• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏努日晚白垩世埃达克岩:洋脊俯冲的产物

    代作文 李光明 丁俊 黄勇 曹华文

    代作文, 李光明, 丁俊, 黄勇, 曹华文, 2018. 西藏努日晚白垩世埃达克岩:洋脊俯冲的产物. 地球科学, 43(8): 2727-2741. doi: 10.3799/dqkx.2018.230
    引用本文: 代作文, 李光明, 丁俊, 黄勇, 曹华文, 2018. 西藏努日晚白垩世埃达克岩:洋脊俯冲的产物. 地球科学, 43(8): 2727-2741. doi: 10.3799/dqkx.2018.230
    Dai Zuowen, Li Guangming, Ding Jun, Huang Yong, Cao Huawen, 2018. Late Cretaceous Adakite in Nuri Area, Tibet: Products of Ridge Subduction. Earth Science, 43(8): 2727-2741. doi: 10.3799/dqkx.2018.230
    Citation: Dai Zuowen, Li Guangming, Ding Jun, Huang Yong, Cao Huawen, 2018. Late Cretaceous Adakite in Nuri Area, Tibet: Products of Ridge Subduction. Earth Science, 43(8): 2727-2741. doi: 10.3799/dqkx.2018.230

    西藏努日晚白垩世埃达克岩:洋脊俯冲的产物

    doi: 10.3799/dqkx.2018.230
    基金项目: 

    国家重点研发计划项目 2016YFC0600308

    中国地质调查局项目 DD20160015

    详细信息
      作者简介:

      代作文(1988-), 男, 博士研究生, 主要从事青藏高原地质矿产勘查评价研究

    • 中图分类号: P597

    Late Cretaceous Adakite in Nuri Area, Tibet: Products of Ridge Subduction

    • 摘要: 前人对冈底斯带晚白垩世埃达克岩的成因和地球动力学背景存在不同的认识.对努日地区的石英闪长玢岩开展了锆石U-Pb年代学、全岩地球化学及Hf同位素研究.结果表明,努日石英闪长玢岩侵位于96.5±1.3 Ma,以高SiO2(63.96%~65.75%)、Al2O3(14.37%~15.99%)、MgO(2.12%~2.39%)、Sr(362×10-6~575×10-6,平均为467×10-6)含量,低Y(8.94×10-6~11.50×10-6)、Yb(0.81×10-6~1.06×10-6)含量及高Sr/Y比值(33.52~60.65)为特征,显示埃达克岩地球化学特征.岩石属低钾-中钾钙碱性准铝质花岗岩(A/CNK=0.81~0.96),富集LREE、亏损HREE,富集大离子亲石元素(LILE)、亏损高场强元素(HFSE),无明显负Eu异常.锆石εHft)值为-0.3~+15.2(主要为+10.0~+15.2),二阶段模式年龄tDM2为187~1 173(主要为187~516 Ma),表明源区以俯冲洋壳为主,并可能卷入了少量俯冲沉积物.岩石具有较高的Mg#值和相容元素Cr、Ni含量,表明熔体在上升过程中与地幔发生了相互作用.通过与南冈底斯典型埃达克岩对比,认为努日石英闪长玢岩是在洋脊俯冲背景下、穿过板片窗的高热流导致板片窗边缘的洋壳(及少量俯冲沉积物)部分熔融形成的.

       

    • 图  1  青藏高原及冈底斯构造简图(a、b)和努日地区地质简图(c)

      图a、b据朱弟成等(2009)修改;图c据Chen et al.(2015).图a中年龄数据来源:96 Ma(Zheng et al., 2014);137 Ma(Zhu et al., 2009);84~78 Ma(管琪等,2010);80~83 Ma(Wen et al., 2008);92 Ma(梁华英等,2010赵珍等,2013).BNSZ.班公湖-怒江缝合带;YZSZ.雅鲁藏布缝合带;NG.北冈底斯;MG.中冈底斯;GRUB.冈底斯弧背断隆带;SG.南冈底斯

      Fig.  1.  Tectonic sketch of the Gangdese and Tibet Plateau (a, b) and geological map of the Nuri region (c)

