEu=0.38~0.98).相对于花岗闪长岩,英云闪长岩具有较高的SiO2含量(67.93%~70.76%),K2O/Na2O值近于1(0.70~1.04),Mg#为0.22~0.33,铝饱和指数A/CNK值介于0.99~1.02,在稀土和微量元素标准化图解上,富集LREE和LILEs(Rb、Ba),亏损HFSEs(Nb-Ta、P和Ti)元素,但表现出更为明显的LREE/HREE分异、弱的铕负异常或无异常(δEu=0.80~1.06),并具有较为宽泛的锆石Hf同位素组成(εHf(t)=+1.91~+15.63,TDM2(Hf)=0.53~1.28 Ga).区域地质研究表明,祁漫塔格地区在中泥盆世期间处于后碰撞伸展环境,阿确墩地区花岗质岩石为俯冲板片折返机制下,诱发的幔源基性岩浆同化混染古老地壳物质部分熔融形成,花岗闪长岩和英云闪长岩熔融压力条件随时间变化表明,中泥盆世期间区域仍然处于地壳厚度持续减薄的过程.Abstract: The geological setting of granite formation in A'quedun area of Qimantage Mountains has important constraits in the collision-extension process in the Caledonian of East Kunlun. The A'quedun intrusive rocks mainly consist of granodiorite and tonalite. Zircon LA-ICP-MS U-Pb dating results show that granodiorite and tonalite were formed at 385±5 Ma and 393±5 Ma respectively, which should be the product of magmatism in the Middle Devonian. The granodiorites have low SiO2 (63.56%-66.57%), Mg# (0.31-0.35), K2O/Na2O ratios (0.49-0.66) and A/CNK (0.95-1.02), characterized by moderate LREE/HREE fractionation, strong LILE enrichment and depleted Nb-Ta, P, Ti and Eu depletion (δEu=0.38-0.98). Relative to the granodiorites, the tonalities have high contents of SiO2 (67.93%-70.76%) and low Mg# (0.22-0.33), stronger LREE/HREE fractionation, Nb-Ta, Ti and weakly Eu depletion (δEu=0.80-1.06). The tonalites have positive εHf(t) values (+1.91 to +15.63), and broadly two stages Hf model ages (TDM2(Hf)=0.53-1.28 Ga). Based on the regional geological data, the East Kunlun Qimantage area was in post-collision extension stage during the Middle Devonian. The A'quedun granitic rocks derived from mantle magma assimilation contamination ancient crust in a mechanism for the exhumation of the subducted slab. The granodiorite and tonalite melt pressure changes with time, showing that the crustal thickness is still in continuous thinning process during the Middle Devonian.
-
Key words:
- granite /
- petrogenesis /
- Middle Devonian /
- Qimantage /
- East Kunlun /
- geochemistry
-
祁漫塔格地区位于东昆仑造山带西段,是中央造山带西段重要组成部分(边千韬等,2002;李荣社等,2007).近年来,大量的研究显示祁漫塔格地区自显生宙以后经历过加里东期和华力西-印支期两次造山旋回(莫宣学等,2007;李荣社等,2008;刘彬等,2012;查显锋等,2012;施彬等,2016).而华力西-印支期相对于加里东期的造山旋回要更加强烈,以致加里东造山期的记录不是非常完整,加之自然条件恶劣,限制了该期造山旋回演化历史的研究发展.据前人研究,东昆仑加里东期造山旋回自寒武系开始,经历了昆中洋盆形成,晚奥陶世末洋盆闭合的全过程,且具有多小洋盆、软碰撞及构造迁移的特点,不同地点的板片碰撞以及后造山并不同步(Yang et al., 1996;殷鸿福和张克信,1997;潘桂棠等,2002;孟繁聪等,2003;许志琴等,2006;高晓峰等,2010;刘彬等,2012;陈加杰等,2016).前人研究表明,在晚志留世末到早泥盆世期间,东昆仑地区已经由陆内碰撞向碰撞后伸展环境转换,其以典型的A型花岗岩的出现为标志(刘彬等,2013),并出现同期的大量幔源岩浆(莫宣学等,2007;任二峰等,2012;祁生胜等,2013;张健,2013),在这一时期产出的中酸性岩浆均具有壳幔混源的特征(莫宣学等,2007).尤其是近年来在东昆仑地区发现的大量高压变质岩对早古生代末期区域构造格局及深部动力学机制提出了新的认识(祁生胜等,2014;孟繁聪等,2015;祁晓鹏等,2016;国显正等,2017),因此,泥盆纪大量中酸性岩浆是形成于俯冲板片折返或是造山后伸展机制有待进一步研究确定.本文以祁漫塔格阿确墩地区泥盆纪花岗质岩石为研究对象,通过岩石学、年代学和地球化学系统研究,对进一步理解区域构造演化过程提供了一些证据.
1. 区域地质概况及岩相学特征
阿确墩地区位于东昆仑祁漫塔格西段北坡,是东昆仑早古生代岩浆弧带的重要组成部分(图 1).泥盆纪花岗岩分布在阿确墩地区西南部,阿达滩隐伏断裂以北的广大地区,为祁漫塔格山的主脊部分.岩体呈近东西向带状岩基产出,出露面积约为211.7 km2,侵入于奥陶纪祁漫塔格群及古老基底变质岩石(金水口岩群、狼牙山组)中,接触界面为不规则的锯齿状.泥盆纪花岗质岩石主要由石英闪长岩、花岗闪长岩、二长花岗岩等中酸性侵入岩组成,发育闪长玢岩、石英闪长玢岩、辉绿玢岩脉及细晶岩脉等.本文研究的花岗闪长岩和英云闪长岩岩石学特征如下.
花岗闪长岩:岩石为块状构造,中粗粒花岗结构(图 2a).岩石组成成分为斜长石(>40%)、钾长石(25%~30%)、石英(25%~30%)、黑云母(5%),偶尔可见榍石(图 2c).斜长石为An=10~20的更长石,呈半自形板状,粒径约为2~5 mm,表明发生高岭土和绢云母化,见交代净边.钾长石为微斜长石,呈他形粒状,粒径约为2~8 mm,大都充填于自形斜长石之间的空隙中,暗示钾长石结晶较晚,且晶体中含有细粒斜长石,未发生次生蚀变,可见格子双晶.石英呈他形粒状,粒径约为1~5 mm,分布于斜长石之间的空隙中.黑云母呈褐色,板状,粒径约为1~4 mm.
英云闪长岩:岩石为中细粒花岗结构,块状构造(图 2b).岩石组成成分为斜长石(>65%)、钾长石(<5%)、石英(20%~25%)、黑云母(5%~10%),偶尔可见榍石和微量磁铁矿(图 2d).斜长石为An=10~20的更长石,呈半自形板状,粒径约为1~5 mm的中细粒级,发生了较强的绢云母化,表面浑浊.钾长石为微斜长石,呈板状,粒径约为4 mm以下.石英呈他形粒状,粒径约为2~4 mm,杂乱分布于斜长石之间空隙中.黑云母,呈褐色,板状,粒径约为2~3 mm,发生了较强的绿泥石化,少数发生绿帘石化.
2. 分析测试方法
锆石分选是在中国科学院广州地球化学研究所完成.将样品进行无污染粉碎,经过淘洗和分离挑选出锆石,并在双目镜下挑选出透明度和色泽度较好的锆石.锆石的CL图像、锆石U-Pb年龄和Hf同位素的测试工作是在国土资源部岩浆作用成矿与找矿重点实验室完成.LA-ICP-MS定年分析采用Agilent公司的Agilent 7700x型四级杆等离子体质谱仪,激光剥蚀系统为德国相干公司(Coherent)生产的GeoLas Pro型.实验中采用氦气为剥离物质载体,采用32 μm的激光束斑直径、6.0 J/cm2的激光能量密度和9 Hz的激光频率.测年过程采用锆石标样91500作为外标,NIST610作为元素含量外标,29Si作为内标.仪器最佳化是采用美国国家标准技术研究院研制的人工合成硅酸盐玻璃标准参考物质NIST 610进行处理.测试过程保证每5个样品点至少插一组Plesovice锆石标样,每隔10个锆石样品点测定一个NIST610和一个锆石标样91500.数据处理采用GLITTER程序,并按照Andersen(2002)的方法,对其进行普通铅校正,采用Isoplot程序完成年龄计算及谐和图绘制(Ludwig,1991).详细分析步骤和数据处理方法参见文献(Liu et al., 2008, 2010a, 2010b),分析结果见附表1和附表2.锆石Hf同位素利用Neptune型多接收等离子体质谱仪和Geolas Pro型激光剥蚀系统联用的方法完成,详细测试流程可参照侯可军等(2007)和Meng et al.(2014).测试束斑直径为32 μm,激光剥蚀的样品气溶胶由氦气作为载气输送到质谱仪中进行测试,为了调节和提高仪器灵敏度,气路中间引入了氩气和少量氮气.所有测试位置与U-Pb定年点位相同或靠近.每分析10个样品测点分析一次锆石标准GJ-1作为监控,本次实验GJ-1的测试精准度为0.282 030±0.000 040(2SE),分析结果见表 1.
