• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    铁白云石矿物学特征及原生次生成因机制

    由雪莲 贾文强 徐帆 刘仪

    由雪莲, 贾文强, 徐帆, 刘仪, 2018. 铁白云石矿物学特征及原生次生成因机制. 地球科学, 43(11): 4046-4055. doi: 10.3799/dqkx.2018.152
    引用本文: 由雪莲, 贾文强, 徐帆, 刘仪, 2018. 铁白云石矿物学特征及原生次生成因机制. 地球科学, 43(11): 4046-4055. doi: 10.3799/dqkx.2018.152
    You Xuelian, Jia Wenqiang, Xu Fan, Liu Yi, 2018. Mineralogical Characteristics of Ankerite and Mechanisms of Primary and Secondary Origins. Earth Science, 43(11): 4046-4055. doi: 10.3799/dqkx.2018.152
    Citation: You Xuelian, Jia Wenqiang, Xu Fan, Liu Yi, 2018. Mineralogical Characteristics of Ankerite and Mechanisms of Primary and Secondary Origins. Earth Science, 43(11): 4046-4055. doi: 10.3799/dqkx.2018.152

    铁白云石矿物学特征及原生次生成因机制

    doi: 10.3799/dqkx.2018.152
    基金项目: 

    中央高校基本科研业务费 2652017132

    国家自然科学基金青年基金项目 41402102

    详细信息
      作者简介:

      由雪莲(1984-), 女, 副教授, 博士, 主要从事微生物成因白云岩、沉积学, 古海洋学研究

    • 中图分类号: P588.24

    Mineralogical Characteristics of Ankerite and Mechanisms of Primary and Secondary Origins

    • 摘要: 长期以来,铁白云石的命名划分标准混乱,一直被当成高温及次生的产物.综述了国内外铁白云石的研究进展,详细探讨了铁白云石的矿物学特征,特别在其成因中加入了微生物因素,运用地质微生物学探讨原生铁白云石的成因机制.研究认为:(1)铁白云石命名划分依据应遵照国际矿物学会的原则,以铁是否替代白云石晶格中半数镁的位置为标准,分为白云石和铁白云石;(2)详述铁白云石矿物学及其晶体特征;(3)铁白云石成因分为原生沉淀及次生两种,微生物介导形成原生白云石的过程中,有助于铁进入到白云石晶格中,增加晶格中铁的含量.

       

    • 图  1  理想的有序白云石晶体结构图及铁离子的位置

      Petrash et al.(2017)

      Fig.  1.  Atomic structure of an idealized stoichiometric dolomite crystal and preferred sites for elemental substitution of Fe

      图  2  次生的铁白云石

      a.奥陶系马五段陕338井中,膏溶铸模孔中被后期次生形成的铁白云石充填(张军涛等,2017);b~d.波兰西里西亚盆地始新世-渐新世自生白云岩地层,多种多样不同期次的铁白云石胶结物(Bojanowski, 2014)

      Fig.  2.  Secondary ankerite

      图  3  微生物到铁矿物的电子传递机制

      Melton et al.(2014)

      Fig.  3.  Mechanisms of electron transfer from microorganisms to Fe (Ⅲ) minerals

      图  4  微生物培养实验中含铁量高的白云石SEM图像

      Vasconcelos et al.(1995)

      Fig.  4.  SEM secondary electron images of ferroan dolomite in the bacterial cultural experiments

      表  1  双舱法合成铁白云岩固溶体的混合物和晶胞参数

      Table  1.   Composition and unit-cell parameters of the ankerite solid solutions in double-capsule method synthesized experiments

      样品 x a(Å) c(Å) V3)
      CaMg(CO3)2 0 4.807 6(3) 16.007 0(2) 320.40
      ank1 0.158 3 4.810 2(6) 16.052 4(43) 321.66
      ank2 0.299 0 4.810 8(2) 16.109 5(17) 322.88
      ank3 0.499 6 4.813 1(1) 16.120 0(9) 323.41
      ank4 0.648 0 4.818 2(8) 16.154 3(5) 324.79
      ank5 1.000 0 4.830 0(9) 16.221 0(8) 327.72
      CaFe(CO3)2 1.000 0 4.829 1(3) 16.210 0(1) 327.38
      注:表中数据源于Chai and Navrotsky(1996)x.Ca(FexMg1- x)(CO3)2ac.晶胞参数;V.晶胞体积.
      下载: 导出CSV