      图  2  努日晚白垩世石英闪长玢岩野外及显微照片(正交偏光)

      Pl.斜长石;Am.角闪石;Chl.绿泥石

      Fig.  2.  Field and petrographical photos of the Late Cretaceous quartz diorite porphyrite in Nuri

      图  3  努日石英闪长玢岩典型锆石的阴极发光图像(a)和锆石U-Pb年龄谐和图(b)

      图a中实线圆圈为U-Pb测年靶点,虚线圆圈为Hf同位素靶点

      Fig.  3.  Cathodoluminescence images of representative zircons (a) and U-Pb concordia diagram (b) of quartz diorite porpyrite in Nuri

      图  4  努日石英闪长玢岩TAS图解(a)和A/NK-A/CNK判别图解(b)

      图a据Middlemost (1994); 图b据Maniar and Piccoli (1989).Ir.Irvine分界线,上方为碱性,下方为亚碱性.1.橄榄辉长岩;2a.碱性辉长岩;2b.亚碱性辉长岩;3.辉长闪长岩;4.闪长岩;5.花岗闪长岩;6.花岗岩;7.硅英岩;8.二长辉长岩;9.二长闪长岩;10.二长岩;11.石英二长岩;12.正长岩;13.副长石辉长岩;14.副长石二长闪长岩;15.副长石二长正长岩;16.副长正长岩;17.副长深成岩;18.霓方钠岩/磷霞岩/粗白榴岩

      Fig.  4.  TAS diagram (a) and A/NK-A/CNK diagram (b) of quartz diorite porpyrite in Nuri

      图  5  努日石英闪长玢岩K2O-SiO2图解(a)和MgO-SiO2图解(b)

      图a据Peccerillo and Taylor (1976)le Maitre (2002); 图b据管琪等(2010)

      Fig.  5.  Plots of K2O-SiO2 (a) and MgO-SiO2 (b) of quartz diorite porpyrite in Nuri

      图  6  努日石英闪长玢岩稀土元素球粒陨石标准化配分模式(a)及微量元素原始地幔标准化蛛网图(b)

      图a据McDonough and Sun (1995); 图b据Sun and McDonough (1989).俯冲洋壳部分熔融(92~137 Ma)数据引自Zhu et al.(2009)赵珍等(2013)Zheng et al.(2014); 下地壳部分熔融(78~84 Ma)数据引自Wen et al.(2008)管琪等(2010)

      Fig.  6.  Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace element spider diagram (b) for quartz diorite porpyrite in Nuri

      图  7  努日石英闪长玢岩Sr/Y-Y判别图(a)和(La/Yb)N-YbN判别图(b)

      Defant and Drummond (1990)Martin et al.(2005).图例同图 4

      Fig.  7.  Discrimination diagrams of Sr/Y-Y (a) and (La/Yb)N-YbN (b) of quartz diorite porpyrite in Nuri

      图  8  努日晚白垩世石英闪长玢岩中的锆石176Hf/177Hf-176Lu/177Hf(a)及εHf(t)-t(b)图解

      Fig.  8.  Diagrams of zircon 176Hf/177Hf - 176Lu/177Hf (a) and εHf(t)-t (b) for Late Cretaceous quartz diorite porphyrite in Nuri

      图  9  努日石英闪长玢岩La/Yb-La图解

      Chung et al.(2009)

      Fig.  9.  La/Yb-La discrimination diagram for quartz diorite porpyrite in Nuri

      表  1  努日石英闪长玢岩锆石LA-ICP-MS U-Pb定年结果

      Table  1.   Zircon LA-ICP-MS U-Pb dating results of quartz diorite porphyrite in Nuri