表 1 阿确墩地区英云闪长岩(D1602-1)锆石原位Hf同位素组成Table Supplementary Table Zircon Hf isotopic data of the tonalite (D1602-1) from A'quedun area测点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ εHf(t) TDM(Ga) TDM2(Ga) fLu/Hf Hf-1602-1 401 0.030 770 0.001 127 0.282 719 0.000 021 6.64 0.76 0.97 -0.97 Hf-1602-2 375 0.032 074 0.001 181 0.282 719 0.000 018 6.09 0.76 0.98 -0.96 Hf-1602-3 402 0.023 307 0.000 823 0.282 647 0.000 018 4.20 0.85 1.12 -0.98 Hf-1602-4 404 0.075 319 0.002 355 0.282 844 0.000 024 10.81 0.60 0.71 -0.93 Hf-1602-5 396 0.081 269 0.002 871 0.282 824 0.000 024 9.82 0.64 0.76 -0.91 Hf-1602-6 413 0.032 299 0.000 976 0.282 577 0.000 021 1.91 0.96 1.28 -0.97 Hf-1602-7 380 0.112 975 0.003 418 0.283 002 0.000 036 15.63 0.38 0.38 -0.90 Hf-1602-8 404 0.048 708 0.001 565 0.282 710 0.000 022 6.26 0.78 1.00 -0.95 Hf-1602-9 412 0.064 566 0.002 026 0.282 830 0.000 023 10.57 0.62 0.73 -0.94 Hf-1602-10 410 0.053 500 0.001 810 0.282 736 0.000 024 7.27 0.75 0.94 -0.95 Hf-1602-11 392 0.024 891 0.000 830 0.282 648 0.000 018 4.03 0.85 1.13 -0.98 Hf-1602-12 389 0.035 046 0.001 113 0.282 665 0.000 019 4.49 0.84 1.10 -0.97 Hf-1602-13 401 0.056 838 0.001 827 0.282 782 0.000 023 8.69 0.68 0.84 -0.94 Hf-1602-14 403 0.068 442 0.002 067 0.282 757 0.000 021 7.79 0.72 0.90 -0.94 Hf-1602-15 387 0.088 779 0.002 809 0.282 854 0.000 021 10.70 0.59 0.70 -0.92 Hf-1602-16 402 0.030 900 0.000 979 0.282 679 0.000 020 5.30 0.81 1.05 -0.97 Hf-1602-17 376 0.050 713 0.001 555 0.282 773 0.000 023 7.91 0.69 0.87 -0.95 Hf-1602-18 390 0.037 764 0.001 203 0.282 707 0.000 020 5.95 0.78 1.00 -0.96 Hf-1602-19 382 0.048 429 0.001 536 0.282 735 0.000 021 6.72 0.74 0.95 -0.95 Hf-1602-20 386 0.054 063 0.001 639 0.282 723 0.000 021 6.32 0.76 0.98 -0.95 Hf-1602-21 385 0.066 333 0.002 116 0.282 822 0.000 027 9.69 0.63 0.76 -0.94 Hf-1602-22 413 0.093 557 0.002 968 0.282 925 0.000 020 13.67 0.49 0.53 -0.91 Hf-1602-23 396 0.053 420 0.001 685 0.282 788 0.000 024 8.82 0.67 0.83 -0.95 Hf-1602-24 396 0.030 949 0.001 039 0.282 692 0.000 018 5.61 0.80 1.03 -0.97 Hf-1602-25 396 0.044 868 0.001 501 0.282 706 0.000 016 5.99 0.78 1.01 -0.95 主量、微量元素测试在国土资源部岩浆作用成矿与找矿重点实验室完成.主量元素测定流程包括玻璃熔融制样和烧失量的测定两大步骤,主量元素的分析采用荷兰帕纳科公司生产的Axios 4.0 kw顺序式X射线荧光光谱仪,分析误差小于5%,样品分析数据见表 2.微量元素采用ICP-MS分析方法,测试仪器型号为美国热电公司生产的Series Ⅱ型电感耦合等离子体质谱仪(ICP-MS),分析误差小于8%,分析结果见表 2.
表 2 阿确墩地区花岗岩的主量(%)、微量(10-6)元素分析结果Table Supplementary Table Major (%) and trace (10-6) element concentrations of the granitic rocks from A'quedun area样号 花岗闪长岩 英云闪长岩 D1601-1H D1601-2H D1601-3H D1601-4H D1601-5H D1601-6H D1602-1H D1602-2H D1602-3H D1602-4H D1602-5H D1602-6H SiO2 62.53 64.61 64.56 65.72 65.26 64.18 67.97 66.53 66.85 70.00 66.71 67.41 Al2O3 17.21 16.36 16.68 16.32 16.50 16.82 15.33 15.22 15.49 14.62 15.54 15.59 Fe2O3 1.55 1.30 1.53 1.44 1.30 1.27 0.75 1.01 1.17 1.06 0.92 0.98 FeO 3.15 3.70 2.70 2.29 2.70 3.15 2.45 2.92 2.70 2.00 2.75 2.55 CaO 4.06 2.84 3.76 3.56 3.65 3.83 2.63 2.09 3.08 1.97 2.59 2.63 MgO 1.56 1.41 1.36 1.24 1.29 1.40 0.92 1.17 1.09 0.53 0.89 0.97 K2O 2.49 2.81 2.96 2.68 2.56 2.32 3.78 4.08 2.89 4.19 3.63 3.79 Na2O 4.90 4.79 4.50 4.70 4.79 4.75 3.79 4.08 4.15 4.03 4.21 3.86 TiO2 0.62 0.56 0.56 0.55 0.53 0.58 0.42 0.58 0.53 0.36 0.46 0.44 P2O5 0.17 0.17 0.16 0.14 0.15 0.17 0.12 0.14 0.14 0.09 0.11 0.13 MnO 0.14 0.12 0.10 0.08 0.10 0.13 0.09 0.12 0.11 0.08 0.10 0.10 LOI 1.55 1.26 1.06 1.23 1.13 1.35 1.70 1.98 1.74 0.97 1.99 1.48 Total 99.93 99.93 99.93 99.95 99.96 99.95 99.95 99.92 99.94 99.90 99.90 99.93 A/CNK 0.95 1.02 0.96 0.95 0.95 0.97 1.01 1.02 1.00 0.99 1.00 1.02 A/NK 1.60 1.50 1.57 1.54 1.55 1.63 1.48 1.37 1.56 1.31 1.43 1.49 Na2O+K2O 7.51 7.70 7.55 7.48 7.44 7.17 7.70 8.33 7.17 8.31 8.01 7.77 K2O/Na2O 0.51 0.59 0.66 0.57 0.53 0.49 1.00 1.00 0.70 1.04 0.86 0.98 Mg# 0.35 0.31 0.34 0.35 0.34 0.34 0.32 0.33 0.31 0.22 0.28 0.31 M 1.76 1.60 1.70 1.67 1.69 1.68 1.51 1.53 1.57 1.52 1.56 1.52 TZr(℃) 816 830 813 809 757 799 775 806 828 830 810 788 La 35.6 32.3 33.2 30.6 28.3 27.7 30.3 55.3 22.0 39.3 22.0 39.1 Ce 67.2 63.5 77.4 55.2 62.6 60.3 58.0 105.0 41.8 58.3 35.6 71.5 Pr 9.22 8.66 10.80 7.04 8.00 7.76 6.69 10.90 5.25 8.97 4.69 8.09 Nd 34.9 33.9 50.0 24.8 29.3 29.6 23.1 34.2 19.7 31.2 16.8 27.8 Sm 6.98 7.58 13.20 4.54 6.24 6.76 4.27 4.78 4.06 6.27 3.26 5.21 Eu 1.34 1.15 1.70 1.38 1.39 1.32 1.32 1.54 1.01 1.61 1.03 1.37 Gd 6.50 7.36 13.60 3.90 5.64 6.27 3.45 3.88 3.62 5.67 2.85 4.34 Tb 1.06 1.26 2.35 0.72 0.98 1.11 0.59 0.61 0.58 0.91 0.49 0.66 Dy 6.33 7.75 15.80 4.33 6.32 6.94 3.08 2.76 3.60 