• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    潮滩沉积物-水界面磷、铁的高分辨率分布特征及生物地球化学行为

    潘峰 郭占荣 刘花台 王博 李志伟 庄振杰

    潘峰, 郭占荣, 刘花台, 王博, 李志伟, 庄振杰, 2018. 潮滩沉积物-水界面磷、铁的高分辨率分布特征及生物地球化学行为. 地球科学, 43(11): 4109-4119. doi: 10.3799/dqkx.2018.177
    引用本文: 潘峰, 郭占荣, 刘花台, 王博, 李志伟, 庄振杰, 2018. 潮滩沉积物-水界面磷、铁的高分辨率分布特征及生物地球化学行为. 地球科学, 43(11): 4109-4119. doi: 10.3799/dqkx.2018.177
    Pan Feng, Guo Zhanrong, Liu Huatai, Wang Bo, Li Zhiwei, Zhuang Zhenjie, 2018. High-Resolution Distribution and Biogeochemical Behavior of Phosphorus and Iron at Sediment-Water Interface of Tidal Flat. Earth Science, 43(11): 4109-4119. doi: 10.3799/dqkx.2018.177
    Citation: Pan Feng, Guo Zhanrong, Liu Huatai, Wang Bo, Li Zhiwei, Zhuang Zhenjie, 2018. High-Resolution Distribution and Biogeochemical Behavior of Phosphorus and Iron at Sediment-Water Interface of Tidal Flat. Earth Science, 43(11): 4109-4119. doi: 10.3799/dqkx.2018.177

    潮滩沉积物-水界面磷、铁的高分辨率分布特征及生物地球化学行为

    doi: 10.3799/dqkx.2018.177
    基金项目: 

    国家自然科学基金项目 41672226

    国家自然科学基金项目 41372242

    详细信息
      作者简介:

      潘峰(1990-), 男, 博士研究生, 研究方向为海岸带水文地质

      通讯作者:

      郭占荣

    • 中图分类号: P736.4

    High-Resolution Distribution and Biogeochemical Behavior of Phosphorus and Iron at Sediment-Water Interface of Tidal Flat

    • 摘要: 为了解潮间带微环境中磷、铁元素的分布和耦合规律及对磷释放的影响,借助薄膜扩散梯度技术(ZrO-Chelex DGT)原位高分辨率获取九龙江口红树林潮滩孔隙水剖面的溶解活性磷(DRP)、Fe2+浓度,并测定沉积物相应的理化参数.研究结果表明:(1)在表层孔隙水中,DRP、Fe2+浓度呈现显著的正相关性,证实了磷、铁元素的耦合关系以及沉积物铁氧化物对磷吸附/解吸附的控制作用;(2)在深部还原带,DRP浓度相对Fe2+浓度具有较大的波动,主要受到沉积物异质性以及红树植物吸收等的影响;(3)根据表层孔隙水中DRP的浓度梯度计算获得磷的分子扩散通量为0.000 64~0.006 00 μg·cm-2·d-1,结果远低于一般湖泊沉积物内源磷的扩散通量,原因是富铁且具较深氧化带的潮滩沉积物中的磷-铁耦合关系有效地抑制了磷的释放.

       

    • 图  1  研究区位置及低潮时采样点分布

      Fig.  1.  Sampling sites in the study area of low tide

      图  2  沉积物磷形态垂向分布

      Fig.  2.  Vertical distributions of P fractions in sediments

      图  3  孔隙水中磷、铁浓度垂直分布

      Fig.  3.  Vertical distributions of P and Fe concentrations in porewater

      图  4  林缘沉积物柱样剖面

      Fig.  4.  Profile of sediment core at mangrove edge

      图  5  ABC三处不同深度段DRP与Fe2+浓度的线性相关

      Fig.  5.  Linear correlation between DRP and Fe2+ concentrations at diverse depth ranges at three stations