      表  2  不同压力下白云石与铁白云石的晶胞参数

      Table  2.   Unit-cell parameters of dolomite and ankerite under different pressures

      压力(GPa) 白云石晶胞参数
      a(Å) c(Å) V3)
      0.00 4.806 4(5) 16.006(2) 320.22(8)
      0.47 4.802 8(7) 16.962(2) 318.87(9)
      1.50 4.791 0(7) 15.856(2) 315.20(9)
      2.34 4.784 3(9) 15.785(2) 312.90(11)
      2.90 4.777 7(5) 15.730(1) 310.97(6)
      3.70 4.770 3(7) 15.653(2) 308.47(10)
      4.20 4.767 2(6) 15.611(2) 307.24(8)
      4.69 4.763 6(5) 15.582(3) 306.21(8)
      压力(GPa) 铁白云石晶胞参数
      a(Å) c(Å) V3)
      0.00 4.836 0(8) 16.186(2) 327.82(11)
      0.97 4.826 5(8) 16.085(2) 324.51(11)
      1.90 4.816 3(6) 15.992(2) 321.26(9)
      2.56 4.810 9(6) 15.924(2) 319.18(8)
      2.97 4.807 0(6) 15.881(2) 317.81(8)
      3.40 4.803 8(8) 15.847(2) 316.71(10)
      4.00 4.799 0(6) 15.792(2) 314.97(8)
      注:表中数据源于Ross and Reeder(1992)ac.晶胞参数;V.晶胞体积.
      下载: 导出CSV

      表  3  标准白云石、铁白云石衍射数据(ICDD数据)

      Table  3.   Standard XRD data of dolomite and ankerite from ICDD

      标准白云石 标准铁白云石
      d I/I0 hkl d I/I0 hkl
      4.033 1 101 4.051 <1 101
      3.699 3 012 3.714 2 012
      2.888 100 104 2.906 100 104
      2.670 4 006 2.693 4 006
      2.539 3 015 2.556 <1 015
      2.404 8 110 2.414 4 110
      2.193 25 113 2.203 7 113
      2.065 4 021 2.073 <1 021
      2.015 4 202 2.024 6 202
      1.847 5 024 1.856 2 024
      1.805 16 018 1.818 8 018
      1.787 21 116 1.797 10 116
      1.780 3 009 1.795 5 009
      1.567 4 211 1.573 2 211
      1.545 7 122 1.550 4 122
      1.465 4 214 1.472 4 214
      1.444 4 208 1.452 4 208
      1.389 4 300 1.394 2 300
      下载: 导出CSV

      表  4  标准白云石、铁白云石晶胞参数(ICDD数据)

      Table  4.   Standard unit-cell parameters of dolomite and ankerite from ICDD

      矿物种类 晶胞参数
      a(Å) c(Å) V3)
      白云石(36-426) 4.809 0 16.020 0 320.88
      铁白云石(41-586) 4.829 0 16.152 0 326.15
      下载: 导出CSV