5.46 2.58 3.68 Ho 1.24 1.58 3.26 0.95 1.33 1.41 0.61 0.51 0.74 1.11 0.51 0.69 Er 3.56 4.22 9.16 2.72 3.79 3.99 1.64 1.44 1.98 3.02 1.40 1.86 Tm 0.54 0.63 1.32 0.42 0.59 0.62 0.24 0.23 0.30 0.43 0.21 0.28 Yb 3.60 4.04 8.08 2.79 3.92 4.26 1.55 1.46 1.96 2.91 1.38 1.76 Lu 0.54 0.60 1.14 0.43 0.55 0.64 0.24 0.22 0.29 0.41 0.21 0.27 Y 37.4 44.4 95.2 25.8 37.6 39.2 15.0 13.0 17.8 27.4 12.7 17.4 Rb 99.7 96.1 120.0 45.8 100.0 98.3 73.1 107.0 38.0 78.3 41.5 70.7 Ba 569 441 826 802 742 572 1 030 999 494 1 090 663 971 Th 15.60 11.50 11.00 8.15 8.79 7.32 5.86 11.30 5.20 10.10 5.25 7.65 U 2.55 1.84 2.22 1.50 1.80 1.85 1.31 1.84 1.45 1.16 1.41 1.55 Ta 1.14 1.08 1.81 1.04 1.02 1.14 0.59 0.67 0.62 0.81 0.47 0.66 Nb 13.30 13.30 18.60 16.40 12.00 12.60 6.66 6.80 8.95 10.40 7.50 7.51 Ge 1.26 1.36 1.47 1.18 1.30 1.47 1.20 1.25 1.37 1.31 1.30 1.16 Sr 369 236 416 308 356 303 215 231 198 150 156 188 Zr 304 307 280 260 144 234 155 224 293 288 240 180 Hf 7.86 7.84 7.47 6.76 4.05 6.53 4.24 5.97 7.37 7.48 6.02 4.82 Ga 21.3 21.2 21.9 18.2 20.6 21.3 16.8 18.7 16.2 17.4 16.1 17.6 Nb 13.30 13.30 18.60 16.40 12.00 12.60 6.66 6.80 8.95 10.40 7.50 7.51 Ta 1.14 1.08 1.81 1.04 1.02 1.14 0.59 0.67 0.62 0.81 0.47 0.66 ∑REE 178.60 174.50 241.00 139.80 159.00 158.70 135.10 222.80 106.90 165.60 93.01 166.60 ∑LREE 155.20 147.10 186.30 123.60 135.80 133.40 123.70 211.70 93.82 145.70 83.38 153.10 ∑HREE 23.37 27.44 54.71 16.26 23.12 25.24 11.40 11.11 13.07 19.92 9.63 13.54 LREE/HREE 6.64 5.36 3.41 7.60 5.88 5.29 10.85 19.06 7.18 7.31 8.66 11.31 (La/Yb)N 7.09 5.73 2.95 7.87 5.18 4.66 14.02 27.17 8.05 9.69 11.44 15.94 (La/Sm)N 3.29 2.75 1.62 4.35 2.93 2.65 4.58 7.47 3.50 4.05 4.36 4.84 (Gd/Yb)N 1.49 1.51 1.39 1.16 1.19 1.22 1.84 2.20 1.53 1.61 1.71 2.04 δEu 0.61 0.47 0.39 1.00 0.72 0.62 1.05 1.09 0.81 0.83 1.03 0.88 Nb/Ta 11.67 12.31 10.28 15.77 11.76 11.05 11.29 10.15 14.44 12.84 15.96 11.38 Zr/Hf 38.68 39.16 37.48 38.46 35.56 35.83 36.56 37.52 39.76 38.50 39.87 37.34 注:FeOT= FeO+Fe2O3×0.899 8;Mg#=(MgO/40.304 4)/100((MgO/40.304 4)+(FeOT/71.844));δEu =2EuN/(SmN+GdN);全岩岩石化学参数M(阳离子比率)=(Na+K+2Ca)/(Si×Al). 3. 测试结果
3.1 锆石U-Pb年龄
花岗闪长岩(D1601-1)中锆石以长柱状及短柱状晶形为主,具有典型的韵律岩浆环带(图 3a).本文对样品分析测试了25个点,测试分析结果见附表1.其中,剔除06、09 (未在图中显示)、14、19和22号明显偏离谐和线的点,进行普通铅校正后的20个点为有效数据,Th含量为102×10-6~854×10-6,U含量为144×10-6~825×10-6,Th/U比值变化范围为0.50~1.18,且Th、U含量呈现较好的正相关,表明这些锆石为岩浆成因(Belousova et al., 2002;钟玉芳等,2006).样品206Pb/238U表面年龄范围为367~406 Ma,大部分集中在380~398 Ma,206Pb/238U的加权平均年龄为385±5 Ma(MSWD=2.7,n=20)(图 4a, 4b),代表了花岗闪长岩的形成年龄.
英云闪长岩(D1602-1)中锆石以长柱状晶形为主,自形晶,具有典型的岩浆锆石特征(图 3b).本文对样品进行25个点的分析测试,分析结果见附表2.其中04、05、11、16和22点同样偏离谐和线,普通铅校正后的20个点为有效数据,Th含量为55×10-6~729×10-6,U含量为118×10-6~750×10-6,Th/U比值变化范围为0.42~1.09,Th、U含量呈现较好的正相关,表明其为岩浆锆石.样品206Pb/238U表面年龄范围为375~413 Ma,大部分集中在390~412 Ma,206Pb/238U的加权平均年龄为393±5 Ma(MSWD=3.7,n=20)(图 4c, 4d),为英云闪长岩的形成年龄.总体上,花岗闪长岩和英云闪长岩应属于中泥盆世岩浆活动的产物.
3.2 主、微量元素特征
阿确墩地区中泥盆世花岗质岩石主、微量元素的分析结果见表 2.经过100%无水标准化,花岗闪长岩的SiO2为63.56%~66.57%,K2O为2.35%~2.99%,Na2O为4.55%~4.98%,CaO为2.88%~4.13%,Al2O3为16.53%~17.49%,P2O5为0.14%~0.17%,MgO为1.26%~1.59%,TiO2为0.54%~0.63%,FeOT为3.58%~4.87%,Mg#为0.31~0.35.全碱(ALK)含量较高(7.17%~7.70%),K2O/Na2O值较小(0.49~0.66),铝饱和指数A/CNK值介于0.95~1.02,属于富钠质系列岩石.
英云闪长岩SiO2为67.93%~70.76%,K2O为2.94%~4.24%,Na2O为3.86%~4.30%,CaO为1.99%~3.14%,Al2O3为14.78%~15.87%,P2O5为0.09%~0.14%,MgO为0.54%~1.19%,TiO2为0.36%~0.59%,FeOT为2.95%~3.83%.岩石的全碱(ALK)含量高(7.17%~8.33%),K2O/Na2O值近于1(0.70~1.04),Mg#为0.22~0.33.铝饱和指数A/CNK值介于0.99~1.02.
总体上,在SiO2-K2O和A/CNK-A/NK图解上(图 5a, 5b),阿确墩地区花岗闪长岩和英云闪长岩均属于准铝-弱过铝质高钾钙碱性岩石.
在球粒陨石标准化稀土配分图上(图 6a),花岗闪长岩呈轻稀土元素富集右倾曲线.稀土总量∑REE较低(139.82×10-6~241.01×10-6),平均值为175.27×10-6,其中∑LREE为123.56×10-6~186.30×10-6,平均值为148.91×10-6,∑HREE为16.26×10-6~54.71×10-6,平均值为28.36×10-6,轻重稀土元素比LREE/HREE为16.26~54.71,(La/Yb)N=2.95~7.87,(Gd/Yb)N=1.16~1.51,表现出较强的轻稀土富集,重稀土元素内部分馏不明显,并显示弱-中等的铕负异常(δEu=0.38~0.98).在不相容元素原始地幔标准化蛛网图(图 6b)中,岩石富集大离子亲石元素(LILE:Rb、K),亏损高场强元素(HFSE:Ta、Nb、P、Ti、Sr),暗示花岗闪长岩类似于弧花岗岩的特点.
图 6 阿确墩花岗质岩石稀土元素球粒陨石标准化配分图解(a, c)与微量元素原始地幔标准化蛛网图(b, d)标准化数值据Sun and McDonough(1989)Fig. 6. Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized spidergrams (b, d) for the granitic rocks from A'quedun area英云闪长岩在球粒陨石标准化稀土配分图上呈右倾型(图 6c),稀土总量∑REE较低(93.01×10-6~222.83×10-6),平均值为148.33×10-6,其中∑LREE为83.38×10-6~211.72×10-6,平均值为135.22×10-6,∑HREE为9.63×10-6~19.92×10-6,平均值为13.11×10-6,轻重稀土元素比LREE/HREE为7.18~19.06,(La/Yb)N=8.05~27.17,(Gd/Yb)N=1.16~1.51,表明强烈的轻稀土富集,轻重稀土元素组之间分馏明显,重稀土元素内部分馏不明显且具有弱的铕负异常(δEu=0.80~1.06).不相容元素原始地幔标准化蛛网图(图 6d)中,英云闪长岩表现出与花岗闪长岩相似元素分布特征,岩石富集大离子亲石元素(LILE:Rb、K),亏损高场强元素(HFSE:Ta、Nb、P、Ti、Sr).