      图  6  ABC表层5cm深度范围DRP的浓度变化

      Fig.  6.  Linear correlation between uppermost 5cm depth and DRP concentrations

      表  1  林缘、光滩、水下沉积物理化特征

      Table  1.   Statistical data of properties in sediments at mangrove edge, bare flat and underwater

      深度(cm) TP(mg/kg) 盐度(g/kg) θg(%) TFe(g/kg) TOC(g/kg) 砂(%) 粉砂(%) 粘土(%)
      林缘
      0~2 781 9.0 47.81 15.29 12.98 3.4 75.3 21.3
      2~4 750 8.5 47.52 14.71 13.83 3.8 67.7 28.5
      4~6 971 9.5 48.27 16.20 11.71 2.5 72.0 25.5
      6~8 856 8.5 48.65 15.71 21.11 3.3 74.3 22.4
      8~10 809 9.5 47.24 15.22 18.15 3.9 73.1 23.0
      10~15 781 9.0 44.74 15.65 18.74 4.5 66.3 29.2
      15~20 581 8.5 42.26 15.57 13.41 4.8 73.1 22.1
      20~25 629 8.5 41.77 15.80 17.56 4.9 70.7 24.4
      25~30 650 7.5 41.56 15.78 20.35 3.8 74.0 22.2
      30~35 676 8.0 43.99 16.35 14.00 1.6 73.0 25.4
      平均值 712 8.5 44.30 15.71 16.45 3.9 71.6 24.5
      光滩
      0~2 886 8.5 48.97 15.91 6.80 18.9 65.2 16.1
      2~4 989 6.0 48.29 16.44 8.07 5.4 73.3 21.3
      4~6 1 047 7.5 49.73 16.50 7.14 1.3 73.4 25.3
      6~8 1 046 8.5 49.47 16.67 5.87 1.4 71.2 27.4
      8~10 986 10 47.64 12.85 9.09 2.9 71.5 25.6
      10~15 1 035 8.5 47.04 16.07 12.39 2.0 74.0 24.0
      15~20 797 7.0 43.93 14.36 8.75 5.8 65.4 28.8
      20~25 894 7.0 44.82 15.99 10.95 2.7 73.2 24.1
      25~30 570 5.5 39.91 16.37 11.71 1.1 71.1 27.8
      30~35 565 6.0 44.80 15.85 15.78 1.5 64.6 33.9
      平均值 835 7.2 45.45 15.71 10.62 3.7 70.3 26.0
      水下
      0~2 1 080 6.0 57.13 15.85 15.78 7.1 70.7 22.2
      2~4 859 11.0 50.09 16.19 28.74 7.3 72.4 20.3
      4~6 803 7.5 50.23 16.27 26.87 2.3 77.5 20.2
      6~8 1 036 7.5 50.90 16.40 22.81 8.9 67.0 24.1
      8~10 947 10.0 51.75 15.99 20.10 0.9 75.8 23.3
      10~15 1 132 12.0 51.10 16.35 25.43 0.6 78.4 21.0
      15~20 935 13.0 49.59 16.44 19.17 1.2 76.6 22.2
      20~25 1 044 11.5 47.80 16.19 31.36 3.4 76.5 20.1
      25~30 686 10.5 44.62 16.44 24.33 6.5 67.6 25.9
      30~35 908 8.0 44.00 16.44 20.01 6.6 70.7 22.7
      平均值 942 10.0 48.74 16.31 23.08 4.0 73.8 22.2
      下载: 导出CSV