      表  5  微生物介导的白云石与标准白云石及铁白云石的晶胞参数比较

      Table  5.   Comparison of unit-cell parameters between dolomites and ankerite

      米勒指数
      (hkl)
      微生物介导白云石
      d(hkl
      白云石
      d(hkl
      铁白云石
      d(hkl
      方解石
      d(hkl
      102 3.71 3.69 3.70 3.86
      110 2.40 2.41 2.41 2.49
      122 1.55 1.54 1.55 1.60
      104 2.94 2.89 2.90 3.03
      注:微生物介导白云石数据源自Vasconcelos et al.(1995).
      下载: 导出CSV
    • Bojanowski, M.J., 2014.Authigenic Dolomites in the Eocene-Oligocene Organic Carbon-Rich Shales from the Polish Outer Carpathians:Evidence of Past Gas Production and Possible Gas Hydrate Formation in the Silesian Basin.Marine and Petroleum Geology, 51(51):117-135.https://doi.org/10.1016/j.marpetgeo.2013.12.001 http://www.sciencedirect.com/science/article/pii/S0264817213002997
      Boyd, P.W., Watson, A.J., Law, C.S., et al., 2000.A Mesoscale Phytoplankton Bloom in the Polar Southern Ocean Stimulatedby Iron Fertilization.Nature, 407(6805):695.https://doi.org/10.1029/2011jc006956 doi: 10.1038/35037500
      Carballo, J.D., Land, L.S., Miser, D.E., 1987.Holocene Dolomitization of Sugarloaf Sediments by Active Tidal Pumping, Sugarloaf Key, Florida.Journal of Sedimentary Petrology, 57(1):153-165.https://doi.org/10.1306/212F8AD0-2B24-11D7-8648000102C1865D
      Chai, L., Navrotsky, A., 1996.Synthesis, Characterization, and Energetics of Solid Solution along the Dolomite-Ankerite Join, and Implications for the Stability of Ordered CaFe(CO3)2.American Mineralogist, 81(9-10):1141-1147. https://doi.org/10.2138/am-1996-9-1012
      Chaudhuri, S.K., Lack, J.G., Coates, J.D., 2001.Biogenic Magnetite Formation through Anaerobic Biooxidation of Fe (Ⅱ).Applied and Environmental Microbiology, 67(6):2844-2848.https://doi.org/10.1128/aem.67.6.2844-2848.2001 doi: 10.1128/AEM.67.6.2844-2848.2001
      Chen, L., Zhang, H.X., Li, Y., et al., 2016.The Role of Microorganisms in the Geochemical Iron Cycle.Scientia Sinica (Vitae), 46(9):1069-1078 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-JCXK201609003.htm
      Coale, K.H., Fitzwater, S.E., Gordon, R.M., et al., 1996.Control of Community Growth and Export Production by Upwelled Iron in the Equatorial Pacific Ocean.Nature, 379(6566):621-624. https://doi.org/10.1038/379621a0
      Dai, C.C., Zheng, R.C., Wen, H.G., et al., 2008.Origin of Lacustrine Dolomite in the Paleogene Shahejie Formation of Liaodongwan Basin, China.Journal of Chengdu University of Technology (Science & Technology Edition), 35(2):187-193 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200802014
      de Deckker, P., Last, W.M., 1988.Modern Dolomite Deposition in Continental, Saline Lakes, Western Victoria, Australia.Geology, 16(1):29.https://doi.org/10.1130/0091-7613(1988)016 < 0029:mddics>2.3.co; 2 doi: 10.1130/0091-7613(1988)016<0029:MDDICS>2.3.CO;2
      Deer, W.A., Howie, R.A., Zussman, J., 1992.The Rock Forming Minerals.Longman, Essex, 696
      Deng, S.C., Dong, H.L., Lü, G., et al., 2010.Microbial Dolomite Precipitation Using Sulfate Reducing and Halophilic Bacteria:Results from Qinghai Lake, Tibetan Plateau, NW China.Chemical Geology, 278(3-4):151-159. https://doi.org/10.1016/j.chemgeo.2010.09.008