      样品 元素含量(10-6) Th/U 同位素比值 年龄(Ma)
      Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
      NR4107-01 1.23 48.07 64.30 0.75 0.036 22 0.018 82 0.099 20 0.030 36 0.015 12 0.000 64 96 28 97 4
      NR4107-02 4.75 364.29 196.99 1.85 0.055 02 0.017 82 0.099 74 0.029 95 0.015 19 0.000 58 413 596 97 28 97 4
      NR4107-03 1.26 116.20 103.63 1.12 0.000 00 0.000 00 0.098 59 0.036 73 0.014 96 0.000 97 95 34 96 6
      NR4107-04 1.57 68.31 73.90 0.92 0.039 33 0.011 79 0.100 87 0.022 14 0.015 13 0.000 51 98 20 97 3
      NR4107-05 1.55 72.26 84.08 0.86 0.033 04 0.016 04 0.121 07 0.039 61 0.014 72 0.000 51 116 36 94 3
      NR4107-06 1.10 38.04 60.32 0.63 0.067 21 0.027 80 0.102 01 0.032 81 0.015 14 0.000 65 844 684 99 30 97 4
      NR4107-07 1.94 106.21 97.18 1.09 0.039 64 0.013 67 0.096 00 0.022 65 0.014 99 0.000 61 93 21 96 4
      NR4107-08 4.74 166.82 217.44 0.77 0.012 35 0.005 05 0.097 46 0.013 78 0.015 39 0.000 36 94 13 98 2
      NR4107-09 1.36 57.00 73.93 0.77 0.033 22 0.024 51 0.100 58 0.046 58 0.015 23 0.000 74 97 43 97 5
      NR4107-10 3.32 145.86 177.38 0.82 0.030 17 0.012 27 0.133 71 0.028 34 0.020 93 0.000 92 127 25 134 6
      NR4107-11 1.67 74.96 84.88 0.88 0.050 60 0.016 69 0.098 02 0.022 02 0.014 83 0.000 57 233 622 95 20 95 4
      NR4107-12 1.23 46.37 67.54 0.69 0.049 38 0.010 34 0.098 18 0.021 51 0.014 87 0.000 61 165 430 95 20 95 4
      NR4107-13 3.42 140.79 175.06 0.80 0.048 62 0.010 94 0.098 03 0.017 97 0.015 01 0.000 33 128 459 95 17 96 2
      NR4107-14 13.98 98.13 97.68 1.00 0.008 78 0.004 11 0.096 78 0.015 89 0.015 11 0.000 47 94 15 97 3
      NR4107-15 1.70 78.56 88.72 0.89 0.046 30 0.012 68 0.097 10 0.028 73 0.014 86 0.000 44 13 552 94 27 95 3
      NR4107-16 5.37 211.28 257.19 0.82 0.033 74 0.004 36 0.097 45 0.007 35 0.015 13 0.000 40 94 7 97 3
      NR4107-17 3.31 159.61 178.81 0.89 0.046 48 0.006 95 0.094 71 0.016 95 0.015 01 0.000 41 33 313 92 16 96 3
      NR4107-18 1.53 69.64 84.24 0.83 0.034 59 0.009 39 0.101 30 0.027 57 0.015 36 0.000 39 98 25 98 2
      NR4107-19 0.62 75.57 97.11 0.78 0.007 99 0.003 92 0.097 61 0.013 72 0.015 16 0.000 29 95 13 97 2
      NR4107-20 1.52 62.38 87.12 0.72 0.046 84 0.008 42 0.094 91 0.016 75 0.014 70 0.000 39 43 391 92 16 94 2
      下载: 导出CSV

      表  2  努日石英闪长玢岩主量元素(%)和微量元素(10-6)分析结果

      Table  2.   Major elements (%) and trace elements (10-6) results of quartz diorite porpyrite in Nuri