      表  2  与湖泊沉积物磷扩散通量的对比

      Table  2.   Comparison of P diffusion flux with other areas

      研究地点 扩散通量(μg·cm-2·d-1) 文献来源
      九龙江口 0.00064~0.00600 本研究
      红枫湖 0.032~0.251 罗婧等,2015
      巢湖 0.004~0.079 Han et al., 2015
      洪泽湖 0.017~0.079 Yao et al., 2016
      洞庭湖 -0.003~0.020 Gao et al., 2016
      太湖 -0.021~0.065 Ding et al., 2015
      下载: 导出CSV
    • Babu, K.N., Ouseph, P.P., Padmalal, D., 2000.Interstitial Water-Sediment Geochemistry of N, P and Fe and Its Response to Overlying Waters of Tropical Estuaries:A Case from the Southwest Coast of India.Environmental Geology, 39(6):633-640. https://doi.org/10.1007/s002540050475
      Bao, S.D., 2000.Soil Agricultural Chemistry Analysis (The Third Edition).China Agriculture Press, Beijing, 21 (in Chinese).
      Cai, P.H., Shi, X.M., Moore, W.S., et al., 2014.224Ra:228Th Disequilibrium in Coastal Sediments:Implications for Solute Transfer across the Sediment-Water Interface.Geochimica et Cosmochimica Acta, 125:68-84. https://doi.org/10.1016/j.gca.2013.09.029
      Chen, M.S., Ding, S.M., Liu, L., et al., 2015.Iron-Coupled Inactivation of Phosphorus in Sediments by Macrozoobenthos (Chironomid Larvae) Bioturbation:Evidences from High-Resolution Dynamic Measurements.Environmental Pollution, 204:241-247. https://doi.org/10.1016/j.envpol.2015.04.031
      Ding, S., Wan, G.Y., Xu, D., et al., 2013.Gel-Based Coloration Technique for the Submillimeter-Scale Imaging of Labile Phosphorus in Sediments and Soils with Diffusive Gradients in Thin Films.Environmental Science & Technology, 47(14):7821-7829. https://doi.org/10.1021/es400192j
      Ding, S.M., Xu, D., Sun, Q., et al., 2010.Measurement of Dissolved Reactive Phosphorus Using the Diffusive Gradients in Thin Films Technique with a High-Capacity Binding Phase.Environmental Science & Technology, 44(21):8169-8174. https://doi.org/10.1021/es1020873
      Ding, S.M., Han, C., Wang, Y.P., et al., 2015.In Situ, High-Resolution Imaging of Labile Phosphorus in Sediments of a Large Eutrophic Lake.Water Research, 74:100-109. https://doi.org/10.1016/j.watres.2015.02.008
      Fan, C.X., Zhou, Y.Y., Wu, Q.L., et al., 2013.The Sediment-Water Interface of Lakes:Processes and Effects.Science Press, Beijing, 71 (in Chinese).
      Gao, C.M., Zhu, Z., Wang, G.Q., et al., 2015.The Distribution of Phosphorus Forms and Its Environmental Significance in the Marine Ranching Demonstration Area of Haizhou Bay Sediment.China Environmental Science, 35(11):3437-3444 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx201511031
      Gao, J., Zheng, T.L., Deng, Y.M., et al., 2017.Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain.Earth Science, 42(5):716-726 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705007
      Gao, Y.L., Liang, T., Tian, S.H., et al., 2016.High-Resolution Imaging of Labile Phosphorus and Its Relationship with Iron Redox State in Lake Sediments.Environmental Pollution, 219:466-474. https://doi.org/10.1016/j.envpol.2016.05.053
      Han, C., Ding, S.M., Yao, L., et al., 2015.Dynamics of Phosphorus-Iron-Sulfur at the Sediment-Water Interface Influenced by Algae Blooms Decomposition.Journal of Hazardous Materials, 300:329-337. https://doi.org/10.1016/j.jhazmat.2015.07.009