      Franzolin, E., Merlini, M., Poli, S., et al., 2012.The Temperature and Compositional Dependence of Disordering in Fe-Bearing Dolomites.American Mineralogist, 97(10):1676-1684. https://doi.org/10.2138/am.2012.4126
      Gao, J., Zheng, T.L., Deng, Y.M., et al., 2017.Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain.Earth Science, 42(5):716-726 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705007
      Geider, R.J., 1999.Biological Oceanography:Complex Lessons of Iron Uptake.Nature, 400(400):815-816. http://www.nature.com/nature/journal/v400/n6747/full/400815a0.html
      Gregg, J.M., Bish, D.L., Kaczmarek, S.E., et al., 2015.Mineralogy, Nucleation and Growth of Dolomite in the Laboratory and Sedimentary Environment:A Review.Sedimentology, 62(6):1749-1769.https://doi.org/10.1111/sed.12202 doi: 10.1111/sed.2015.62.issue-6
      Guo, H.L., Zhang, F.S., 1981.Preliminary Analysis on the Laws of Differential Thermal Curves of Siderite, Dolomite-Ankerite and Calcite.Yunnan Chemical Technology, (4):47-51 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004862216
      Hafenbradl, D., Keller, M., Dirmeier, R., et al., 1996.Ferroglobus Placidus gen.nov., sp.nov., a Novel Hyperthermophilic Archaeum That Oxidizes Fe2+ at Neutral pH under Anoxic Conditions.Archives of Microbiology, 166(5):308-314.https://doi.org/10.1007/s002030050388
      Hendry, J.P., 2003.Ankerite.In: Middleton, G.V., Church, M.J., Coniglio, M., et al., eds., Encyclopaedia of Sediments and Sedimentary Rocks.Kluwer Academic Publishers, Dordrecht, 19-21.
      Hilscher, G., Rogl, P., Zemann, J., et al., 2005.Low-Temperature Magnetic Investigation of Ankerite.European Journal of Mineralogy, 17(1):103-106.https://doi.org/10.1127/0935-1221/2005/0017-0103 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=deea451c3062ebd6f271b4bc6954fd62
      Huang, C.G., Yuan, J.Y., Cao, Z.L., et al., 2014.Simulation Experiment for Ankerite Dissolution in Clastic Reservoir of Saline Lacustrine Basin.Petroleum Geology & Experiment, 36(5):650-655 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201405022
      Klein, C., Dutrow, B., 2008.Manuel of Mineral Science.Wiley, New York, 675.
      Krause, S., Liebetrau, V., Gorb, S., et al., 2012.Microbial Nucleation of Mg-Rich Dolomite in Exopolymeric Substances under Anoxic Modern Seawater Salinity:New Insight into an Old Enigma.Geology, 40(7):987-990.https://doi.org/10.1130/g32923.1 http://adsabs.harvard.edu/abs/2012Geo....40..587K
      Land, L.S., 1998.Failure to Precipitate Dolomite at 25 ℃ from Dilute Solution Despite 1 000-Fold Oversaturation after 32 Years.Aquatic Geochemistry, 4(3-4):361-368.doi: 10.1023/A:1009688315854
      Leach, D.L., Plumlee, G.S., Hofstra, A.H., et al., 1991.Origin of Late Dolomite Cement by CO2-Saturated Deep Basin Brines:Evidence from the Ozark Region, Central United States.Geology, 19(4):348-351.https://doi.org/10.1130/0091-7613(1991)019 < 0348:ooldcb>2.3.co; 2 doi: 10.1130/0091-7613(1991)019<0348:OOLDCB>2.3.CO;2
      Lippmann, F., 1973.Sedimentary Carbonate Minerals.Minerals Rocks and Inorganic Materials, 6(3):407-407.doi: 10.1007/978-3-642-65474-9