      样号 NR01 NR02 NR03 NR04
      SiO2 64.76 65.75 63.96 65.40
      Al2O3 15.45 14.37 15.99 15.51
      MgO 2.19 2.39 2.12 2.27
      CaO 5.71 6.91 5.60 6.82
      Na2O 2.65 2.46 3.01 2.02
      K2O 1.25 1.02 1.40 0.95
      MnO 0.05 0.05 0.06 0.04
      TiO2 0.56 0.54 0.58 0.60
      P2O5 0.22 0.22 0.23 0.23
      Fe2O3 1.19 0.95 1.65 1.00
      FeO 2.36 2.21 1.93 1.86
      LOI 2.78 2.30 2.69 2.48
      SUM 99.17 99.16 99.21 99.18
      TFe2O3 3.81 3.40 3.79 3.06
      Na2O+K2O 3.90 3.48 4.41 2.97
      K2O/Na2O 0.47 0.41 0.47 0.47
      A/CNK 0.96 0.81 0.96 0.92
      A/NK 2.70 2.79 2.47 3.57
      Mg# 48.13 51.96 52.35 54.96
      Li 21.30 8.15 14.50 16.60
      Be 2.29 2.05 1.54 2.82
      Sc 9.41 8.72 8.54 10.30
      V 87.30 87.50 90.20 85.20
      Cr 34.10 29.80 37.60 39.50
      Co 11.30 12.60 11.60 13.60
      Ni 19.00 17.40 19.10 18.50
      Cu 3 556.00 3 426.00 2 251.00 4 312.00
      Zn 129.00 82.90 73.10 96.10
      Ga 16.50 14.90 16.50 16.10
      Rb 107.00 92.20 115.00 90.80
      Sr 477.00 455.00 575.00 362.00
      Mo 64.40 349.00 13.70 71.50
      Cd 0.97 1.77 0.52 1.13
      In 0.14 0.11 0.09 0.17
      Sb 28.00 0.83 0.42 0.41
      P 969.30 938.73 982.39 1 021.69
      Nd 19.50 22.30 21.00 22.20
      Cs 7.06 7.48 8.06 6.56
      Ba 209.00 139.00 221.00 120.00
      La 23.10 26.80 24.60 26.50
      Ce 42.50 48.40 44.70 48.20
      Pr 5.14 5.73 5.33 5.80
      Sm 3.31 3.93 3.53 3.87
      Eu 0.72 0.93 0.96 1.46
      Gd 2.28 3.25 2.33 2.82
      Tb 0.37 0.56 0.40 0.45
      Dy 2.02 2.40 1.78 2.29
      Ho 0.33 0.44 0.33 0.37
      Er 0.88 1.11 0.80 1.02
      Tm 0.14 0.17 0.15 0.19
      Yb 0.81 1.05 0.84 1.06
      Lu 0.12 0.16 0.12 0.15
      Y 8.94 11.50 9.48 10.80
      W 44.10 28.40 7.57 16.40
      Re 0.03 0.08 0.01 0.03
      Tl 0.92 0.79 1.10 0.83
      Pb 9.04 7.77 9.66 7.66
      Bi 0.60 0.46 0.75 0.57
      Th 5.52 5.81 6.21 5.51
      U 1.68 2.48 1.80 2.27
      Nb 4.80 4.99 4.70 5.26
      Ta 0.33 0.35 0.32 0.34
      Zr 136.00 131.00 133.00 145.00
      Hf 3.30 3.20 3.19 3.78
      ∑REE 101.22 117.23 106.87 116.38
      LREE 94.27 108.09 100.12 108.03
      HREE 6.95 9.13 6.75 8.35
      LREE/HREE 13.56 11.84 14.83 12.94
      (La/Yb)N 19.35 17.34 20.01 16.98
      δEu 0.76 0.77 0.96 1.29
      δCe 0.91 0.90 0.90 0.90
      Y/Yb 11.02 10.95 11.35 10.19
      注:LOI为烧失量;A/NK=Al2O3/(Na2O+K2O),A/CNK=Al2O3/(CaO+Na2O+K2O);Mg#=100×Mg(Mg+Fe);δEu=2EuN/(SmN+GdN),其中N表示球粒陨石标准化.
      下载: 导出CSV

      表  3  努日石英闪长玢岩锆石Hf同位素组成

      Table  3.   Zircon Hf isotopic composition for the quartz diorite porpyrite in Nuri