      Hou, Z.Y., Guo, C.S., Wang, J.Q., et al., 2016.Using Gassmann Equation Predict Marine Sediment Porosity.Earth Science, 41(7):1198-1205 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201607010
      Jiang, X., Jin, X.C., Yao, Y., et al., 2008.Effects of Biological Activity, Light, Temperature and Oxygen on Phosphorus Release Processes at the Sediment and Water Interface of Taihu Lake, China.Water Research, 42(8):2251-2259. https://doi.org/10.1016/j.watres.2007.12.003
      Jiao, N.Z., 1989.On the Problem of Phosphorus-Release from the Sediment.Transactions of Oceanology and Limnology, (2):80-84 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYFB198902015.htm
      Karamanev, D.G., Nikolov, L.N., Mamatarkova, V., 2002.Rapid Simultaneous Quantitative Determination of Ferric and Ferrous Ions in Drainage Waters and Similar Solutions.Minerals Engineering, 15(5):341-346. https://doi.org/10.1016/s0892-6875(02)00026-2
      Kristensen, E., Alongi, D.M., 2006.Control by Fiddler Crabs (Uca Vocans) and Plant Roots (Avicennia Marina) on Carbon, Iron, and Sulfur Biogeochemistry in Mangrove Sediment.Limnology and Oceanography, 51(4):1557-1571. https://doi.org/10.4319/lo.2006.51.4.1557
      Lee, E.Y., Cho, K.S., Ryu, H.W., 2002.Microbial Refinement of Kaolin by Iron-Reducing Bacteria.Applied Clay Science, 22(1):47-53. https://doi.org/10.1016/s0169-1317(02)00111-4
      Liang, J., Lu, C.Y., Ye, Y., et al., 2013.Soil Respiration in a Subtropical Mangrove Wetland in the Jiulong River Estuary, China.Pedosphere, 23(5):678-685. https://doi.org/10.1016/s1002-0160(13)60060-0
      Li, B., Jia, F., Zhang, Y.L., et al., 2011.High-Resolution and Synchronous Analyses of Dissoloved Reactive Phosphorus (DRP) and Dissolved Ferrous Iron in Pore Waters of Sediments.Ecology and Environmental Sciences, 20(3):485-489 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj201103017
      Li, R., Ye, Y., Chen, G.C., et al., 2007.Effect of Aegiceras Corniculata Mangrove Rehabilitation on Macro-Benthic Animals in Jiulongjiang River Estuary.Journal of Xiamen University (Natural Science), 46(1):109-114 (in Chinese with English abstract). doi: 10.1017-S1047951109990680/
      Li, Y.H., Gregory, S., 1974.Diffusion of Ions in Sea Water and in Deep-Sea Sediments.Geochimica et Cosmochimica Acta, 38(5):703-714. https://doi.org/10.1016/0016-7037(74)90145-8
      Lukkari, K., Leivuori, M., Vallius, H., et al., 2009.The Chemical Character and Burial of Phosphorus in Shallow Coastal Sediments in the Northeastern Baltic Sea.Biogeochemistry, 94(2):141-162. https://doi.org/10.1007/s10533-009-9315-y
      Luo, J., Chen, J.A., Wang, J.F., et al., 2015.Estimation of the Phosphorus Flux from the Sediments in Hongfeng Lake Using the Zr-Oxide Diffusive Gradients in Thin Films (Zr-Oxide DGT) Technique.Bulletin of Mineralogy, Petrology and Geochemistry, 34(5):1014-1020 (in Chinese with English abstract). doi: 10.1007/s12665-015-4612-3
      McGowan, K.T., Martin, J.B., 2007.Chemical Composition of Mangrove-Generated Brines in Bishop Harbor, Florida:Interactions with Submarine Groundwater Discharge.Marine Chemistry, 104(1):58-68. https://doi.org/10.1016/j.marchem.2006.12.006