      Liu, X., Xu, T.F., Wei, M.C., et al., 2016.Experiment on Anaerobic Oxidation of Methane and Precipitation of Carbonate Mediated by Microbes.Journal of Central South University (Science and Technology), 47(5):1473-1479 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201605003
      Liu, Y.Q., Li, H., Zhu, Y.S., et al., 2010.Permian Lacustrine Eruptive Hydrothermal Dolomites, Santanghu Basin, Xinjiang.Acta Sedimentologica Sinica, 28(5):861-867 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002186269
      Lovley, D.R., Chapelle, F.H., 1995.Deep Subsurface Microbial Processes.Reviews of Geophysics, 33(3):365-381.https://doi.org/10.1029/95rg01305 doi: 10.1029/95RG01305
      Lovley, D.R., Holmes, D.R., Nevin, K.P., 1991.Dissimilatory Fe (Ⅲ) and Mn (Ⅳ) Reduction.Advances in Microbial Physiology, 55(2):219-286.https://doi.org/10.1016/S0065-2911(04)49005-5
      Melton, E.D., Swanner, E.D., Behrens, S., et al., 2014.The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle.Nature Reviews Microbiology, 12(12):797-808. https://doi.org/10.1038/nrmicro3347
      Nickel, E.H., Grice, J.D.1998.The IMA Commission on New Minerals and Mineral Names:Procedures and Guidelines on Mineral Nomenclature.Mineralogy and Petrology, 64(1-4):237-263. https://doi.org/10.1007/BF01226571
      Petrash, D.A., Bialik, O.M., Bontognali, T.R.R., et al., 2017.Microbially Catalyzed Dolomite Formation:From Near-Surface to Burial.Earth-Science Reviews, 171:558-582. https://doi.org/10.1016/j.earscirev.2017.06.015
      Reeder, R.J., Dollase, W.A., 1989.Structural Variation in the Dolomite-Ankerite Solid-Solution Series:An X-Ray, Mossbauer, and TEM Study.American Mineralogist, 74(9):1159-1167. http://ammin.geoscienceworld.org/content/76/3-4/659
      Reeder, R.J., Markgraf, S.A., 1986.High-Temperature Crystal Chemistry of Dolomite.American Mineralogist, 71:795-804. http://cn.bing.com/academic/profile?id=4712c2aed838459d90d31a4ab9883430&encoded=0&v=paper_preview&mkt=zh-cn
      Rong, H., Jiao, Y.Q., Wu, L.Q., et al., 2016.Epigenetic Alteration and Its Constraints on Uranium Mineralization from the Qianjiadian Uranium Deposit, Southern Songliao Basin.Earth Science, 41(1):153-166 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201601012
      Ross, N.L., Reeder, R.J., 1992.High-Pressure Structural Study of Dolomite and Ankerite.American Mineralogist, 77(3-4):412-421.
      Rudnick, R.L., Gao, S., 2003.The Composition of the Continental Crust.In: Holland, H.D., Turekian, K.K., eds., Treatise on Geochemistry, Vol.3, The Crust.Elsevier-Pergamon, Oxford, 1-64.https: //doi.org/10.1016/b0-08-043751-6/03016-4
      Straub, K.L., Benz, M., Schink, B., et al.1996.Anaerobic, Nitrate-Dependent Microbial Oxidation of Ferrous Iron.Applied and Environmental Microbiology, 62(4):1458-1460. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_1388836
      Takata, H., Kuma, K., Iwade, S., et al., 2004.Spatial Variability of Iron in the Surface Water of the Northwestern North Pacific Ocean.Marine Chemistry, 86(3-4):139-157. https://doi.org/10.1016/j.marchem.2003.12.007
      Takeda, S., 1998.Influence of Iron Availability on Nutrient Consumption Ratio of Diatoms in Oceanic Waters.Nature, 393(6687):774-777. https://doi.org/10.1038/31674
      Tucker, M.E., Wright, V.P., 1990.Carbonate Sedimentology.Blackwell Scientific, UK, 482.https://doi.org/10.1002/9781444314175