      测点 年龄(Ma) 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(t) tDM1(Ma) fLu-Hf tDM2(Ma)
      01 96.5 0.029 052 0.000 142 0.000 655 0.000 004 0.283 090 0.000 026 13.3 226 -0.98 305
      02 96.5 0.038 231 0.000 253 0.001 115 0.000 026 0.283 057 0.000 028 12.1 276 -0.97 382
      03 96.5 0.021 540 0.000 285 0.000 465 0.000 004 0.283 037 0.000 023 11.5 300 -0.99 425
      04 96.5 0.042 961 0.000 153 0.000 994 0.000 007 0.283 143 0.000 040 15.2 153 -0.97 187
      05 96.5 0.046 856 0.000 507 0.001 172 0.000 034 0.282 998 0.000 034 10.0 361 -0.96 516
      06 96.5 0.053 949 0.000 676 0.001 886 0.000 022 0.282 708 0.000 061 -0.3 790 -0.94 1173
      07 96.5 0.045 458 0.000 392 0.001 529 0.000 023 0.283 006 0.000 031 10.3 353 -0.95 499
      08 96.5 0.049 905 0.000 364 0.001 771 0.000 016 0.282 871 0.000 036 5.5 551 -0.95 806
      09 96.5 0.039 083 0.000 272 0.000 917 0.000 006 0.283 080 0.000 028 13.0 242 -0.97 329
      注:εHf(t) = 10 000{[(176Hf /177Hf)S-(176 Lu/177Hf)S×(eλt-1) ]/[(176Hf /177Hf)CHUR, 0 -( 176 Lu /177Hf)CHUR×(eλt-1)]-1};tDM1=1/λ×ln{1 +[(176Hf /177Hf)S-(176 Hf /177 Hf)DM]/[(176 Lu /177 Hf)S-(176 Lu/177 Hf)DM]};tDM2=1/λ×ln {1+[(176 Hf/177 Hf)S, t-(176 Hf/177Hf)DM, t]/[( 176 Lu/177 Hf)C-(176 Lu/177 Hf)DM]}+t;球粒陨石及亏损地幔现今的176 Hf /177 Hf和176 Lu/177 Hf同位素比值分别为0.282 772和0.033 2,0.283 25和0.038 4(Blichert-Toft and Albarède, 1997Griffin et al., 2002);λ=1.867×10-11 a-1(Söderlund et al., 2004);( 176 Lu/177Hf)C=0.015;t为锆石结晶年龄.
      下载: 导出CSV
    • Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258. https://doi.org/10.1016/s0012-821x(97)00040-x
      Chen, L., Qin, K.Z., Li, G.M., et al., 2015.Zircon U-Pb Ages, Geochemistry, and Sr-Nd-Pb-Hf Isotopes of the Nuri Intrusive Rocks in the Gangdese Area, Southern Tibet:Constraints on Timing, Petrogenesis, and Tectonic Transformation.Lithos, 212-215:379-396. https://doi.org/10.1016/j.lithos.2014.11.014
      Chen, X.J., Xu, Z.Q., Meng, Y.K., et al., 2014.Petrogenesis of Miocene Adakitic Diorite-Porphyrite in Middle Gangdese Batholith, Southern Tibet:Constraints from Geochemistry, Geochronology and Sr-Nd-Hf Isotopes.Acta Petrologica Sinica, 30(8):2253-2268 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408010
      Chu, M.F., Chung, S.L., Song, B., et al., 2006.Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet.Geology, 34(9):745-748. https://doi.org/10.1130/g22725.1
      Chung, S.L., Chu, M.F., Ji, J.Q., et al., 2009.The Natureand Timing of Crustal Thickening in Southern Tibet:Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites.Tectonophysics, 477(1):36-48. https://doi.org/10.1016/j.tecto.2009.08.008
      Defant, M.J., Drummond, M.S., 1990.Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere.Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0
      Gao, S., Rudnick, R.L., Yuan, H.L., et al., 2004.Recycling Lower Continental Crust in the North China Craton.Nature, 432(7019):892-897. https://doi.org/10.1038/nature03162
      Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002.Zircon Chemistry and Magma Mixing, SE China:In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes.Lithos, 61(3-4):237-269. https://doi.org/10.1016/s0024-4937(02)00082-8
      Guan, Q., Zhu, D.C., Zhao, Z.D., et al., 2010.Late Cretaceous Adakites in the Eastern Segment of the Gangdese Belt, Southern Tibet:Products of Neo-Tethyan Ridge Subduction? Acta Petrologica Sinica, 26(7):2165-2179 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e6d75fcc7e691aace80279a31e46e38d&encoded=0&v=paper_preview&mkt=zh-cn