3.3 英云闪长岩锆石Hf同位素组成
英云闪长岩锆石Lu-Hf同位素原位微区分析结果见表 1.英云闪长岩的25颗岩浆锆石的176Hf/177Hf比值变化于0.282 577~0.282 925,平均值为0.282 755,对应的εHf(t)值变化在1.91~15.63,平均值为7.46,亏损地幔二阶段模式年龄TDM2(Hf)变化范围为0.38~1.28 Ga,主要集中在0.53~1.28 Ga.
4. 讨论
4.1 岩石成因
花岗质熔体的地球化学组成与熔体温度、压力、源岩成分以及残留相矿物密切相关(吴福元等,2007a;张旗等,2008).实验岩石学资料表明,锆石在花岗质熔体中为较早结晶的副矿物,其形成之后在很长的地质时间上具有稳定的性质,且锆石中Zr的分配系数对温度十分敏感,因而花岗质岩浆中锆石结晶的温度可近似代表岩浆形成时的温度(Calvin et al., 2003;吴福元等,2007b).阿确墩地区花岗闪长岩和英云闪长岩温度计算采用锆石饱和温度计,根据Watson and Harrison(1983, 2005)从高温试验(700~1 300 ℃)得出的锆石溶解度的模拟公式:TZr(℃)={129 000[lnDZr(496 000/熔体+0.85M+2 195)]}-273.15,DZr为Zr的分配系数,花岗闪长岩样品的M值为1.60~1.76,英云闪长岩样品的M值为1.51~1.57(表 2),基本位于推荐的M值范围之内(0.9~1.7, Watson and Harrison, 1983).计算结果表明,花岗闪长岩的锆石饱和温度为757~830 ℃,英云闪长岩形成温度在775~830 ℃,因此,阿确墩地区花岗闪长岩和英云闪长岩均为高温熔融的产物.根据张旗等(2006)对花岗质岩石形成压力条件的Sr-Yb判别图解(图 7),花岗闪长岩落入低Sr高Yb范围内,为低压环境的产物,英云闪长岩落入低Sr低Yb范围,属于中压或较高压力环境.
图 7 花岗岩形成压力Sr-Yb判别图解张旗等(2006).Ⅰ.高Sr低Yb型;Ⅱ.低Sr低Yb型;Ⅲ.高Sr高Yb型;Ⅳ.低Sr高Yb型;Ⅴ.非常低Sr高Yb型Fig. 7. Granite formation pressure Sr vs.Yb discrimination diagram由于花岗质岩浆具有较大黏度,很难发生结晶分异作用,当然不排除结晶分异作用的影响,考虑到本文所涉及的岩石样品,主量元素并未随着SiO2含量的变化呈现有规律的变化.因此,地球化学特征主要反映了其熔融源区的特征.阿确墩地区花岗闪长岩和英云闪长岩均为富钠质花岗岩(K2O/Na2O≤1.0),并具有较低的高不相容元素的含量(如HFSE、Th和REE,表 2)以及属于准铝质及弱过铝质岩石系列,类似于I型花岗岩特征,说明它们来源于镁铁质火成岩或幔源岩浆参与的熔融源区(图 8a,王涛等,2009).关于富钠、准铝质的I型花岗岩主要有以下几种成因:(1)镁铁质下地壳部分熔融(Chappell and Stephens, 1988);(2)壳幔岩浆混合(Guo et al., 2007; Streck, 2007);(3)洋壳俯冲消减形成的弧岩浆(Defant and Drummond, 1990);(4)幔源岩浆同化混杂地壳物质(Eiler, 2007;Kemp et al., 2007).一般认为,板片俯冲过程中形成Adaktie岩或岛弧安山岩和TTG岩石系列(吴福元等,2007a;张旗等,2008;Gao et al., 2016),然而,阿确墩地区花岗闪长岩和英云闪长岩并没有表现出Adaktie岩特征(如高Sr、Sr/Y比值,低Y和Yb等),同时区域地质研究表明,并不存在同期洋盆俯冲消减事件,因此,花岗闪长岩和英云闪长岩并不是板片俯冲过程中的产物(高晓峰等,2010;刘彬等,2012).镁铁质下地壳可能是阿确墩地区花岗质岩石另外一个值得考虑的熔融源区,然而,英云闪长岩Hf同位素组成具有较大的变化范围(εHf(t)=+1.91~+15.63)(图 8b),同时锆石Hf同位素二阶模式年龄集中于0.53~1.28 Ga,鉴于岩浆的形成温压条件对其同位素组成影响几乎可以忽略不计,同样熔融源区组成成分产生的岩浆如此宽泛的变化范围,说明它们不可能由单纯镁铁质下地壳部分熔融形成.另外,野外调查和镜下均未发现明显的岩浆混合的证据,如暗色微粒包体和各种不平衡结构,说明岩浆混合模式不适用于解释本文花岗质岩石的成因.因此,阿确墩地区花岗质岩石可能为幔源岩浆底侵同化混染地壳物质的产物.
近年来的研究表明,区域上广泛分布早泥盆世伸展型磨拉石建造(牦牛山组)、后碰撞环境花岗岩以及大量基性岩浆,标志着区域上处于碰撞或造山后伸展地质环境(李荣社等,2008;陆露等,2010;刘彬等, 2012, 2013).大量幔源底侵基性岩浆+古老地壳物质形成这套花岗质岩石熔融源区,由于幔源岩浆参与比例不同,导致了英云闪长岩Hf同位素组成具有较大的变化范围.同时,所有花岗闪长岩和英云闪长岩样品的Nb/Ta值(10.15~15.96),接近或高于壳源岩石的Nb/Ta值(约为11, Taylor and McLennan, 1985; Green, 1995),明显低于幔源岩石的Nb/Ta值(约为17.5, Green, 1995; Hofmann, 1998).而Zr/Hf值(35.56~39.87)接近或高于幔源岩石的Zr/Hf值(约为36.3, Green, 1995; Hofmann, 1998),明显高于地壳岩石的Zr/Hf值(约为33, Taylor and McLennan, 1985; Green, 1995).进一步证明了这些花岗质岩石来自于幔源岩浆同化混染壳源物质的熔融源区.
花岗闪长岩和英云闪长岩地球化学组成的差异主要是由于它们熔融压力不同导致的(Gao et al., 2016),相对于英云闪长岩,花岗闪长岩轻重稀土分异不明显,明显亏损Eu、Sr等元素(图 6a, 6b),结合其较低形成压力条件,反映了其熔融源区主要以斜长石为主要残留相.相对于花岗闪长岩,英云闪长岩表现出强烈轻重稀土分异,Eu具有弱负异常到无异常,较低Yb、Y等元素含量(图 6c, 6d),说明其具有类似Adaktie岩形成压力条件,源区主要以石榴子石为主要残留相,但是其明显亏损Sr元素,在给定SiO2含量下,明显低CaO、Al2O3等特征,说明源区有一定斜长石残留.因此,英云闪长岩的熔融源区的主要残留相为石榴子石±斜长石.总体上,阿确墩地区花岗闪长岩和英云闪长岩具有高的锆石饱和温度的准铝质岩石与华南、西藏冈底斯有幔源参与的高温I型花岗岩相似(刘彬等,2012),幔源岩浆同化混染地壳物质导致其Hf同位素组成具有较大变化范围,不同形成压力条件是造成花岗闪长岩和英云闪长岩地球化学组成差异的主要因素.
4.2 地质意义
已有的研究表明,东昆仑造山带经历原特提斯和古特提斯两期演化过程.目前,关于原特提斯消减闭合-碰撞造山过程还存在较多的争论.主要观点包括以下几个方面:莫宣学等(2007)以土木勒克蓝闪石片岩及其伴生的辉长岩(Ar-Ar年龄为445±2 Ma)的出现作为碰撞造山开始的标志,同时区域上广泛发育与幔源岩浆相关的早泥盆世碱性辉长岩、I型花岗岩及I-S过渡型花岗岩等构成的侵入杂岩体(刘彬等,2012),说明在晚奥陶世-志留纪期间区域上处于碰撞造山阶段过程;另外一种观点认为晚奥陶世-早志留世时期为弧后裂解拉张阶段,以基性岩墙群、A型花岗岩和弧后复理石沉积为标志(黎敦朋等,2003; 任军虎等,2009;高晓峰等,2010),洋盆最终关闭的时间可能为中志留世(陆露等,2010);通过祁漫塔格地区岩浆岩的系统总结,认为碰撞造山过程持续到早泥盆世末期,中泥盆世开始进入到后碰撞伸展阶段(Yu et al., 2017).