      Vasconcelos, C., McKenzie, J.A., 1997.Microbial Mediation of Modern Dolomite Precipitation and Diagenesis Under Anoxic Conditions (Lagoa Vermelha, Rio de Janeiro, Brazil).Journal of Sedimentary Research, 67(3):378-390.https://doi.org/10.1306/D4268577-2B26-11D7-8648000102C1865D
      Vasconcelos, C., McKenzie, J.A., Bernasconi, S., et al., 1995.Microbial Mediation as a Possible Mechanism for Natural Dolomite Formation at Low Temperatures.Nature, 377(6546):220-222. https://doi.org/10.1038/377220a0
      Weber, K.A., Achenbach, L.A., Coates, J.D., 2006.Microorganisms Pumping Iron:Anaerobic Microbial Iron Oxidation and Reduction.Nature Reviews Microbiology, 4(10):752-764. https://doi.org/10.1038/nrmicro1490
      Weber, K.A., Picardal, F.W., Roden, E.E., 2001.Microbially Catalyzed Nitrate-Dependent Oxidation of Biogenic Solid-Phase Fe (Ⅱ) Compounds.Environmental Science and Technology, 35(8):1644-1650. https://doi.org/10.1021/es0016598
      Wright, D.T., 1999.The Role of Sulphate-Reducing Bacteria and Cyanobacteria in Dolomite Formation in Distal Ephemeral Lakes of the Coorong Region, South Australia.Sedimentary Geology, 126(1/2/3/4):147-157.https://doi.org/10.1016/s0037-0738(99)00037-8 doi: 10.1016-S0037-0738(99)00037-8/
      Xu, J., Yan, C., Zhang, F., et al., 2013.Testing the Cation-Hydration Effect on the Crystallization of Ca-Mg-CO3 Systems.Proceedings of the National Academy of Sciences, 110(44):17750-17755. https://doi.org/10.1073/pnas.1307612110
      Yao, Y.C., Qiu, X., Wang, H.M., et al., 2018.Dolomite Formation Mediated by Halophilic Archaeal Cells under Different Conditions and Carboxylated Microspheres.Earth Science, 43(2):449-458 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201802008
      You, X.L., Lin, C.S., Zhu, J.Q., et al., 2015.Primary Microbial Dolomite Precipitation in Culture Experiments and in Stromatolite Formations:Implications for the Dolomite Problem.Carpathian Journal of Earth and Environmental Sciences, 10(3):197-206. http://cn.bing.com/academic/profile?id=7100d5f3883ba124ba854680fd4493e0&encoded=0&v=paper_preview&mkt=zh-cn
      You, X.L., Sun, S., Lin, C.S., et al., 2018.Microbial Dolomite in the Sabkha Environment of the Middle Cambrian in the Tarim Basin, NW China.Australian Journal of Earth Sciences, 65(1):109-120.doi: 10.1080/08120099.2018.1408031
      You, X.L., Sun, S., Zhu, J.Q., 2014.Significance of Fossilized Microbes from the Cambrian Stromatolites in the Tarim Basin, Northwest China.Science China:Earth Sciences, 44(8):1777-1790 (in Chinese). doi: 10.1007/s11430-014-4935-z
      You, X.L., Sun, S., Zhu, J.Q., et al., 2011.Progress in the Study of Microbial Dolomite Model.Earth Science Frontiers, 18(4):52-64 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201104005
      You, X.L., Sun, S., Zhu, J.Q., et al., 2013.Microbially Mediated Dolomite in Cambrian Stromatolites from the Tarim Basin, North-West China:Implications for the Role of Organic Substrate on Dolomite Precipitation.Terra Nova, 25(5):387-395. https://doi.org/10.1111/ter.12048
      Yu, Z.C., Liu, K.Y., Zhao, M.J., et al., 2016.Characterization of Diagenesis and the Petroleum Charge in Kela 2 Gas Field, Kuqa Depression, Tarim Basin.Earth Science, 41(3):533-545 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201603020