      Guo, Z.F., Wilson, M., Liu, J.Q., 2007.Post-Collisional Adakites in South Tibet:Products of Partial Melting of Subduction-Modified Lower Crust.Lithos, 96(1-2):205-224. https://doi.org/10.1016/j.lithos.2006.09.011
      Hou, Z.Q., Yang, Z.S., Xu, W.Y., et al., 2006.Metallogenesis in Tibetan Collisional Orogenic Belt:Ⅰ.Mineralization in Main Collisional Orogenic Setting.Mineral Deposits, 25(4):337-358 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200604000.htm
      Ji, W.Q., Wu, F.Y., Zhong, S.L., et al., 2009.Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batholith, Southern Tibet.Science in China (Series D), 39(7):849-871 (in Chinese). http://cn.bing.com/academic/profile?id=84b33baaf4dff1a5f6b5375aa61c576b&encoded=0&v=paper_preview&mkt=zh-cn
      Kang, Z.Q., Xu, J.F., Chen, J.L., et al., 2009.Geochemistry and Origin of Cretaceous Adakites in Mamuxia Formation, Sangri Group, South Tibet.Geochimica, 38(4):334-344 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200904003
      le Maitre, R.W., 2002.Igneous Rocks:A Classification and Glossary of Terms.Cambridge University Press, Cambridge.
      Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2016.Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet.Earth Science, 41(6):999-1015 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.083
      Liang, H.Y., Wei, Q.R., Xu, J.F., et al., 2010.Study on Zircon LA-ICP-MS U-Pb Age of Skarn Cu Mineralization Related Intrusion in the Southern Margin of the Gangdese Ore Belt, Tibet and Its Geological Implication.Acta Petrologica Sinica, 26(6):1692-1698 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201006006
      Ma, L., Wang, Q., Wyman, D.A., et al., 2013.Late Cretaceous (100-89 Ma) Magnesian Charnockites with Adakitic Affinities in the Milin Area, Eastern Gangdese:Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Tibet.Lithos, 175-176:315-332. https://doi.org/10.1016/j.lithos.2013.04.006
      Macpherson, C.G., Dreher, S.T., Thirlwall, M.F., 2006.Adakites without Slab Melting:High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines.Earth and Planetary Science Letters, 243(3-4):581-593. https://doi.org/10.1016/j.epsl.2005.12.034
      Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2
      Martin, H., 1999.Adakitic Magmas:Modern Analogues of Archaean Granitoids.Lithos, 46(3):411-429. https://doi.org/10.1016/s0024-4937(98)00076-0
      Martin, H., Smithies, R.H., Rapp, R., et al., 2005.An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and Some Implications for Crustal Evolution.Lithos, 79(1-2):1-24. https://doi.org/10.1016/j.lithos.2004.04.048
      McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253. doi: 10.1016/0009-2541(94)00140-4
      Meng, F.Y., Zhao, Z.D., Zhu, D.C., et al., 2010.Petrogenesis of Late Cretaceous Adakite-Like Rocks in Mamba from the Eastern Gangdese, Tibet.Acta Petrologica Sinica, 26(7):2180-2192 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201007019
      Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      Mo, X.X., 2011.Magmatism and Evolution of the Tibetan Plateau.Geological Journal of China Universities, 17(3):351-367 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=caa5c9264ecd5e980f5c631c7e2a8dee&encoded=0&v=paper_preview&mkt=zh-cn
      Muir, R.J., Weaver, S.D., Bradshaw, J.D., et al., 1995.The Cretaceous Separation Point Batholith, New Zealand:Granitoid Magmas Formed by Melting of Mafic Lithosphere.Journal of the Geological Society, 152(4):689-701. https://doi.org/10.1144/gsjgs.152.4.0689
      Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution.Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001