      Pagès, A., Teasdale, P.R., Robertson, D., et al., 2011.Representative Measurement of Two-Dimensional Reactive Phosphate Distributions and Co-Distributed Iron (Ⅱ) and Sulfide in Seagrass Sediment Porewaters.Chemosphere, 85(8):1256-1261. https://doi.org/10.1016/j.chemosphere.2011.07.020
      Qian, B., Liu, L., Xiao, X., et al., 2014.The Process of Phosphorus Release from Lake Sediments on the Micro-Interface.Journal of Hydraulic Engineering, 45(4):482-489 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=slxb201404014
      Ruban, V., López-Sánchez, J.F., Pardo, P., et al., 2001.Harmonized Protocol and Certified Reference Material for the Determination of Extractable Contents of Phosphorus in Freshwater Sediments-A Synthesis of Recent Works.Fresenius' Journal of Analytical Chemistry, 370(2-3):224-228. https://doi.org/10.1007/s002160100753
      Shen, S., Ma, T., Du, Y., et al., 2017.Dynamic Variations of Nitrogenin Groundwater under Influence of Seasonal Hydrological Condition in Typical Area of Jianghan Plain.Earth Science, 42(5):674-684 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201705002.htm
      Skoog, A.C., Arias-Esquivel, V.A., 2009.The Effect of Induced Anoxia and Reoxygenation on Benthic Fluxes of Organic Carbon, Phosphate, Iron, and Manganese.Science of the Total Environment, 407(23):6085-6092. https://doi.org/10.1016/j.scitotenv.2009.08.030
      State Administration for Quality Supervision and Inspection and Quarantine, National Standardization Administration Committee, 2007.GB 17378-2007, The Specification for Marine Monitoring China.Ocean Press, Beijing, 54 (in Chinese).
      Stockdale, A., Davison, W., Zhang, H., 2009.Micro-Scale Biogeochemical Heterogeneity in Sediments:A Review of Available Technology and Observed Evidence.Earth-Science Reviews, 92(1):81-97. https://doi.org/10.1016/j.earscirev.2008.11.003
      Sun, Q., Zhang, L., Ding, S., et al., 2015.Evaluation of the Diffusive Gradients in Thin Films Technique Using a Mixed Binding Gel for Measuring Iron, Phosphorus and Arsenic in the Environment.Environmental Science:Processes & Impacts, 17(3):570-577. https://doi.org/10.1039/C4EM00629A
      Tipping, E., 1981.The Adsorption of Aquatic Humic Substances by Iron Oxides.Geochimica et Cosmochimica Acta, 45(2):191-199. https://doi.org/10.1016/0016-7037(81)90162-9
      Toggweiler, J.R., 1999.Oceanography:An Ultimate Limiting Nutrient.Nature, 400(6744):511-512. https://doi.org/10.1038/22892
      Ullman, W.J., Aller, R.C., 1982.Diffusion Coefficients in Nearshore Marine Sediments.Limnology and Oceanography, 27(3):552-556. https://doi.org/10.4319/lo.1982.27.3.0552
      Wang, Y.Y., Huang, S.B., Zhao, L., et al., 2017.Evolution of Quaternary Sedimentary Environment in Shallow Aquifers, at Shahu Area, Jianghan Plain.Earth Science, 42(5):751-760 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201705011
      Xu, D., Chen, Y.F., Ding, S.M., et al., 2013.Diffusive Gradients in Thin Films Technique Equipped with a Mixed Binding Gel for Simultaneous Measurements of Dissolved Reactive Phosphorus and Dissolved Iron.Environmental Science & Technology, 47(18):10477-10484. https://doi.org/10.1021/es401822x
      Yao, Y., Wang, P.F., Wang, C., et al., 2016.Assessment of Mobilization of Labile Phosphorus and Iron across Sediment-Water Interface in a Shallow Lake (Hongze) Based on In Situ High-Resolution Measurement.Environmental Pollution, 219:873-882. https://doi.org/10.1016/j.envpol.2016.08.054