      Zhang, J.T., He, Z.L., Yue, X.J., et al., 2017.Genesis of Iron-Rich Dolostones in the 5th Member of the Majiagou Formation of the Ordovician in Ordos Basin.Oil and Gas Geology, 38(4):776-783 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201704014
      Zhao, N.N., Xu, T.F., Tian, H.L., et al., 2016.Numerical Simulation of the Influence of the Initial Mineral Components on Mineral Trapping of CO2.Bulletin of Mineralogy, Petrology and Geochemistry, 35(4):674-680 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201604009
      Zheng, R.C., Wang, C.S., Zhu, L.D., et al., 2003.Discovery of the First Example of "White Smoke Type" of Exhalative Rock (Hydrothermal Sedimentary Dolostone) in Jiuxi Basin and Its Significance.Journal of Chengdu University of Technology (Science and Technology Edition), 30(1):1-8 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200301001
      陈蕾, 张洪霞, 李莹, 等, 2016.微生物在地球化学铁循环过程中的作用.中国科学:生命科学, 46(9):1069-1078. http://www.cnki.com.cn/Article/CJFDTOTAL-JCXK201609003.htm
      戴朝成, 郑荣才, 文华国, 等, 2008.辽东湾盆地沙河街组湖相白云岩成因研究.成都理工大学学报(自然科学版), 35(2):187-193. doi: 10.3969/j.issn.1671-9727.2008.02.014
      高杰, 郑天亮, 邓娅敏, 等, 2017.江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响.地球科学, 42(5):716-726. http://earth-science.net/WebPage/Article.aspx?id=3576
      郭鸿烈, 张佛生, 1981.菱铁矿、白云石——铁白云石及方解石差热曲线规律的初步分析.云南化工技术, 8(4):47-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004862216
      黄成刚, 袁剑英, 曹正林, 等, 2014.咸化湖盆碎屑岩储层中铁白云石的溶蚀作用模拟实验研究.石油实验地质, 36(5):650-655. http://d.old.wanfangdata.com.cn/Periodical/sysydz201405022
      刘肖, 许天福, 魏铭聪, 等, 2016.微生物诱导下甲烷厌氧氧化及碳酸盐矿物生成实验.中南大学学报(自然科学版), 47(5):1473-1479. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201605003
      柳益群, 李红, 朱玉双, 等, 2010.白云岩成因探讨:新疆三塘湖盆地发现二叠系湖相喷流型热水白云岩.沉积学报, 28(5):861-867. http://d.old.wanfangdata.com.cn/Periodical/gdlxb201202006
      荣辉, 焦养泉, 吴立群, 等, 2016.松辽盆地南部钱家店铀矿床后生蚀变作用及其对铀成矿的约束.地球科学, 41(1):153-166. http://earth-science.net/WebPage/Article.aspx?id=3228
      药彦辰, 邱轩, 王红梅, 等, 2018.不同状态嗜盐古菌细胞及羧基微球诱导白云石沉淀.地球科学, 43(2):449-458. http://earth-science.net/WebPage/Article.aspx?id=3746
      由雪莲, 孙枢, 朱井泉, 等, 2011.微生物白云岩模式研究进展.地学前缘, 18(4):52-64. http://d.old.wanfangdata.com.cn/Periodical/dxqy201104005
      由雪莲, 孙枢, 朱井泉, 等, 2014.塔里木盆地中上寒武统叠层石白云岩中微生物矿化组构特征及其成因意义.中国科学:地球科学, 44(8):1777-1790. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JDXK201408017&dbname=CJFD&dbcode=CJFQ
      于志超, 刘可禹, 赵孟军, 等, 2016.库车凹陷克拉2气田储层成岩作用和油气充注特征.地球科学, 41(3):533-545. http://earth-science.net/WebPage/Article.aspx?id=3268
      张军涛, 何治亮, 岳小娟, 等, 2017.鄂尔多斯盆地奥陶系马家沟组五段富铁白云石成因.石油与天然气地质, 38(4):776-783. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201704014
      赵宁宁, 许天福, 田海龙, 等, 2016.初始矿物组分对CO2矿物储存影响的模拟研究.矿物岩石地球化学通报, 35(4):674-680. doi: 10.3969/j.issn.1007-2802.2016.04.008
      郑荣才, 王成善, 朱利东, 等, 2003.酒西盆地首例湖相"白烟型"喷流岩——热水沉积白云岩的发现及其意义.成都理工大学学报(自然科学版), 30(1):1-8. doi: 10.3969/j.issn.1671-9727.2003.01.001
    • 加载中
    图(4) / 表(5)
    计量
    • 文章访问数:  5805
    • HTML全文浏览量:  1895
    • PDF下载量:  118
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-04-10
    • 刊出日期:  2018-11-15

    目录

      /

      返回文章
      返回