      Pearce, N.J.G., Perkins, W.T., Westgate, J.A., et al., 1997.A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials.Geostandards Newsletter, 21(1):115-144. https://doi.org/10.1111/j.1751-908x.1997.tb00538.x
      Peccerillo, A., Taylor, S.R., 1976.Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey.Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/bf00384745
      Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999.Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge:Experimental Constraints at 3.8 GPa.Chemical Geology, 160(4):335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
      Sun, S.Q., Wang, Y.L., Zhang, C.J., 2003.Discrimination of the Tectonic Settings of Basalts by Th, Nb and Zr.Geological Review, 49(1):40-47 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000005519
      Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004.The176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions.Earth and Planetary Science Letters, 219(3-4):311-324. https://doi.org/10.1016/s0012-821x(04)00012-3
      Tao, G., Zhu, L.D., Li, Z.W., et al., 2017.Petrogenesis and Geological Significance of the North Liuhuangkuang Granodiorite in the West Segment of the Qilian Terrane:Evidences from Geochronology, Geochemistry, and Hf Isotopes.Earth Science, 42(12):2258-2275 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.614
      Wang, Q., Xu, J.F., Zhao, Z.H., et al., 2007.Adakites or Adakitic Rocks and Associated Metal Metallogenesis in China.Bulletin of Mineralogy Petrology and Geochemistry, 26(4):336-349 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=dc1bf0622e076bca56f04519f1e932b4&encoded=0&v=paper_preview&mkt=zh-cn
      Wen, D.R., Chung, S.L., Song, B., et al., 2008.Late Cretaceous Gangdese Intrusions of Adakitic GeochemicalCharacteristics, SE Tibet:Petrogenesis and Tectonic Implications.Lithos, 105(1-2):1-11. https://doi.org/10.1016/j.lithos.2008.02.005
      Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007.Lu-Hf Isotopic Systematics and Their Applications in Petrology.Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001
      Wu, Y.B., Zheng, Y.F., 2004.Zircon Genetic Mineralogy and Its Constrain for Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese).
      Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      Zhang, Q., Xu, J.F., Wang, Y., et al., 2004.Diversity of Adakite.Geological Bulletin of China, 23(9-10):959-965 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=06390c01b614caf9e814eb7aa803d9f1&encoded=0&v=paper_preview&mkt=zh-cn
      Zhang, Z., Song, J.L., Tang, J.X., et al., 2017.Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet:Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating.Earth Science, 42(6):862-880 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.523
      Zhang, Z.M., Zhao, G.C., Santosh, M., et al., 2010.Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Tibet:Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction?Gondwana Research, 17(4):615-631. https://doi.org/10.1016/j.gr.2009.10.007
      Zhao, Z., Hu, D.G., Lu, L., et al., 2013.Discovery and Metallogenic Significance of the Late Cretacous Adakites from Zetang, Tibet.Journal of Geomechanics, 19(1):45-52, 112 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201301005
      Zheng, Y.C., Hou, Z.Q., Gong, Y.L., et al., 2014.Petrogenesis of Cretaceous Adakite-Like Intrusions of the Gangdese Plutonic Belt, Southern Tibet:Implications for Mid-Ocean Ridge Subduction and Crustal Growth.Lithos, 190-191:240-263. https://doi.org/10.1016/j.lithos.2013.12.013