      Zhang, H., Davison, W., Gadi, R., et al., 1998.In Situ Measurement of Dissolved Phosphorus in Natural Waters Using DGT.Analytica Chimica Acta, 370(1):29-38. https://doi.org/10.1016/s0003-2670(98)00250-5
      Zhang, X.Y., Yang, Q., Sun, Y., et al., 2013.The Distribution of Phosphorus Forms and Bioavailability in Sediments from Huang Dong Hai Continental Shelf.Acta Ecologica Sinica, 33(11):3509-3519 (in Chinese with English abstract). doi: 10.5846/stxb
      Zhong, S., Wu, Y.P., Xu, J.M., 2009.Phosphorus Utilization and Microbial Community in Response to Lead/Iron Addition to a Waterlogged Soil.Journal of Environmental Sciences, 21(10):1415-1423. https://doi.org/10.1016/s1001-0742(08)62434-1
      Zhou, W., Wang, Q., Zhao, Q.Y., et al., 1990.Color Variation of Surface Sediment in South Bohai Sea.Marine Sciences, 14(3):31-35 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005268235
      Zhu, G.W., Gao, G., Qin, B.Q., et al., 2003.Geochemical Characteristics of Phosphorus in Sediments of a Large Shallow Lake.Advances in Water Science, 14(6):714-719 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=skxjz200306008
      鲍士旦, 2000.土壤农化分析(第三版).北京:中国农业出版社, 21.
      范成新, 周易勇, 吴庆龙, 等, 2013.湖泊沉积物界面过程与效应.北京:科学出版社, 71.
      高春梅, 朱珠, 王功芹, 等, 2015.海州湾海洋牧场海域表层沉积物磷的形态与环境意义.中国环境科学, 35(11):3437-3444. doi: 10.3969/j.issn.1000-6923.2015.11.031
      高杰, 郑天亮, 邓娅敏, 等, 2017.江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响.地球科学, 42(5):716-726. http://www.earth-science.net/WebPage/Article.aspx?id=3576
      侯正瑜, 郭常升, 王景强, 等, 2016.利用Gassmann方程预测海底沉积物孔隙度.地球科学, 41(7):1198-1205. http://www.earth-science.net/WebPage/Article.aspx?id=3328
      焦念志, 1989.关于沉积物释磷问题的研究.海洋湖沼通报, (2):80-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001531828
      李斌, 贾飞, 张银龙, 等, 2011.沉积物间隙水溶解态磷和铁(Ⅱ)高分辨同步分析方法的研究.生态环境学报, 20(3):485-489. doi: 10.3969/j.issn.1674-5906.2011.03.017
      李蓉, 叶勇, 陈光程, 等, 2007.九龙江口桐花树红树林恢复对大型底栖动物的影响.厦门大学学报(自然科学版), 46(1):109-114. doi: 10.3321/j.issn:0438-0479.2007.01.025
      罗婧, 陈敬安, 王敬富, 等, 2015.利用薄膜扩散梯度技术估算红枫湖沉积物磷释放通量.矿物岩石地球化学通报, 34(5):1014-1020. doi: 10.3969/j.issn.1007-2802.2015.05.017
      钱宝, 刘凌, 肖潇, 等, 2014.湖泊沉积物-水微界面上磷的释放过程研究.水利学报, 45(4):482-489. http://d.old.wanfangdata.com.cn/Periodical/slxb201404014
      沈帅, 马腾, 杜尧, 等, 2017.江汉平原典型地区季节性水文条件影响下氮的动态变化规律.地球科学, 42(5):674-684. http://www.earth-science.net/WebPage/Article.aspx?id=3580
      王妍妍, 黄爽兵, 赵龙, 等, 2017.江汉平原沙湖地区浅层含水层第四纪沉积环境演化.地球科学, 42(5):751-760. http://www.earth-science.net/WebPage/Article.aspx?id=3573
      张小勇, 杨茜, 孙耀, 等, 2013.黄东海陆架区沉积物中磷的形态分布及生物可利用性.生态学报, 33(11):3509-3519. http://d.old.wanfangdata.com.cn/Periodical/stxb201311028
      中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2007.GB17378-2007, 海洋监测规范.北京:海洋出版社, 54.
      周伟, 王琦, 赵其渊, 等, 1990.渤海南部海底沉积物颜色的研究.海洋科学, 14(3):31-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000005268235
      朱广伟, 高光, 秦伯强, 等, 2003.浅水湖泊沉积物中磷的地球化学特征.水科学进展, 14(6):714-719. doi: 10.3321/j.issn:1001-6791.2003.06.008
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  3817
    • HTML全文浏览量:  1719
    • PDF下载量:  54
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-03-19
    • 刊出日期:  2018-11-15

    目录

      /

      返回文章
      返回