造成上述观点分歧的主要原因是东昆仑造山带东西段在早古生代期间具有不同的构造格局,东昆仑造山带大致以小灶火为界,可以划分为东西两段,东昆仑西段从北向南划分为东昆北岩浆弧(祁漫塔格岩浆弧)、祁漫塔格蛇绿构造混杂岩带(黑山-十字沟)、东昆中复合岩浆弧、乌妥-诺木洪蛇绿构造混杂岩带(昆中)以及南部的昆南增生杂岩,而东段缺失东昆北岩浆弧和祁漫塔格蛇绿构造混杂岩带2个构造单元(李荣社等,2008).简而言之,就是目前关于祁漫塔格蛇绿构造混杂岩带和乌妥-诺木洪蛇绿构造混杂岩带为代表的祁漫塔格洋和昆中洋的关系问题,即祁漫塔格洋和昆中洋同为原特提斯洋不同的分支,还是祁漫塔格洋代表了昆中洋的弧后盆地.从目前岩浆岩的时空演变规律来看,祁漫塔格洋可能代表了昆中洋俯冲-消减过程中的弧后盆地,同时近年来在原东昆仑基底金水口岩群识别出一系列的高压岩石,如东段的郞木日和温泉榴辉岩(Meng et al., 2013;孟繁聪等,2015; 祁晓鹏等,2016),东中段的大格勒榴辉岩、夏日哈木榴辉岩(祁生胜等,2014;Du et al., 2017; 国显正等,2017;范亚洲等,2018)以及祁漫塔格阿达滩榴辉(闪)岩,初步的研究结果显示东段榴辉岩代表了陆壳俯冲折返的产物(孟繁聪等,2015),而中段夏日哈木榴辉岩原岩具有E-MORB特征,代表了俯冲的弧后盆地(范亚洲等,2018),高压岩石原岩的不同也进一步证明早古生代期间东昆仑造山带东-西段不同的构造格局.本文研究的花岗闪长岩和英云闪长岩形成年龄在393~385 Ma,晚于这些高压岩石的变质年龄(432~411 Ma),因此,笔者认为这套花岗岩为俯冲洋壳折返过程中诱发的上涌幔源岩浆(或本身发生熔融)同化混染古老地壳物质的产物,从英云闪长岩到花岗闪长岩形成的压力条件看,区域上中泥盆世期间还处于一个持续减薄的过程.值得一提的是早-中泥盆世,区域上出现巨量的基性岩浆喷发,并形成夏日哈木大型-超大型铜镍矿床(Li et al., 2015),同时区域上碰撞后环境下发育大量的富钠质花岗岩,笔者推测巨量基性岩浆及和其关系密切的中酸性岩浆的形成可能与俯冲板片折返机制相关,早前缝合带为造山带中的薄弱位置,可能为岩浆喷发和上升提供了通道,并且包含大量流体物质,为成矿有利部位.
5. 结论
(1) 花岗闪长岩和英云闪长岩岩体形成时代分别为385±5 Ma和393±5 Ma,代表了区域上中泥盆世岩浆活动.
(2) 花岗闪长岩和英云闪长岩的地球化学特征表明其属于钙碱性-高钾钙碱性I型花岗岩,形成于中泥盆世后碰撞伸展拉张构造体制下,为板块俯冲折返机制下,诱发大量幔源基性岩浆同化混染古老地壳物质形成的.
致谢: 论文在成文过程中得到了两位匿名审稿人及编辑提供的宝贵建议,在论文数据处理、图件编绘的过程中得到了胡雷雷和张亚波等同学的热心帮助,作者在此表示诚挚的感谢. 附表1,附表2见:http://www.earth-science.net/WebPage/Article.aspx?id=4059 -
图 5 阿确墩花岗质岩石K2O-SiO2图解(a)和A/NK-A/CNK图解(b)
a.据Castro et al.(1999); b.据Maniar and Piccoli(1989)
Fig. 5. K2O-SiO2 (a) and A/NK-A/CNK (b) diagrams for the granitic rocks from A'quedun area
图 6 阿确墩花岗质岩石稀土元素球粒陨石标准化配分图解(a, c)与微量元素原始地幔标准化蛛网图(b, d)
标准化数值据Sun and McDonough(1989)
Fig. 6. Chondrite-normalized REE patterns (a, c) and primitive mantle-normalized spidergrams (b, d) for the granitic rocks from A'quedun area
图 7 花岗岩形成压力Sr-Yb判别图解
张旗等(2006).Ⅰ.高Sr低Yb型;Ⅱ.低Sr低Yb型;Ⅲ.高Sr高Yb型;Ⅳ.低Sr高Yb型;Ⅴ.非常低Sr高Yb型
Fig. 7. Granite formation pressure Sr vs.Yb discrimination diagram
图 8 SiO2-Mg#图解(a)和英云闪长岩锆石U-Pb年龄与εHf(t)图解(b)
Fig. 8. SiO2-Mg# diagram (a) and εHf(t) vs. U-Pb ages of zircons for the tonalite (b)
表 1 阿确墩地区英云闪长岩(D1602-1)锆石原位Hf同位素组成
Table 1. Zircon Hf isotopic data of the tonalite (D1602-1) from A'quedun area
测点号 年龄(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf ±2σ εHf(t) TDM(Ga) TDM2(Ga) fLu/Hf Hf-1602-1 401 0.030 770 0.001 127 0.282 719 0.000 021 6.64 0.76 0.97 -0.97 Hf-1602-2 375 0.032 074 0.001 181 0.282 719 0.000 018 6.09 0.76 0.98 -0.96 Hf-1602-3 402 0.023 307 0.000 823 0.282 647 0.000 018 4.20 0.85 1.12 -0.98 Hf-1602-4 404 0.075 319 0.002 355 0.282 844 0.000 024 10.81 0.60 0.71 -0.93 Hf-1602-5 396 0.081 269 0.002 871 0.282 824 0.000 024 9.82 0.64 0.76 -0.91 Hf-1602-6 413 0.032 299 0.000 976 0.282 577 0.000 021 1.91 0.96 1.28 -0.97 Hf-1602-7 380 0.112 975 0.003 418 0.283 002 0.000 036 15.63 0.38 0.38 -0.90 Hf-1602-8 404 0.048 708 0.001 565 0.282 710 0.000 022 6.26 0.78 1.00 -0.95 Hf-1602-9 412 0.064 566 0.002 026 0.282 830 0.000 023 10.57 0.62 0.73 -0.94 Hf-1602-10 410 0.053 500 0.001 810 0.282 736 0.000 024 7.27 0.75 0.94 -0.95 Hf-1602-11 392 0.024 891 0.000 830 0.282 648 0.000 018 4.03 0.85 1.13 -0.98 Hf-1602-12 389 0.035 046 0.001 113 0.282 665 0.000 019 4.49 0.84 1.10 -0.97 Hf-1602-13 401 0.056 838 0.001 827 0.282 782 0.000 023 8.69 0.68 0.84 -0.94 Hf-1602-14 403 0.068 442 0.002 067 0.282 757 0.000 021 7.79 0.72 0.90 -0.94 Hf-1602-15 387 0.088 779 0.002 809 0.282 854 0.000 021 10.70 0.59 0.70 -0.92 Hf-1602-16 402 0.030 900 0.000 979 0.282 679 0.000 020 5.30 0.81 1.05 -0.97 Hf-1602-17 376 0.050 713 0.001 555 0.282 773 0.000 023 7.91 0.69 0.87 -0.95 Hf-1602-18 390 0.037 764 0.001 203 0.282 707 0.000 020 5.95 0.78 1.00 -0.96 Hf-1602-19 382 0.048 429 0.001 536 0.282 735 0.000 021 6.72 0.74 0.95 -0.95 Hf-1602-20 386 0.054 063 0.001 639 0.282 723 0.000 021 6.32 0.76 0.98 -0.95 Hf-1602-21 385 0.066 333 0.002 116 0.282 822 0.000 027 9.69 0.63 0.76 -0.94 Hf-1602-22 413 0.093 557 0.002 968 0.282 925 0.000 020 13.67 0.49 0.53 -0.91 Hf-1602-23 396 0.053 420 0.001 685 0.282 788 0.000 024 8.82 0.67 0.83 -0.95 Hf-1602-24 396 0.030 949 0.001 039 0.282 692 0.000 018 5.61 0.80 1.03 -0.97 Hf-1602-25 396 0.044 868 0.001 501 0.282 706 0.000 016 5.99 0.78 1.01 -0.95 表 2 阿确墩地区花岗岩的主量(%)、微量(10-6)元素分析结果
Table 2. Major (%) and trace (10-6) element concentrations of the granitic rocks from A'quedun area
样号 花岗闪长岩 英云闪长岩 D1601-1H D1601-2H D1601-3H D1601-4H D1601-5H D1601-6H D1602-1H D1602-2H D1602-3H D1602-4H D1602-5H D1602-6H SiO2 62.53 64.61 64.56 65.72 65.26 64.18 67.97 66.53 66.85 70.00 66.71 67.41 Al2O3 17.21 16.36 16.68 16.32 16.50 16.82 15.33 15.22 15.49 14.62 15.54 15.59 Fe2O3 1.55 1.30 1.53 1.44 1.30 1.27 0.75 1.01 1.17 1.06 0.92 0.98 FeO 3.15 3.70 2.70 2.29 2.70 3.15 2.45 2.92 2.70 2.00 2.75 2.55 CaO 4.06 2.84 3.76 3.56 3.65 3.83 2.63 2.09 3.08 1.97 2.59 2.63 MgO 1.56 1.41 1.36 1.24 1.29 1.40 0.92 1.17 1.09 0.53 0.89 0.97 K2O 2.49 2.81 2.96 2.68 2.56 2.32 3.78 4.08 2.89 4.19 3.63 3.79 Na2O 4.90 4.79 4.50 4.70 4.79 4.75 3.79 4.08 4.15 4.03 4.21 3.86 TiO2 0.62 0.56 0.56 0.55 0.53 0.58 0.42 0.58 0.53 0.36 0.46 0.44 P2O5 0.17 0.17 0.16 0.14 0.15 0.17 0.12 0.14 0.14 0.09 0.11 0.13 MnO 0.14 0.12 0.10 0.08 0.10 0.13 0.09 0.12 0.11 0.08 0.10 0.10 LOI 1.55 1.26 1.06 1.23 1.13 1.35 1.70 1.98 1.74 0.97 1.99 1.48 Total 99.93 99.93 99.93 99.95 99.96 99.95 99.95 99.92 99.94 99.90 99.90 99.93 A/CNK 0.95 1.02 0.96 0.95 0.95 0.97 1.01 1.02 1.00 0.99 1.00 1.02 A/NK 1.60 1.50 1.57 1.54 1.55 1.63 1.48 1.37 1.56 1.31 1.43 1.49 Na2O+K2O 7.51 7.70 7.55 7.48 7.44 7.17 7.70 8.33 7.17 8.31 8.01 7.77 K2O/Na2O 0.51 0.59 0.66 0.57 0.53 0.49 1.00 1.00 0.70 1.04 0.86 0.98 Mg# 0.35 0.31 0.34 0.35 0.34 0.34 0.32 0.33 0.31 0.22 0.28 0.31 M 1.76 1.60 1.70 1.67 1.69 1.68 1.51 1.53 1.57 1.52 1.56 1.52 TZr(℃) 816 830 813 809 757 799 775 806 828 830 810 788 La 35.6 32.3 33.2 30.6 28.3 27.7 30.3 55.3 22.0 39.3 22.0 39.1 Ce 67.2 63.5 77.4 55.2 62.6 60.3 58.0 105.0 41.8 58.3 35.6 71.5 Pr 9.22 8.66 10.80 7.04 8.00 7.76 6.69 10.90 5.25 8.97 4.69 8.09 Nd 34.9 33.9 50.0 24.8 29.3 29.6 23.1 34.2 19.7 31.2 16.8 27.8 Sm 6.98 7.58 13.20 4.54 6.24 6.76 4.27 4.78 4.06 6.27 3.26 5.21 Eu 1.34 1.15 1.70 1.38 1.39 1.32 1.32 1.54 1.01 1.61 1.03 1.37 Gd 6.50 7.36 13.60 3.90 5.64 6.27 3.45 3.88 3.62 5.67 2.85 4.34 Tb 1.06 1.26 2.35 0.72 0.98 1.11 0.59 0.61 0.58 0.91 0.49 0.66 Dy 6.33 7.75 15.80 4.33 6.32 6.94 3.08 2.76 3.60 