      Zhu, D.C., Mo, X.X., Wang, L.Q., et al., 2009.Petrogenesis of Highly Fractionated Ⅰ-Type Granites in the Chayu Area of Eastern Gangdese, Tibet:Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes.Science in China (Series D), 39(7):833-848 (in Chinese).
      Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent andIts Histories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      Zhu, D.C., Zhao, Z.D., Pan, G.T., et al., 2009.Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet:Products of Slab Melting and Subsequent Melt-Peridotite Interaction?Journal of Asian Earth Sciences, 34(3):298-309. https://doi.org/10.1016/j.jseaes.2008.05.003
      Zhu, M.T., Wu, G., Xie, H.J., et al., 2011.Geochronology and Geochemistry of the Kekesai Intrusion in Western Tianshan, NW China and Its Geological Implications.Acta Petrologica Sinica, 27(10):3041-3054 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201110020
      陈希节, 许志琴, 孟元库, 等, 2014.冈底斯带中段中新世埃达克质岩浆作用的年代学、地球化学及Sr-Nd-Hf同位素制约.岩石学报, 30(8):2253-2268. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408010
      管琪, 朱弟成, 赵志丹, 等, 2010.西藏南部冈底斯带东段晚白垩世埃达克岩:新特提斯洋脊俯冲的产物?岩石学报, 26(7):2165-2179. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB201007019&dbname=CJFD&dbcode=CJFQ
      侯增谦, 杨竹森, 徐文艺, 等, 2006.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质, 25(4):337-358. doi: 10.3969/j.issn.0258-7106.2006.04.001
      纪伟强, 吴福元, 钟孙霖, 等, 2009.西藏南部冈底斯岩基花岗岩时代与岩石成因.中国科学(D辑), 39(7):849-871. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907002.htm
      康志强, 许继峰, 陈建林, 等, 2009.藏南白垩纪桑日群麻木下组埃达克岩的地球化学特征及其成因.地球化学, 38(4):334-344. doi: 10.3321/j.issn:0379-1726.2009.04.003
      梁华英, 魏启荣, 许继峰, 等, 2010.西藏冈底斯矿带南缘矽卡岩型铜矿床含矿岩体锆石U-Pb年龄及意义.岩石学报, 26(6):1692-1698. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201006006
      冷秋锋, 唐菊兴, 郑文宝, 等, 2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学, 41(6):999-1015. https://doi.org/10.3799/dqkx.2016.083
      孟繁一, 赵志丹, 朱弟成, 等, 2010.西藏冈底斯东部门巴地区晚白垩世埃达克质岩的岩石成因.岩石学报, 26(7):2180-2192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201007019
      莫宣学, 2011.岩浆作用与青藏高原演化.高校地质学报, 17(3):351-367. doi: 10.3969/j.issn.1006-7493.2011.03.001
      潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001
      孙书勤, 汪云亮, 张成江, 2003.玄武岩类岩石大地构造环境的Th、Nb、Zr判别.地质论评, 49(1):40-47. doi: 10.3321/j.issn:0371-5736.2003.01.006
      陶刚, 朱利东, 李智武, 等, 2017.祁连地块西段硫磺矿北花岗闪长岩的岩石成因及其地质意义:年代学、地球化学及Hf同位素证据.地球科学, 42(12):2258-2275. https://doi.org/10.3799/dqkx.2017.614
      王强, 许继峰, 赵振华, 等, 2007.中国埃达克岩或埃达克质岩及相关金属成矿作用.矿物岩石地球化学通报, 26(4):336-349. doi: 10.3969/j.issn.1007-2802.2007.04.005
      吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 23(2):185-220. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702001
      吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      张旗, 许继峰, 王焰, 等, 2004.埃达克岩的多样性.地质通报, 23(9-10):959-965. http://d.old.wanfangdata.com.cn/Periodical/zgqydz200409020
      张志, 宋俊龙, 唐菊兴, 等, 2017.西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年.地球科学, 42(6):862-880. https://doi.org/10.3799/dqkx.2017.523
      赵珍, 胡道功, 陆露, 等, 2013.西藏泽当地区晚白垩世埃达克岩的发现及其成矿意义.地质力学学报, 19(1):45-52, 112. doi: 10.3969/j.issn.1006-6616.2013.01.005
      朱弟成, 莫宣学, 王立全, 等, 2009.西藏冈底斯东部察隅高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Sr-Nd-Hf同位素约束.中国科学(D辑), 39(7):833-848. http://lib.cqvip.com/qk/81668X/200001/31087241.html
      朱明田, 武广, 解洪晶, 等, 2011.新疆西天山科克赛岩体年代学、地球化学及地质意义.岩石学报, 27(10):3041-3054. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201110020
    • 加载中
    图(9) / 表(3)
    计量
    • 文章访问数:  4529
    • HTML全文浏览量:  1749
    • PDF下载量:  38
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-03-12
    • 刊出日期:  2018-08-15

    目录

      /

      返回文章
      返回