5.46 2.58 3.68 Ho 1.24 1.58 3.26 0.95 1.33 1.41 0.61 0.51 0.74 1.11 0.51 0.69 Er 3.56 4.22 9.16 2.72 3.79 3.99 1.64 1.44 1.98 3.02 1.40 1.86 Tm 0.54 0.63 1.32 0.42 0.59 0.62 0.24 0.23 0.30 0.43 0.21 0.28 Yb 3.60 4.04 8.08 2.79 3.92 4.26 1.55 1.46 1.96 2.91 1.38 1.76 Lu 0.54 0.60 1.14 0.43 0.55 0.64 0.24 0.22 0.29 0.41 0.21 0.27 Y 37.4 44.4 95.2 25.8 37.6 39.2 15.0 13.0 17.8 27.4 12.7 17.4 Rb 99.7 96.1 120.0 45.8 100.0 98.3 73.1 107.0 38.0 78.3 41.5 70.7 Ba 569 441 826 802 742 572 1 030 999 494 1 090 663 971 Th 15.60 11.50 11.00 8.15 8.79 7.32 5.86 11.30 5.20 10.10 5.25 7.65 U 2.55 1.84 2.22 1.50 1.80 1.85 1.31 1.84 1.45 1.16 1.41 1.55 Ta 1.14 1.08 1.81 1.04 1.02 1.14 0.59 0.67 0.62 0.81 0.47 0.66 Nb 13.30 13.30 18.60 16.40 12.00 12.60 6.66 6.80 8.95 10.40 7.50 7.51 Ge 1.26 1.36 1.47 1.18 1.30 1.47 1.20 1.25 1.37 1.31 1.30 1.16 Sr 369 236 416 308 356 303 215 231 198 150 156 188 Zr 304 307 280 260 144 234 155 224 293 288 240 180 Hf 7.86 7.84 7.47 6.76 4.05 6.53 4.24 5.97 7.37 7.48 6.02 4.82 Ga 21.3 21.2 21.9 18.2 20.6 21.3 16.8 18.7 16.2 17.4 16.1 17.6 Nb 13.30 13.30 18.60 16.40 12.00 12.60 6.66 6.80 8.95 10.40 7.50 7.51 Ta 1.14 1.08 1.81 1.04 1.02 1.14 0.59 0.67 0.62 0.81 0.47 0.66 ∑REE 178.60 174.50 241.00 139.80 159.00 158.70 135.10 222.80 106.90 165.60 93.01 166.60 ∑LREE 155.20 147.10 186.30 123.60 135.80 133.40 123.70 211.70 93.82 145.70 83.38 153.10 ∑HREE 23.37 27.44 54.71 16.26 23.12 25.24 11.40 11.11 13.07 19.92 9.63 13.54 LREE/HREE 6.64 5.36 3.41 7.60 5.88 5.29 10.85 19.06 7.18 7.31 8.66 11.31 (La/Yb)N 7.09 5.73 2.95 7.87 5.18 4.66 14.02 27.17 8.05 9.69 11.44 15.94 (La/Sm)N 3.29 2.75 1.62 4.35 2.93 2.65 4.58 7.47 3.50 4.05 4.36 4.84 (Gd/Yb)N 1.49 1.51 1.39 1.16 1.19 1.22 1.84 2.20 1.53 1.61 1.71 2.04 δEu 0.61 0.47 0.39 1.00 0.72 0.62 1.05 1.09 0.81 0.83 1.03 0.88 Nb/Ta 11.67 12.31 10.28 15.77 11.76 11.05 11.29 10.15 14.44 12.84 15.96 11.38 Zr/Hf 38.68 39.16 37.48 38.46 35.56 35.83 36.56 37.52 39.76 38.50 39.87 37.34 注:FeOT= FeO+Fe2O3×0.899 8;Mg#=(MgO/40.304 4)/100((MgO/40.304 4)+(FeOT/71.844));δEu =2EuN/(SmN+GdN);全岩岩石化学参数M(阳离子比率)=(Na+K+2Ca)/(Si×Al). -
Andersen, T., 2002.Correction of Common Lead in U-Pb Analyse That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. doi: 10.1016/S0009-2541(02)00195-X Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., et al., 2002.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type.Contributions to Mineralogy and Petrology, 143(5):602-622. doi: 10.1007/s00410-002-0364-7 Bian, Q.T., Zhao, D.S., Ye, Z.R., et al., 2002.A Preliminary Study of the Kunlun-Qilian-Qinling Sutuer System.Acta Geoscientia Sinica, 23(6):501-508(in Chinese with English abstract). http://www.oalib.com/paper/1559832 Calvin, F.M., McDowell, S.M., Mapes, R.W., 2003.Hot and Cold Granites Implication of Zircon Saturation Temperatures and Preservation of Inheritance.Geology, 31(6):529-532. doi: 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2 Castro, A., Patino Douce, A.E., Corretge, L.C., et al., 1999.Origin of Peraluminous Granites and Granodiortes, Iberian Massif, Spain:An Experimental Test of Granite Petrogenesis.Contributions to Mineralogy and Petrology, 135(2):255-276. doi: 10.1007/s004100050511 Chappell, B.W., Stephens, W.E., 1988.Origin of Infracrustal (I-Type) Granite Magmas.Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2-3):71-86. doi: 10.1017/S0263593300014139 Chen, J.J., Fu, L.B., Wei, J.H., et al., 2016.Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province:Implications on the Evolution of Proto-Tethys Ocean.Earth Science, 41(11):1863-1882 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.129 Defant, M.J., Drummond, M.S., 1990.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0 Du, W., Jiang, C.Y., Tang, Z.L., et al., 2017.Discovery of the Dagele Eclogite in East Kunlun, Western China and Its Zircon SHRIMP U-Pb Ages:New Constrains on the Central Kunlun Suture Zone.Acta Geologica Sinica (English Edition), 91(3):1153-1154. doi: 10.1111/acgs.2017.91.issue-3 Eiler, J.M., 2007."Clumped-Isotope" Geochemistry-The Study of Naturally-Occurring, Multiply-Substituted Isotopologues.Earth and Planetary Science Letters, 262(3):309-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e8f53eb2a09fe4ca7d4b4f58acde3a42 Fan, Y.Z., Meng, F.C., Duan, X.P., 2018.The Protoliths of the Xiarihamu Eclogites from the Western Part of East Kunlun and Continent/Arc-Continent Collision.Acta Geologica Sinica, 92(3):482-502 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201803005 Gao, X.F., Guo, F., Xiao, P.X., et al., 2016.Geochemical and Sr-Nd-Pb Isotopic Evidence for Ancient Lower Continental Crust beneath the Xi Ujimqin Area of NE China.Lithos, 252-253:173-184. https://doi.org/10.1016/j.lithos.2016.02.012 Gao, X.F., Xiao, P.X., Xie, C.R., et al., 2010.Zircon LA-ICP-MS U-Pb Dating and Geological Significance of Bashierxi Granite in the Eastern Kunlun Area, China.Geological Bulletin of China, 29(7):1001-1008 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201007005 Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359. doi: 10.1016/0009-2541(94)00145-X Guo, C.L., Wang, D.H., Chen, Y.C., et al., 2007.SHRIMP U-Pb Zircon Ages and Major Element, Trace Element and Nd-Sr Isotope Geochemical Studies of a Neoproterozoic Granitic Complex in Western Sichuan:Petrogenesis and Tectonic Significance.Acta Petrologica Sinica, 23(10):2457-2470. http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710015.htm Guo, X.Z., Jia, Q.Z., Qian, B., et al., 2017.Geochemical Characteristics of Eclogites and Garnet-Amphibolites in East Kunlun High Pressure Metamorphic Belt and Their Geodynamic Setting.Journal of Earch Sciences and Environment, 39(6):735-750 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201706005 Hofmann, A.W., 1998.Chemical Differentiation of the Earth:The Relationships between Mantle, Continental Crust, and Oceanic Crust.Earth and Planetary Science Letters, 90(3):297-314. http://www.sciencedirect.com/science/article/pii/0012821X8890132X Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007.Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications.Acta Petrologica Sinica, 23(10):2595-2604 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200710025 Kaygusuz, A., Siebel, W., Sen, C., et al., 2008.Petrochemistry and Petrology of I-Type Granitoids in an Arc Setting:The Composite Torul Pluton, Eastern Pontides, NE Turkey.International Journal of Earth Sciences, 97(4):739-764. doi: 10.1007/s00531-007-0188-9 Kemp, A., Hawkesworth, C., Foster, G., et al., 2007.Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon.Science, 315(5814):980-983. doi: 10.1126/science.1136154 Li, C.S., Zhang, Z.W., Li, W.Y., et al., 2015.Geochronology, Petrology and Hf-S Isotope Geochemistry of the Newly-Discovered Xiarihamu Magmatic Ni-Cu Sulfide Deposit in the Qinghai-Tlibet Plateau, Western China.Lithos, 216-217:224-240. doi: 10.1016/j.lithos.2015.01.003 Li, D.P., Li, J., Zhang, H.J., et al., 2003.The Turbidite of the Silurian Baiganhu Formation in the Qimantage Mountain Eastern Kunlun.Geology of Shaanxi, 21(2):39-44 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxdizhi200302005 Li, R.S., Ji, W.H., Yang, Y.C., 2008.The Geology of Kunlun Mountains and Adjacent Areas.Geological Publishing House, Beijing (in Chinese). Li, R.S., Ji, W.H., Zhao, Z.M., et al., 2007.Progress in the Study of the Early Paleozoic Kunlun Orogenic Belt.Geological Bulletin of China, 26(4):373-382 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200704002 Liu, B., Ma, C.Q., Guo, P., et al., 2013.Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications.Earth Science, 38(5):947-962 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2013.093 Liu, B., Ma, C.Q., Zhang, J.Y., et al., 2012.Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes.Acta Petrologica Sinica, 28(6):1785-1807 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206007 Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. doi: 10.1093/petrology/egp082 Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010b.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. doi: 10.1007/s11434-010-3052-4 Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004 Lu, L., Wu, Z.H., Hu, D.G., et al., 2010.Zircon U-Pb Age for Rhyolite of the Maoniushan Formation and Its Tectonic Significance in the East Kunlun Mountains.Acta Petrologica Sinica, 26(4):1150-1158 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201004012 Ludwig, K.R., 1991.Isoplot:A Plotting and Regression Program for Radiogenic-Isotope Data.US Geological Survey Open-File Report, 39:91-445. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232722161/ Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 Meng, E., Liu, F.L., Liu, P.H., et al., 2014.Petrogenesis and Tectonic Significance of Paleoproterozoic Meta-Mafic Rocks from Central Liaodong Peninsula, Northeast China:Evidence from Zircon U-Pb Dating and In-Situ Lu-Hf Isotopes, and Whole-Rock Geochemistry.Precambrian Research, 247:92-109. doi: 10.1016/j.precamres.2014.03.017 Meng, F.C., Cui, M.H., Jia, L.H., et al., 2015.Paleozoic Continental Collision of the East Kunlun Orogen:Evidence from Protoliths of the Eclogites.Acta Petrologica Sinica, 31(12):3581-3594 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512006 Meng, F.C., Zhang, J.X., Cui, M.H., 2013.Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance.Gondwana Research, 23(2):825-836. doi: 10.1016/j.gr.2012.06.007 Meng, F.C., Zhang, J.X., Yang, J.S., et al., 2003.Geochemical Characteristics of Eclogites in Xitieshan Area, North Qaidam of Northwestern China.Acta Petrologica Sinica, 19(3):435-442 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200303007 Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFM.T51D2370M Pan, G.T., Li, X.Z., Wang, L.Q., et al., 2002.Preliminary Division of Tectonic Units of the Qinghai-Tibet Plateau and Its Adjacent Regions.Geological Bulletin of China, 21(11):701-707 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200211002 Qi, S.S., Deng, J.F., Ye, Z.F., et al., 2013.LA-ICP-MS Zircon U-Pb Dating of Late Devonian Diabase Dike Swarms in Qimantag Area.Geological Bulletin of China, 32(9):1385-1393 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201309007 Qi, S.S., Song, S.G., Shi, L.C., et al., 2014.Discovery and Its Geological Significance of Early Paleozoic Eclogite in Xiarihamu-Suhaitu Area, Western Part of the East Kunlun.Acta Petrologica Sinica, 30(11):3345-3356 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411018 Qi, X.P., Fan, X.G., Yang, J., et al., 2016.The Discovery of Early Paleozoic Eclogite in the Upper Reaches of Langmuri in Eastern East Kunlun Mountains and Its Significance.Geological Bulletin of China, 35(11):1771-1783 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201611002 Ren, E.F., Zhang, G.L., Qiu, W., et al., 2012.Study on Geochemistry of Gabbro in East Kunlun Kayakedengtage and Their Tectonic Significances.Mineral Resources and Geology, 26(4):334-338, 343 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcydz201204012 Ren, J.H., Liu, Y.Q., Feng, Q., et al., 2009.LA-ICP-MS U-Pb Zircon Dating and Geochemical Characteristics of Diabase-Dykes from the Qingshuiquan Area, Eastern Kunlun Orogenic Belt.Acta Petrologica Sinica, 25(5):1135-1145 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200905008 Shi, B., Zhu, Y.H., Zhong, Z.Q., et al., 2016.Petrological, Geochemical Characteristics and Geological Significance of the Caledonian Peraluminous Granites in Heihai Region, Eastern Kunlun.Earth Science, 41(1):35-54 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.003 Streck, M.J., 2007.Mineral Textures and Zoning as Evidence for Open System Process.Reviews in Mineralogy and Geochemistry, 69(1):595-622. http://adsabs.harvard.edu/abs/2008RvMG...69..595S Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processed.Geological Society, London, Special Publication, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19 Taylor, S.R., McLennan S.S., 1985.The Continental Crust:Its Composition and Evolution.Blackwell Scientific Publications, Oxford, 1-328. Wang, T., Wang, X.X., Tian, W., et al., 2009.North Qinling Paleozoic Granite Associations and Their Variation in Space and Time:Implications for Orogenic Processes in the Orogens of Central China.Science in China (Series D:Earth Sciences), 39(7):949-971 (in Chinese). doi: 10.1007/s11430-009-0129-5 Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304. doi: 10.1016/0012-821X(83)90211-X Watson, E.B., Harrison, T.M., 2005.Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth.Science, 308(5723):841-844. doi: 10.1126/science.1110873 Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007a.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001 Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007b.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 Xu, Z.Q., Yang, J.S., Li, H.B., et al., 2006.The Early Palaeozoic Terrene Framework and the Formation of the High-Pressure (HP) and Ultra-High Pressure (UHP) Metamorphic Belts at the Central Orogenic Belt (COB).Acta Geologica Sinica, 80(12):1793-1806 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200612002 Yang, J.S., Robinson, P.T., Jiang, C.F., et al., 1996.Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications.Tectonophysics, 258(1-4):215-231. doi: 10.1016/0040-1951(95)00199-9 Yin, H.F., Zhang, K.X., 1997.Characteristics of the Eastern Kunlun Orogenic Belt.Earth Science, 22(4):339-342(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201803019 Yu, M., Feng, C.Y., Santosh, M., 2017.The Qiman Tagh Orogen as a Window to the Crustal Evolution in Northern Qinghai-Tibet Plateau.Earth-Science Reviews, 167:103-123. https://doi.org/10.1016/j.earscirev.2017.02.008 Zha, X.F., Ji, W.H., Zhang, H.D., et al., 2012.A Discussion on the Deformation Phases and Tectonic Process of the Southern Kunlun Accretionary Complex Belt, in Central Qinghai.Geological Bulletin of China, 31(12):2015-2024 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201212010 Zhang, J., 2013.Petrological and Geochemical Characteristics of Basement Dikes in the Little Basin, Qimantag, East Kunlun.China Science and Technology Information, (9):45-46, 48(in Chinese). Zhang, Q., Wang, Y., Li, C.D., et al., 2006.Granite Classification on the Basis of Sr and Yb Contents and Its Implications.Acta Petrologica Sinica, 22(9):2249-2269 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200609001 Zhang, Q., Wang, Y., Pan, G.Q., et al., 2008.Sources of Granites:Some Crucial Questions on Granite Study (4).Acta Petrologica Sinica, 24(6):1193-1204(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200810003.htm Zhong, Y.F., Ma, C.Q., She, Z.B., 2006.Geochemical Characteristics of Zircon and Its Applications in Geosciences.Geological Science and Technology Information, 25(1):27-34, 40 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200601005 边千韬, 赵大升, 叶正仁, 等, 2002.初论昆祁秦缝合系.地球学报, 23(6):501-508. doi: 10.3321/j.issn:1006-3021.2002.06.004 陈加杰, 付乐兵, 魏俊浩, 等, 2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学, 41(11):1863-1882. http://earth-science.net/WebPage/Article.aspx?id=3384 范亚洲, 孟繁聪, 段雪鹏, 2018.东昆仑西段夏日哈木榴辉岩原岩属性及陆(弧)陆碰撞.地质学报, 92(3):482-502. doi: 10.3969/j.issn.0001-5717.2018.03.005 高晓峰, 校培喜, 谢从瑞, 等, 2010.东昆仑阿牙克库木湖北巴什尔希花岗岩锆石LA-ICP-MS U-Pb定年及其地质意义.地质通报, 29(7):1001-1008. doi: 10.3969/j.issn.1671-2552.2010.07.005 国显正, 贾群子, 钱兵, 等, 2017.东昆仑高压变质带榴辉岩和榴闪岩地球化学特征及形成动力学背景.地球科学与环境学报, 39(6):735-750. doi: 10.3969/j.issn.1672-6561.2017.06.005 侯可军, 李延河, 邹天人, 等, 2007.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用.岩石学报, 23(10):2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 黎敦朋, 李静, 张汉军, 等, 2003.东昆仑祁漫塔格山志留系白干湖组浊积岩特征.陕西地质, 21(2):39-44. doi: 10.3969/j.issn.1001-6996.2003.02.005 李荣社, 计文化, 杨永成, 2008.昆仑山及邻区地质.北京:地质出版社. 李荣社, 计文化, 赵振明, 等, 2007.昆仑早古生代造山带研究进展.地质通报, 26(4):373-382. doi: 10.3969/j.issn.1671-2552.2007.04.002 刘彬, 马昌前, 郭盼, 等, 2013.东昆仑中泥盆世A型花岗岩的确定及其构造意义.地球科学, 38(5):947-962. http://earth-science.net/WebPage/Article.aspx?id=2780 刘彬, 马昌前, 张金阳, 等, 2012.东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示.岩石学报, 28(6):1785-1807. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201206007 陆露, 吴珍汉, 胡道功, 等, 2010.东昆仑牦牛山组流纹岩锆石U-Pb年龄及构造意义.岩石学报, 26(4):1150-1158. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201004012 孟繁聪, 崔美慧, 贾丽辉, 等, 2015.东昆仑造山带早古生代的大陆碰撞:来自榴辉岩原岩性质的证据.岩石学报, 31(12):3581-3594. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201512006 孟繁聪, 张建新, 杨经绥, 等, 2003.柴北缘锡铁山榴辉岩的地球化学特征.岩石学报, 19(3):435-442. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200303007 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 潘桂棠, 李兴振, 王立全, 等, 2002.青藏高原及邻区大地构造单元初步划分.地质通报, 21(11):701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002 祁生胜, 邓晋福, 叶占福, 等, 2013.青海祁漫塔格地区晚泥盆世辉绿岩墙群LA-ICP-MS锆石U-Pb年龄及其构造意义.地质通报, 32(9):1385-1393. doi: 10.3969/j.issn.1671-2552.2013.09.007 祁生胜, 宋述光, 史连昌, 等, 2014.东昆仑西段夏日哈木-苏海图早古生代榴辉岩的发现及意义.岩石学报, 30(11):3345-3356. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201411018 祁晓鹏, 范显刚, 杨杰, 等, 2016.东昆仑东段浪木日上游早古生代榴辉岩的发现及其意义.地质通报, 35(11):1771-1783. doi: 10.3969/j.issn.1671-2552.2016.11.002 任二峰, 张桂林, 邱炜, 等, 2012.东昆仑喀雅克登塔格辉长岩体地球化学研究及大地构造意义.矿产与地质, 26(4):334-338, 343. doi: 10.3969/j.issn.1001-5663.2012.04.012 任军虎, 柳益群, 冯乔, 等, 2009.东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年.岩石学报, 25(5):1135-1145. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200905008 施彬, 朱云海, 钟增球, 等, 2016.东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义.地球科学, 41(1):35-54. http://earth-science.net/WebPage/Article.aspx?id=3217 王涛, 王晓霞, 田伟, 等, 2009.北秦岭古生代花岗岩组合、岩浆时空演变及其对造山作用的启示.中国科学(D辑:地球科学), 39(7):949-971. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200901195408 吴福元, 李献华, 杨进辉, 等, 2007a.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200706001 吴福元, 李献华, 郑永飞, 等, 2007b.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001 许志琴, 杨经绥, 李海兵, 等, 2006.中央造山带早古生代地体构架与高压/超高压变质带的形成.地质学报, 80(12):1793-1806. doi: 10.3321/j.issn:0001-5717.2006.12.002 殷鸿福, 张克信, 1997.东昆仑造山带的一些特点.地球科学, 22(4):339-342. doi: 10.3321/j.issn:1000-2383.1997.04.001 查显锋, 计文化, 张海迪, 等, 2012.青海中部昆南增生杂岩带变形分期及构造过程.地质通报, 31(12):2015-2024. doi: 10.3969/j.issn.1671-2552.2012.12.010 张健, 2013.东昆仑祁漫塔格地区小盆地基性岩墙岩石地球化学特征.中国科技信息, (9):45-46, 48. doi: 10.3969/j.issn.1001-8972.2013.09.008 张旗, 王焰, 李承东, 等, 2006.花岗岩的Sr-Yb分类及其地质意义.岩石学报, 22(9):2249-2269. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200609001 张旗, 王焰, 潘国强, 等, 2008.花岗岩源岩问题——关于花岗岩研究的思考之四.岩石学报, 24(6):1193-1204. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200806004 钟玉芳, 马昌前, 佘振兵, 2006.锆石地球化学特征及地质应用研究综述.地质科技情报, 25(1):27-34, 40. doi: 10.3969/j.issn.1000-7849.2006.01.005 -